mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-18 20:27:53 +00:00
bench : fix Windows linkage by moving ggml benches in whisper lib ..
This commit is contained in:
parent
1290fc6457
commit
7aa1174315
@ -1,11 +1,8 @@
|
||||
#include "ggml.h"
|
||||
#include "whisper.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
// command-line parameters
|
||||
struct whisper_params {
|
||||
@ -53,7 +50,7 @@ void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & para
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int bench_whisper_encoder(const whisper_params & params) {
|
||||
int whisper_bench_encoder(const whisper_params & params) {
|
||||
// whisper init
|
||||
|
||||
struct whisper_context * ctx = whisper_init_from_file(params.model.c_str());
|
||||
@ -96,132 +93,6 @@ int bench_whisper_encoder(const whisper_params & params) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
int bench_memcpy(const whisper_params & params) {
|
||||
size_t n = 50;
|
||||
size_t arr = params.what > 0 ? 1024 : params.what; // trick to avoid compiler optimizations
|
||||
|
||||
// 1 GB array
|
||||
const size_t size = arr*1024llu*1024llu;
|
||||
|
||||
char * src = (char *) malloc(size);
|
||||
char * dst = (char *) malloc(size);
|
||||
|
||||
for (size_t i = 0; i < size; i++) src[i] = i;
|
||||
|
||||
memcpy(dst, src, size); // heat-up
|
||||
|
||||
double tsum = 0.0;
|
||||
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
const int64_t t0 = ggml_time_us();
|
||||
|
||||
memcpy(dst, src, size);
|
||||
|
||||
const int64_t t1 = ggml_time_us();
|
||||
|
||||
tsum += (t1 - t0)*1e-6;
|
||||
|
||||
src[0] = rand();
|
||||
}
|
||||
|
||||
fprintf(stderr, "memcpy: %.2f GB/s\n", (double) (n*size)/(tsum*1024llu*1024llu*1024llu));
|
||||
|
||||
// needed to prevent the compile from optimizing the memcpy away
|
||||
{
|
||||
double sum = 0.0;
|
||||
|
||||
for (size_t i = 0; i < size; i++) sum += dst[i];
|
||||
|
||||
fprintf(stderr, "sum: %s\n", sum == -536870910.00 ? "ok" : "error");
|
||||
}
|
||||
|
||||
free(src);
|
||||
free(dst);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int bench_ggml_mul_mat(const whisper_params & params) {
|
||||
const int n_max = 128;
|
||||
|
||||
const std::vector<size_t> sizes = {
|
||||
64, 128, 256, 512, 1024, 2048, 4096,
|
||||
};
|
||||
|
||||
const size_t N_max = sizes.back();
|
||||
|
||||
// a: N*N*sizeof(float)
|
||||
// b: N*N*sizeof(float)
|
||||
// c: N*N*sizeof(float)
|
||||
// when F16 is used, there is an extra work buffer of size N*N*sizeof(float)
|
||||
std::vector<char> buf(4llu*N_max*N_max*sizeof(float) + 4*256);
|
||||
|
||||
for (size_t i = 0; i < buf.size(); i++) buf[i] = i;
|
||||
|
||||
for (int j = 0; j < (int) sizes.size(); j++) {
|
||||
int n_fp16 = 0;
|
||||
int n_fp32 = 0;
|
||||
|
||||
// GFLOPS/s
|
||||
double s_fp16 = 0.0;
|
||||
double s_fp32 = 0.0;
|
||||
|
||||
const size_t N = sizes[j];
|
||||
|
||||
for (int k = 0; k < 2; ++k) {
|
||||
const ggml_type wtype = k == 0 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
double & s = k == 0 ? s_fp16 : s_fp32;
|
||||
int & n = k == 0 ? n_fp16 : n_fp32;
|
||||
|
||||
struct ggml_init_params gparams = {
|
||||
/*.mem_size =*/ buf.size(),
|
||||
/*.mem_buffer =*/ buf.data(),
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(gparams);
|
||||
|
||||
struct ggml_tensor * a = ggml_new_tensor_2d(ctx0, wtype, N, N);
|
||||
struct ggml_tensor * b = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, N, N);
|
||||
|
||||
struct ggml_tensor * c = ggml_mul_mat(ctx0, a, b);
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(c);
|
||||
|
||||
gf.n_threads = params.n_threads;
|
||||
|
||||
double tsum = 0.0;
|
||||
|
||||
// heat-up
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
for (int i = 0; i < n_max; ++i) {
|
||||
const int64_t t0 = ggml_time_us();
|
||||
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
const int64_t t1 = ggml_time_us();
|
||||
|
||||
tsum += (t1 - t0)*1e-6;
|
||||
n++;
|
||||
|
||||
if (tsum > 1.0 && n >= 3) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
s = ((2.0*N*N*N*n)/tsum)*1e-9;
|
||||
}
|
||||
|
||||
fprintf(stderr, "ggml_mul_mat: %5zu x %5zu: F16 %8.1f GFLOPS (%3d runs) / F32 %8.1f GFLOPS (%3d runs)\n",
|
||||
N, N, s_fp16, n_fp16, s_fp32, n_fp32);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
whisper_params params;
|
||||
|
||||
@ -229,14 +100,12 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
ggml_time_init();
|
||||
|
||||
int ret = -1;
|
||||
|
||||
switch (params.what) {
|
||||
case 0: ret = bench_whisper_encoder(params); break;
|
||||
case 1: ret = bench_memcpy(params); break;
|
||||
case 2: ret = bench_ggml_mul_mat(params); break;
|
||||
case 0: ret = whisper_bench_encoder(params); break;
|
||||
case 1: ret = whisper_bench_memcpy(params.n_threads); break;
|
||||
case 2: ret = whisper_bench_ggml_mul_mat(params.n_threads); break;
|
||||
default: fprintf(stderr, "error: unknown benchmark: %d\n", params.what); break;
|
||||
}
|
||||
|
||||
|
140
whisper.cpp
140
whisper.cpp
@ -3801,6 +3801,7 @@ int whisper_full(
|
||||
|
||||
if (tokens_cur[i].id > whisper_token_beg(ctx) && !params.single_segment) {
|
||||
const auto t1 = seek + 2*(tokens_cur[i].tid - whisper_token_beg(ctx));
|
||||
|
||||
if (!text.empty()) {
|
||||
const auto tt0 = params.speed_up ? 2*t0 : t0;
|
||||
const auto tt1 = params.speed_up ? 2*t1 : t1;
|
||||
@ -4059,6 +4060,145 @@ float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
//
|
||||
// Temporary interface needed for exposing ggml interface
|
||||
// Will be removed in the future when ggml becomes a separate library
|
||||
//
|
||||
|
||||
WHISPER_API int whisper_bench_memcpy(int n_threads) {
|
||||
ggml_time_init();
|
||||
|
||||
size_t n = 50;
|
||||
size_t arr = n_threads > 0 ? 1024 : n_threads; // trick to avoid compiler optimizations
|
||||
|
||||
// 1 GB array
|
||||
const size_t size = arr*1024llu*1024llu;
|
||||
|
||||
char * src = (char *) malloc(size);
|
||||
char * dst = (char *) malloc(size);
|
||||
|
||||
for (size_t i = 0; i < size; i++) src[i] = i;
|
||||
|
||||
memcpy(dst, src, size); // heat-up
|
||||
|
||||
double tsum = 0.0;
|
||||
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
const int64_t t0 = ggml_time_us();
|
||||
|
||||
memcpy(dst, src, size);
|
||||
|
||||
const int64_t t1 = ggml_time_us();
|
||||
|
||||
tsum += (t1 - t0)*1e-6;
|
||||
|
||||
src[0] = rand();
|
||||
}
|
||||
|
||||
fprintf(stderr, "memcpy: %.2f GB/s\n", (double) (n*size)/(tsum*1024llu*1024llu*1024llu));
|
||||
|
||||
// needed to prevent the compile from optimizing the memcpy away
|
||||
{
|
||||
double sum = 0.0;
|
||||
|
||||
for (size_t i = 0; i < size; i++) sum += dst[i];
|
||||
|
||||
fprintf(stderr, "sum: %s\n", sum == -536870910.00 ? "ok" : "error");
|
||||
}
|
||||
|
||||
free(src);
|
||||
free(dst);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
WHISPER_API int whisper_bench_ggml_mul_mat(int n_threads) {
|
||||
ggml_time_init();
|
||||
|
||||
const int n_max = 128;
|
||||
|
||||
const std::vector<size_t> sizes = {
|
||||
64, 128, 256, 512, 1024, 2048, 4096,
|
||||
};
|
||||
|
||||
const size_t N_max = sizes.back();
|
||||
|
||||
// a: N*N*sizeof(float)
|
||||
// b: N*N*sizeof(float)
|
||||
// c: N*N*sizeof(float)
|
||||
// when F16 is used, there is an extra work buffer of size N*N*sizeof(float)
|
||||
std::vector<char> buf(4llu*N_max*N_max*sizeof(float) + 4*256);
|
||||
|
||||
for (size_t i = 0; i < buf.size(); i++) buf[i] = i;
|
||||
|
||||
for (int j = 0; j < (int) sizes.size(); j++) {
|
||||
int n_fp16 = 0;
|
||||
int n_fp32 = 0;
|
||||
|
||||
// GFLOPS/s
|
||||
double s_fp16 = 0.0;
|
||||
double s_fp32 = 0.0;
|
||||
|
||||
const size_t N = sizes[j];
|
||||
|
||||
for (int k = 0; k < 2; ++k) {
|
||||
const ggml_type wtype = k == 0 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
double & s = k == 0 ? s_fp16 : s_fp32;
|
||||
int & n = k == 0 ? n_fp16 : n_fp32;
|
||||
|
||||
struct ggml_init_params gparams = {
|
||||
/*.mem_size =*/ buf.size(),
|
||||
/*.mem_buffer =*/ buf.data(),
|
||||
};
|
||||
|
||||
struct ggml_context * ctx0 = ggml_init(gparams);
|
||||
|
||||
struct ggml_tensor * a = ggml_new_tensor_2d(ctx0, wtype, N, N);
|
||||
struct ggml_tensor * b = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, N, N);
|
||||
|
||||
struct ggml_tensor * c = ggml_mul_mat(ctx0, a, b);
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward(c);
|
||||
|
||||
gf.n_threads = n_threads;
|
||||
|
||||
double tsum = 0.0;
|
||||
|
||||
// heat-up
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
for (int i = 0; i < n_max; ++i) {
|
||||
const int64_t t0 = ggml_time_us();
|
||||
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
|
||||
const int64_t t1 = ggml_time_us();
|
||||
|
||||
tsum += (t1 - t0)*1e-6;
|
||||
n++;
|
||||
|
||||
if (tsum > 1.0 && n >= 3) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ggml_free(ctx0);
|
||||
|
||||
s = ((2.0*N*N*N*n)/tsum)*1e-9;
|
||||
}
|
||||
|
||||
fprintf(stderr, "ggml_mul_mat: %5zu x %5zu: F16 %8.1f GFLOPS (%3d runs) / F32 %8.1f GFLOPS (%3d runs)\n",
|
||||
N, N, s_fp16, n_fp16, s_fp32, n_fp32);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
//
|
||||
// Experimental stuff below
|
||||
//
|
||||
|
@ -350,6 +350,13 @@ extern "C" {
|
||||
// Get the probability of the specified token in the specified segment.
|
||||
WHISPER_API float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Temporary helpers needed for exposing ggml interface
|
||||
|
||||
WHISPER_API int whisper_bench_memcpy(int n_threads);
|
||||
WHISPER_API int whisper_bench_ggml_mul_mat(int n_threads);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user