mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-13 04:28:07 +00:00
@ -1,6 +1,7 @@
|
||||
// Defines fileno on msys:
|
||||
#ifndef _GNU_SOURCE
|
||||
#define _GNU_SOURCE
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#endif
|
||||
@ -45,6 +46,7 @@ enum e_model {
|
||||
MODEL_65B,
|
||||
};
|
||||
|
||||
|
||||
static const size_t MB = 1024*1024;
|
||||
|
||||
// computed for n_ctx == 2048
|
||||
@ -110,7 +112,7 @@ struct llama_hparams {
|
||||
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
|
||||
|
||||
bool operator!=(const llama_hparams & other) const {
|
||||
return memcmp(this, &other, sizeof(llama_hparams));
|
||||
return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
|
||||
}
|
||||
};
|
||||
|
||||
@ -406,6 +408,7 @@ enum llama_file_version {
|
||||
LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
|
||||
LLAMA_FILE_VERSION_GGJT_V1, // added padding
|
||||
LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
|
||||
LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
|
||||
};
|
||||
|
||||
struct llama_file_loader {
|
||||
@ -424,24 +427,30 @@ struct llama_file_loader {
|
||||
}
|
||||
void read_magic() {
|
||||
uint32_t magic = file.read_u32();
|
||||
uint32_t version = 0;
|
||||
|
||||
if (magic != 'ggml') {
|
||||
version = file.read_u32();
|
||||
}
|
||||
|
||||
if (magic == 'ggml' && version == 0) {
|
||||
if (magic == LLAMA_FILE_MAGIC_GGML) {
|
||||
file_version = LLAMA_FILE_VERSION_GGML;
|
||||
} else if (magic == 'ggmf' && version == 1) {
|
||||
file_version = LLAMA_FILE_VERSION_GGMF_V1;
|
||||
} else if (magic == 'ggjt' && version == 1) {
|
||||
file_version = LLAMA_FILE_VERSION_GGJT_V1;
|
||||
} else if (magic == 'ggjt' && version == 2) {
|
||||
file_version = LLAMA_FILE_VERSION_GGJT_V2;
|
||||
} else {
|
||||
throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
|
||||
magic, version);
|
||||
return;
|
||||
}
|
||||
|
||||
uint32_t version = file.read_u32();
|
||||
|
||||
switch (magic) {
|
||||
case LLAMA_FILE_MAGIC_GGMF:
|
||||
switch (version) {
|
||||
case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
|
||||
}
|
||||
break;
|
||||
case LLAMA_FILE_MAGIC_GGJT:
|
||||
switch (version) {
|
||||
case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
|
||||
case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
|
||||
case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
|
||||
}
|
||||
}
|
||||
|
||||
throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
|
||||
magic, version);
|
||||
}
|
||||
void read_hparams() {
|
||||
hparams.n_vocab = file.read_u32();
|
||||
@ -499,7 +508,7 @@ struct llama_file_loader {
|
||||
|
||||
if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
|
||||
// skip to the next multiple of 32 bytes
|
||||
file.seek(-file.tell() & 31, SEEK_CUR);
|
||||
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
|
||||
}
|
||||
shard.file_idx = file_idx;
|
||||
shard.file_off = file.tell();
|
||||
@ -574,7 +583,7 @@ struct llama_file_saver {
|
||||
file.write_u32(new_type);
|
||||
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
|
||||
file.write_raw(tensor.name.data(), tensor.name.size());
|
||||
file.seek(-file.tell() & 31, SEEK_CUR);
|
||||
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
|
||||
LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
|
||||
file.write_raw(new_data, new_size);
|
||||
}
|
||||
@ -641,7 +650,7 @@ struct llama_model_loader {
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne) {
|
||||
struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
|
||||
auto it = tensors_map.name_to_idx.find(name);
|
||||
if (it == tensors_map.name_to_idx.end()) {
|
||||
throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
|
||||
@ -652,10 +661,10 @@ struct llama_model_loader {
|
||||
name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
|
||||
}
|
||||
|
||||
return get_tensor_for(lt);
|
||||
return get_tensor_for(lt, backend);
|
||||
}
|
||||
|
||||
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
|
||||
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
|
||||
struct ggml_tensor * tensor;
|
||||
if (lt.ne.size() == 2) {
|
||||
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
|
||||
@ -665,6 +674,7 @@ struct llama_model_loader {
|
||||
}
|
||||
ggml_set_name(tensor, lt.name.c_str());
|
||||
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
|
||||
tensor->backend = backend;
|
||||
lt.ggml_tensor = tensor;
|
||||
num_ggml_tensors_created++;
|
||||
return tensor;
|
||||
@ -678,12 +688,16 @@ struct llama_model_loader {
|
||||
|
||||
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
|
||||
size_t data_size = 0;
|
||||
size_t prefetch_size = 0;
|
||||
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
||||
data_size += lt.size;
|
||||
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
|
||||
prefetch_size += lt.size;
|
||||
}
|
||||
}
|
||||
|
||||
if (use_mmap) {
|
||||
mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
|
||||
mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
|
||||
if (!lmlock) {
|
||||
// Don't call the callback since the actual loading will be lazy
|
||||
// and we can't measure it.
|
||||
@ -696,6 +710,9 @@ struct llama_model_loader {
|
||||
|
||||
size_t done_size = 0;
|
||||
for (llama_load_tensor & lt : tensors_map.tensors) {
|
||||
if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
|
||||
continue;
|
||||
}
|
||||
if (progress_callback) {
|
||||
progress_callback((float) done_size / data_size, progress_callback_user_data);
|
||||
}
|
||||
@ -708,9 +725,6 @@ struct llama_model_loader {
|
||||
lmlock->grow_to(done_size);
|
||||
}
|
||||
}
|
||||
if (progress_callback) {
|
||||
progress_callback(1.0f, progress_callback_user_data);
|
||||
}
|
||||
}
|
||||
|
||||
void load_data_for(llama_load_tensor & lt) {
|
||||
@ -812,10 +826,9 @@ static bool kv_cache_init(
|
||||
struct llama_context_params llama_context_default_params() {
|
||||
struct llama_context_params result = {
|
||||
/*.n_ctx =*/ 512,
|
||||
/*.n_parts =*/ -1,
|
||||
/*.gpu_layers =*/ 0,
|
||||
/*.seed =*/ -1,
|
||||
/*.f16_kv =*/ false,
|
||||
/*.f16_kv =*/ true,
|
||||
/*.logits_all =*/ false,
|
||||
/*.vocab_only =*/ false,
|
||||
/*.use_mmap =*/ true,
|
||||
@ -836,6 +849,21 @@ bool llama_mlock_supported() {
|
||||
return llama_mlock::SUPPORTED;
|
||||
}
|
||||
|
||||
void llama_init_backend() {
|
||||
ggml_time_init();
|
||||
|
||||
// needed to initialize f16 tables
|
||||
{
|
||||
struct ggml_init_params params = { 0, NULL, false };
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_free(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
int64_t llama_time_us() {
|
||||
return ggml_time_us();
|
||||
}
|
||||
|
||||
//
|
||||
// model loading
|
||||
//
|
||||
@ -845,7 +873,8 @@ static const char *llama_file_version_name(llama_file_version version) {
|
||||
case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
|
||||
case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (latest)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
|
||||
}
|
||||
|
||||
return "unknown";
|
||||
@ -925,11 +954,19 @@ static void llama_model_load_internal(
|
||||
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
||||
}
|
||||
|
||||
if (file_version != LLAMA_FILE_VERSION_GGJT_V2) {
|
||||
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
|
||||
if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
|
||||
hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
|
||||
hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
|
||||
throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1305)");
|
||||
throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)");
|
||||
}
|
||||
}
|
||||
|
||||
if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
|
||||
if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
|
||||
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
|
||||
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
|
||||
throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)");
|
||||
}
|
||||
}
|
||||
|
||||
@ -942,27 +979,7 @@ static void llama_model_load_internal(
|
||||
size_t ctx_size;
|
||||
size_t mmapped_size;
|
||||
ml->calc_sizes(&ctx_size, &mmapped_size);
|
||||
fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
|
||||
|
||||
// print memory requirements
|
||||
{
|
||||
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
|
||||
|
||||
// this is the total memory required to run the inference
|
||||
const size_t mem_required =
|
||||
ctx_size +
|
||||
mmapped_size +
|
||||
MEM_REQ_SCRATCH0().at(model.type) +
|
||||
MEM_REQ_SCRATCH1().at(model.type) +
|
||||
MEM_REQ_EVAL().at(model.type);
|
||||
|
||||
// this is the memory required by one llama_state
|
||||
const size_t mem_required_state =
|
||||
scale*MEM_REQ_KV_SELF().at(model.type);
|
||||
|
||||
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
|
||||
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
|
||||
}
|
||||
fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
|
||||
|
||||
// create the ggml context
|
||||
{
|
||||
@ -984,7 +1001,14 @@ static void llama_model_load_internal(
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA
|
||||
#else
|
||||
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
|
||||
#endif
|
||||
|
||||
// prepare memory for the weights
|
||||
size_t vram_total = 0;
|
||||
{
|
||||
const uint32_t n_embd = hparams.n_embd;
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
@ -992,33 +1016,87 @@ static void llama_model_load_internal(
|
||||
|
||||
ml->ggml_ctx = ctx;
|
||||
|
||||
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
|
||||
model.norm = ml->get_tensor("norm.weight", {n_embd});
|
||||
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
|
||||
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
||||
model.norm = ml->get_tensor("norm.weight", {n_embd}, GGML_BACKEND_CPU);
|
||||
|
||||
// "output" tensor
|
||||
{
|
||||
ggml_backend backend_output;
|
||||
if (n_gpu_layers > int(n_layer)) { // NOLINT
|
||||
backend_output = LLAMA_BACKEND_OFFLOAD;
|
||||
} else {
|
||||
backend_output = GGML_BACKEND_CPU;
|
||||
}
|
||||
|
||||
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
|
||||
}
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
model.layers.resize(n_layer);
|
||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
std::string layers_i = "layers." + std::to_string(i);
|
||||
|
||||
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
|
||||
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
|
||||
|
||||
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
|
||||
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
|
||||
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
|
||||
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
|
||||
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend);
|
||||
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend);
|
||||
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend);
|
||||
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend);
|
||||
|
||||
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
|
||||
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
|
||||
|
||||
layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
|
||||
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
|
||||
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
|
||||
layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend);
|
||||
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend);
|
||||
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend);
|
||||
|
||||
if (backend == GGML_BACKEND_CUDA) {
|
||||
vram_total +=
|
||||
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
|
||||
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) +
|
||||
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ml->done_getting_tensors();
|
||||
|
||||
// print memory requirements
|
||||
{
|
||||
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
|
||||
|
||||
// this is the total memory required to run the inference
|
||||
const size_t mem_required =
|
||||
ctx_size +
|
||||
mmapped_size - vram_total + // weights in VRAM not in memory
|
||||
MEM_REQ_SCRATCH0().at(model.type) +
|
||||
MEM_REQ_SCRATCH1().at(model.type) +
|
||||
MEM_REQ_EVAL().at(model.type);
|
||||
|
||||
// this is the memory required by one llama_state
|
||||
const size_t mem_required_state =
|
||||
scale*MEM_REQ_KV_SELF().at(model.type);
|
||||
|
||||
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
|
||||
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
||||
|
||||
fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu);
|
||||
if (n_gpu_layers > (int) hparams.n_layer) {
|
||||
fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);
|
||||
}
|
||||
fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
|
||||
#else
|
||||
(void) n_gpu_layers;
|
||||
#endif
|
||||
}
|
||||
|
||||
// populate `tensors_by_name`
|
||||
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
|
||||
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
|
||||
@ -1026,36 +1104,34 @@ static void llama_model_load_internal(
|
||||
|
||||
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
|
||||
|
||||
model.mapping = std::move(ml->mapping);
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
{
|
||||
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
||||
|
||||
fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu);
|
||||
|
||||
size_t vram_total = 0;
|
||||
|
||||
for (int i = 0; i < n_gpu; ++i) {
|
||||
const auto & layer = model.layers[i];
|
||||
|
||||
ggml_cuda_transform_tensor(layer.wq); vram_total += ggml_nbytes(layer.wq);
|
||||
ggml_cuda_transform_tensor(layer.wk); vram_total += ggml_nbytes(layer.wk);
|
||||
ggml_cuda_transform_tensor(layer.wv); vram_total += ggml_nbytes(layer.wv);
|
||||
ggml_cuda_transform_tensor(layer.wo); vram_total += ggml_nbytes(layer.wo);
|
||||
ggml_cuda_transform_tensor(layer.w1); vram_total += ggml_nbytes(layer.w1);
|
||||
ggml_cuda_transform_tensor(layer.w2); vram_total += ggml_nbytes(layer.w2);
|
||||
ggml_cuda_transform_tensor(layer.w3); vram_total += ggml_nbytes(layer.w3);
|
||||
size_t done_size = 0;
|
||||
size_t data_size = 0;
|
||||
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
|
||||
data_size += lt.size;
|
||||
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
|
||||
done_size += lt.size;
|
||||
}
|
||||
}
|
||||
if (n_gpu_layers > (int) hparams.n_layer) {
|
||||
fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);
|
||||
ggml_cuda_transform_tensor(model.output); vram_total += ggml_nbytes(model.output);
|
||||
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
|
||||
if (lt.ggml_tensor->backend != GGML_BACKEND_CUDA) {
|
||||
continue;
|
||||
}
|
||||
if (progress_callback) {
|
||||
progress_callback((float) done_size / data_size, progress_callback_user_data);
|
||||
}
|
||||
ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
|
||||
done_size += lt.size;
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
|
||||
}
|
||||
#else
|
||||
(void) n_gpu_layers;
|
||||
#endif
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
if (progress_callback) {
|
||||
progress_callback(1.0f, progress_callback_user_data);
|
||||
}
|
||||
|
||||
model.mapping = std::move(ml->mapping);
|
||||
|
||||
// loading time will be recalculate after the first eval, so
|
||||
// we take page faults deferred by mmap() into consideration
|
||||
@ -1154,10 +1230,8 @@ static bool llama_eval_internal(
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
cur = ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
|
||||
cur);
|
||||
// cur = cur*attention_norm(broadcasted)
|
||||
cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
|
||||
}
|
||||
|
||||
// self-attention
|
||||
@ -1264,10 +1338,8 @@ static bool llama_eval_internal(
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
cur = ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
|
||||
cur);
|
||||
// cur = cur*ffn_norm(broadcasted)
|
||||
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
|
||||
}
|
||||
|
||||
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
|
||||
@ -1304,10 +1376,8 @@ static bool llama_eval_internal(
|
||||
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
|
||||
// inpL = norm*inpL
|
||||
inpL = ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.norm, inpL),
|
||||
inpL);
|
||||
// inpL = inpL*norm(broadcasted)
|
||||
inpL = ggml_mul(ctx0, inpL, model.norm);
|
||||
|
||||
embeddings = inpL;
|
||||
}
|
||||
@ -2131,7 +2201,7 @@ struct llama_context * llama_init_from_file(
|
||||
unsigned * cur_percentage_p = (unsigned *) ctx;
|
||||
unsigned percentage = (unsigned) (100 * progress);
|
||||
while (percentage > *cur_percentage_p) {
|
||||
++*cur_percentage_p;
|
||||
*cur_percentage_p = percentage;
|
||||
fprintf(stderr, ".");
|
||||
fflush(stderr);
|
||||
if (percentage >= 100) {
|
||||
@ -2224,7 +2294,7 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
|
||||
{
|
||||
uint32_t magic;
|
||||
fin.read((char *) &magic, sizeof(magic));
|
||||
if (magic != 'ggla') {
|
||||
if (magic != LLAMA_FILE_MAGIC_GGLA) {
|
||||
fprintf(stderr, "%s: bad file magic\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@ -2288,7 +2358,7 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
|
||||
|
||||
// maybe this should in llama_model_loader
|
||||
if (model_loader->use_mmap) {
|
||||
model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ false));
|
||||
model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0));
|
||||
}
|
||||
}
|
||||
|
||||
@ -2381,7 +2451,7 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
|
||||
}
|
||||
size_t idx = model_loader->tensors_map.name_to_idx[base_name];
|
||||
llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
|
||||
base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] });
|
||||
base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
|
||||
lt.data = (uint8_t *) lt.ggml_tensor->data;
|
||||
model_loader->load_data_for(lt);
|
||||
lt.ggml_tensor->data = lt.data;
|
||||
@ -2607,8 +2677,8 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
||||
}
|
||||
|
||||
// Sets the state reading from the specified source address
|
||||
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
|
||||
const uint8_t * inp = src;
|
||||
size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
||||
uint8_t * inp = src;
|
||||
|
||||
// set rng
|
||||
{
|
||||
|
Reference in New Issue
Block a user