cuda : fix defrag with quantized KV (llama/9319)

This commit is contained in:
slaren 2024-09-05 11:13:11 +02:00 committed by Georgi Gerganov
parent 01e214a1d7
commit 709a22b92d
3 changed files with 40 additions and 19 deletions

View File

@ -1169,6 +1169,11 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
} }
} }
if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
// since the tensor is pre-allocated, it cannot be moved to another backend
GGML_ABORT("pre-allocated tensor in a backend that cannot run the operation");
}
// graph input // graph input
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) { if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU) cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
@ -1648,7 +1653,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
sched->prev_leaf_backend_ids = tmp; sched->prev_leaf_backend_ids = tmp;
} }
int graph_size = graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2; int graph_size = MAX(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
if (sched->graph.size < graph_size) { if (sched->graph.size < graph_size) {
sched->graph.size = graph_size; sched->graph.size = graph_size;
sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *)); sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
@ -1700,6 +1705,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int c = 0; c < sched->n_copies; c++) { for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c); struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
assert(graph_copy->size > graph_copy->n_leafs);
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
} }
} }
@ -1713,6 +1719,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int c = 0; c < sched->n_copies; c++) { for (int c = 0; c < sched->n_copies; c++) {
struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c); struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
assert(graph_copy->size > graph_copy->n_leafs);
graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
} }
} }
@ -1723,6 +1730,7 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
for (int i = 0; i < graph->n_leafs; i++) { for (int i = 0; i < graph->n_leafs; i++) {
struct ggml_tensor * leaf = graph->leafs[i]; struct ggml_tensor * leaf = graph->leafs[i];
sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf); sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
assert(graph_copy->size > graph_copy->n_leafs);
graph_copy->leafs[graph_copy->n_leafs++] = leaf; graph_copy->leafs[graph_copy->n_leafs++] = leaf;
} }
} }

View File

@ -2580,10 +2580,17 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data)); cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
// store a pointer to each copy op CUDA kernel to identify it later // store a pointer to each copy op CUDA kernel to identify it later
void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]); void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
if (!ptr) {
use_cuda_graph = false;
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
#endif
} else {
if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) { if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
ggml_cuda_cpy_fn_ptrs.push_back(ptr); ggml_cuda_cpy_fn_ptrs.push_back(ptr);
} }
} }
}
if (!use_cuda_graph) { if (!use_cuda_graph) {
break; break;
@ -2851,6 +2858,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) { if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return true; return true;
} }
if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) {
return true;
}
return false; return false;
} break; } break;
case GGML_OP_DUP: case GGML_OP_DUP:

View File

@ -428,7 +428,10 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
char * src0_ddc = (char *) src0->data; char * src0_ddc = (char *) src0->data;
char * src1_ddc = (char *) src1->data; char * src1_ddc = (char *) src1->data;
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
@ -449,9 +452,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream); ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else { } else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__, GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type)); ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
} }
} }
@ -461,7 +463,9 @@ void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
} }
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) { void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
return nullptr;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f32_f32>; return (void*) cpy_f32_f16<cpy_1_f32_f32>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) { } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
return (void*) cpy_f32_f16<cpy_1_f32_f16>; return (void*) cpy_f32_f16<cpy_1_f32_f16>;
@ -482,8 +486,7 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) { } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f16_f32>; return (void*) cpy_f32_f16<cpy_1_f16_f32>;
} else { } else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__, GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type)); ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
} }
} }