mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-05-02 08:43:02 +00:00
whisper : remove ggml source tree
This commit removes the ggml source tree in favor of creating a git submodule for https://github.com/ggml-org/ggml instead. Refs: https://github.com/ggerganov/whisper.cpp/issues/2785
This commit is contained in:
parent
eac1bc9c47
commit
6e142c3247
1
ggml/.gitignore
vendored
1
ggml/.gitignore
vendored
@ -1 +0,0 @@
|
||||
src/ggml-metal-embed.metal
|
@ -1,362 +0,0 @@
|
||||
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
|
||||
project("ggml" C CXX)
|
||||
include(CheckIncludeFileCXX)
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
|
||||
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
|
||||
endif()
|
||||
|
||||
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
|
||||
set(GGML_STANDALONE ON)
|
||||
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
|
||||
|
||||
# configure project version
|
||||
# TODO
|
||||
else()
|
||||
set(GGML_STANDALONE OFF)
|
||||
endif()
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set(BUILD_SHARED_LIBS_DEFAULT OFF)
|
||||
|
||||
option(GGML_WASM_SINGLE_FILE "ggml: embed WASM inside the generated ggml.js" ON)
|
||||
else()
|
||||
if (MINGW)
|
||||
set(BUILD_SHARED_LIBS_DEFAULT OFF)
|
||||
else()
|
||||
set(BUILD_SHARED_LIBS_DEFAULT ON)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# remove the lib prefix on win32 mingw
|
||||
if (WIN32)
|
||||
set(CMAKE_STATIC_LIBRARY_PREFIX "")
|
||||
set(CMAKE_SHARED_LIBRARY_PREFIX "")
|
||||
set(CMAKE_SHARED_MODULE_PREFIX "")
|
||||
endif()
|
||||
|
||||
option(BUILD_SHARED_LIBS "ggml: build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
|
||||
option(GGML_BACKEND_DL "ggml: build backends as dynamic libraries (requires BUILD_SHARED_LIBS)" OFF)
|
||||
|
||||
#
|
||||
# option list
|
||||
#
|
||||
|
||||
# TODO: mark all options as advanced when not GGML_STANDALONE
|
||||
|
||||
if (APPLE)
|
||||
set(GGML_METAL_DEFAULT ON)
|
||||
set(GGML_BLAS_DEFAULT ON)
|
||||
set(GGML_BLAS_VENDOR_DEFAULT "Apple")
|
||||
else()
|
||||
set(GGML_METAL_DEFAULT OFF)
|
||||
set(GGML_BLAS_DEFAULT OFF)
|
||||
set(GGML_BLAS_VENDOR_DEFAULT "Generic")
|
||||
endif()
|
||||
|
||||
if (CMAKE_CROSSCOMPILING OR DEFINED ENV{SOURCE_DATE_EPOCH})
|
||||
message(STATUS "Setting GGML_NATIVE_DEFAULT to OFF")
|
||||
set(GGML_NATIVE_DEFAULT OFF)
|
||||
else()
|
||||
set(GGML_NATIVE_DEFAULT ON)
|
||||
endif()
|
||||
|
||||
# defaults
|
||||
if (NOT GGML_LLAMAFILE_DEFAULT)
|
||||
set(GGML_LLAMAFILE_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
if (NOT GGML_CUDA_GRAPHS_DEFAULT)
|
||||
set(GGML_CUDA_GRAPHS_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
# general
|
||||
option(GGML_STATIC "ggml: static link libraries" OFF)
|
||||
option(GGML_NATIVE "ggml: optimize the build for the current system" ${GGML_NATIVE_DEFAULT})
|
||||
option(GGML_LTO "ggml: enable link time optimization" OFF)
|
||||
option(GGML_CCACHE "ggml: use ccache if available" ON)
|
||||
|
||||
# debug
|
||||
option(GGML_ALL_WARNINGS "ggml: enable all compiler warnings" ON)
|
||||
option(GGML_ALL_WARNINGS_3RD_PARTY "ggml: enable all compiler warnings in 3rd party libs" OFF)
|
||||
option(GGML_GPROF "ggml: enable gprof" OFF)
|
||||
|
||||
# build
|
||||
option(GGML_FATAL_WARNINGS "ggml: enable -Werror flag" OFF)
|
||||
|
||||
# sanitizers
|
||||
option(GGML_SANITIZE_THREAD "ggml: enable thread sanitizer" OFF)
|
||||
option(GGML_SANITIZE_ADDRESS "ggml: enable address sanitizer" OFF)
|
||||
option(GGML_SANITIZE_UNDEFINED "ggml: enable undefined sanitizer" OFF)
|
||||
|
||||
# instruction set specific
|
||||
if (GGML_NATIVE OR NOT GGML_NATIVE_DEFAULT)
|
||||
set(INS_ENB OFF)
|
||||
else()
|
||||
set(INS_ENB ON)
|
||||
endif()
|
||||
|
||||
message(DEBUG "GGML_NATIVE : ${GGML_NATIVE}")
|
||||
message(DEBUG "GGML_NATIVE_DEFAULT : ${GGML_NATIVE_DEFAULT}")
|
||||
message(DEBUG "INS_ENB : ${INS_ENB}")
|
||||
|
||||
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
|
||||
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
|
||||
option(GGML_CPU_KLEIDIAI "ggml: use KleidiAI optimized kernels if applicable" OFF)
|
||||
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
|
||||
option(GGML_AVX_VNNI "ggml: enable AVX-VNNI" OFF)
|
||||
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
|
||||
option(GGML_BMI2 "ggml: enable BMI2" ${INS_ENB})
|
||||
option(GGML_AVX512 "ggml: enable AVX512F" OFF)
|
||||
option(GGML_AVX512_VBMI "ggml: enable AVX512-VBMI" OFF)
|
||||
option(GGML_AVX512_VNNI "ggml: enable AVX512-VNNI" OFF)
|
||||
option(GGML_AVX512_BF16 "ggml: enable AVX512-BF16" OFF)
|
||||
if (NOT MSVC)
|
||||
# in MSVC F16C and FMA is implied with AVX2/AVX512
|
||||
option(GGML_FMA "ggml: enable FMA" ${INS_ENB})
|
||||
option(GGML_F16C "ggml: enable F16C" ${INS_ENB})
|
||||
# MSVC does not seem to support AMX
|
||||
option(GGML_AMX_TILE "ggml: enable AMX-TILE" OFF)
|
||||
option(GGML_AMX_INT8 "ggml: enable AMX-INT8" OFF)
|
||||
option(GGML_AMX_BF16 "ggml: enable AMX-BF16" OFF)
|
||||
endif()
|
||||
option(GGML_LASX "ggml: enable lasx" ON)
|
||||
option(GGML_LSX "ggml: enable lsx" ON)
|
||||
option(GGML_RVV "ggml: enable rvv" ON)
|
||||
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
|
||||
option(GGML_VXE "ggml: enable vxe" ON)
|
||||
|
||||
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
|
||||
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
|
||||
set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
|
||||
|
||||
|
||||
if (WIN32)
|
||||
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
|
||||
endif()
|
||||
|
||||
# ggml core
|
||||
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
|
||||
option(GGML_CPU "ggml: enable CPU backend" ON)
|
||||
|
||||
# 3rd party libs / backends
|
||||
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
|
||||
option(GGML_BLAS "ggml: use BLAS" ${GGML_BLAS_DEFAULT})
|
||||
set(GGML_BLAS_VENDOR ${GGML_BLAS_VENDOR_DEFAULT} CACHE STRING
|
||||
"ggml: BLAS library vendor")
|
||||
option(GGML_LLAMAFILE "ggml: use LLAMAFILE" ${GGML_LLAMAFILE_DEFAULT})
|
||||
|
||||
option(GGML_CUDA "ggml: use CUDA" OFF)
|
||||
option(GGML_MUSA "ggml: use MUSA" OFF)
|
||||
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
|
||||
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
|
||||
option(GGML_CUDA_F16 "ggml: use 16 bit floats for some calculations" OFF)
|
||||
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
||||
"ggml: max. batch size for using peer access")
|
||||
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
|
||||
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)
|
||||
option(GGML_CUDA_FA "ggml: compile ggml FlashAttention CUDA kernels" ON)
|
||||
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
|
||||
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
|
||||
set (GGML_CUDA_COMPRESSION_MODE "size" CACHE STRING
|
||||
"ggml: cuda link binary compression mode; requires cuda 12.8+")
|
||||
set_property(CACHE GGML_CUDA_COMPRESSION_MODE PROPERTY STRINGS "none;speed;balance;size")
|
||||
|
||||
option(GGML_HIP "ggml: use HIP" OFF)
|
||||
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
|
||||
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
|
||||
option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug output" OFF)
|
||||
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
|
||||
option(GGML_VULKAN_PERF "ggml: enable Vulkan perf output" OFF)
|
||||
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
|
||||
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
|
||||
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
|
||||
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
|
||||
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
|
||||
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
|
||||
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
|
||||
option(GGML_METAL_EMBED_LIBRARY "ggml: embed Metal library" ${GGML_METAL})
|
||||
set (GGML_METAL_MACOSX_VERSION_MIN "" CACHE STRING
|
||||
"ggml: metal minimum macOS version")
|
||||
set (GGML_METAL_STD "" CACHE STRING "ggml: metal standard version (-std flag)")
|
||||
option(GGML_OPENMP "ggml: use OpenMP" ON)
|
||||
option(GGML_RPC "ggml: use RPC" OFF)
|
||||
option(GGML_SYCL "ggml: use SYCL" OFF)
|
||||
option(GGML_SYCL_F16 "ggml: use 16 bit floats for sycl calculations" OFF)
|
||||
option(GGML_SYCL_GRAPH "ggml: enable graphs in the SYCL backend" ON)
|
||||
set (GGML_SYCL_TARGET "INTEL" CACHE STRING
|
||||
"ggml: sycl target device")
|
||||
set (GGML_SYCL_DEVICE_ARCH "" CACHE STRING
|
||||
"ggml: sycl device architecture")
|
||||
|
||||
option(GGML_OPENCL "ggml: use OpenCL" OFF)
|
||||
option(GGML_OPENCL_PROFILING "ggml: use OpenCL profiling (increases overhead)" OFF)
|
||||
option(GGML_OPENCL_EMBED_KERNELS "ggml: embed kernels" ON)
|
||||
option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adreno" ON)
|
||||
set (GGML_OPENCL_TARGET_VERSION "300" CACHE STRING
|
||||
"gmml: OpenCL API version to target")
|
||||
|
||||
# toolchain for vulkan-shaders-gen
|
||||
set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen")
|
||||
|
||||
# extra artifacts
|
||||
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
|
||||
option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
|
||||
|
||||
#
|
||||
# dependencies
|
||||
#
|
||||
|
||||
set(CMAKE_C_STANDARD 11)
|
||||
set(CMAKE_C_STANDARD_REQUIRED true)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED true)
|
||||
|
||||
set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
include(GNUInstallDirs)
|
||||
|
||||
#
|
||||
# build the library
|
||||
#
|
||||
|
||||
add_subdirectory(src)
|
||||
|
||||
#
|
||||
# tests and examples
|
||||
#
|
||||
|
||||
if (GGML_BUILD_TESTS)
|
||||
enable_testing()
|
||||
add_subdirectory(tests)
|
||||
endif ()
|
||||
|
||||
if (GGML_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
endif ()
|
||||
|
||||
#
|
||||
# install
|
||||
#
|
||||
|
||||
include(CMakePackageConfigHelpers)
|
||||
|
||||
# all public headers
|
||||
set(GGML_PUBLIC_HEADERS
|
||||
include/ggml.h
|
||||
include/ggml-cpu.h
|
||||
include/ggml-alloc.h
|
||||
include/ggml-backend.h
|
||||
include/ggml-blas.h
|
||||
include/ggml-cann.h
|
||||
include/ggml-cpp.h
|
||||
include/ggml-cuda.h
|
||||
include/ggml-kompute.h
|
||||
include/ggml-opt.h
|
||||
include/ggml-metal.h
|
||||
include/ggml-rpc.h
|
||||
include/ggml-sycl.h
|
||||
include/ggml-vulkan.h
|
||||
include/gguf.h)
|
||||
|
||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
#if (GGML_METAL)
|
||||
# set_target_properties(ggml PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/src/ggml-metal.metal")
|
||||
#endif()
|
||||
install(TARGETS ggml LIBRARY PUBLIC_HEADER)
|
||||
install(TARGETS ggml-base LIBRARY)
|
||||
|
||||
if (GGML_STANDALONE)
|
||||
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/ggml.pc.in
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
|
||||
@ONLY)
|
||||
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml.pc
|
||||
DESTINATION share/pkgconfig)
|
||||
endif()
|
||||
|
||||
#
|
||||
# Create CMake package
|
||||
#
|
||||
|
||||
# Generate version info based on git commit.
|
||||
|
||||
if(NOT DEFINED GGML_BUILD_NUMBER)
|
||||
find_program(GIT_EXE NAMES git git.exe REQUIRED NO_CMAKE_FIND_ROOT_PATH)
|
||||
execute_process(COMMAND ${GIT_EXE} rev-list --count HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE GGML_BUILD_NUMBER
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
|
||||
if(GGML_BUILD_NUMBER EQUAL 1)
|
||||
message(WARNING "GGML build version fixed at 1 likely due to a shallow clone.")
|
||||
endif()
|
||||
|
||||
execute_process(COMMAND ${GIT_EXE} rev-parse --short HEAD
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
OUTPUT_VARIABLE GGML_BUILD_COMMIT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
endif()
|
||||
|
||||
|
||||
# Capture variables prefixed with GGML_.
|
||||
|
||||
set(variable_set_statements
|
||||
"
|
||||
####### Expanded from @GGML_VARIABLES_EXPANED@ by configure_package_config_file() #######
|
||||
####### Any changes to this file will be overwritten by the next CMake run #######
|
||||
|
||||
")
|
||||
|
||||
set(GGML_SHARED_LIB ${BUILD_SHARED_LIBS})
|
||||
|
||||
get_cmake_property(all_variables VARIABLES)
|
||||
foreach(variable_name IN LISTS all_variables)
|
||||
if(variable_name MATCHES "^GGML_")
|
||||
string(REPLACE ";" "\\;"
|
||||
variable_value "${${variable_name}}")
|
||||
|
||||
set(variable_set_statements
|
||||
"${variable_set_statements}set(${variable_name} \"${variable_value}\")\n")
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
set(GGML_VARIABLES_EXPANDED ${variable_set_statements})
|
||||
|
||||
# Create the CMake package and set install location.
|
||||
|
||||
set(GGML_INSTALL_VERSION 0.0.${GGML_BUILD_NUMBER})
|
||||
set(GGML_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
|
||||
set(GGML_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
|
||||
set(GGML_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
|
||||
|
||||
configure_package_config_file(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cmake/ggml-config.cmake.in
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
|
||||
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml
|
||||
PATH_VARS GGML_INCLUDE_INSTALL_DIR
|
||||
GGML_LIB_INSTALL_DIR
|
||||
GGML_BIN_INSTALL_DIR)
|
||||
|
||||
write_basic_package_version_file(
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
|
||||
VERSION ${GGML_INSTALL_VERSION}
|
||||
COMPATIBILITY SameMajorVersion)
|
||||
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)
|
@ -1,54 +0,0 @@
|
||||
# Add new build types
|
||||
|
||||
# ReleaseGG - Release with enabled asserts
|
||||
|
||||
SET(CMAKE_CXX_FLAGS_RELEASEGG
|
||||
"-O3"
|
||||
CACHE STRING "Flags used by the c++ compiler during release builds with enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_C_FLAGS_RELEASEGG
|
||||
"-O3"
|
||||
CACHE STRING "Flags used by the compiler during release builds with enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_EXE_LINKER_FLAGS_RELEASEGG
|
||||
""
|
||||
CACHE STRING "Flags used for linking binaries during release builds with enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_SHARED_LINKER_FLAGS_RELEASEGG
|
||||
""
|
||||
CACHE STRING "Flags used by the shared libraries linker during release builds with enabled asserts."
|
||||
FORCE )
|
||||
MARK_AS_ADVANCED(
|
||||
CMAKE_CXX_FLAGS_RELEASEGG
|
||||
CMAKE_C_FLAGS_RELEASEGG
|
||||
CMAKE_EXE_LINKER_FLAGS_RELEASEGG
|
||||
CMAKE_SHARED_LINKER_FLAGS_RELEASEGG )
|
||||
|
||||
# RelWithDebInfoGG - RelWithDebInfo with enabled asserts
|
||||
|
||||
SET(CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
|
||||
"-O2 -g"
|
||||
CACHE STRING "Flags used by the c++ compiler during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_C_FLAGS_RELWITHDEBINFOGG
|
||||
"-O2 -g"
|
||||
CACHE STRING "Flags used by the compiler during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
|
||||
""
|
||||
CACHE STRING "Flags used for linking binaries during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
SET(CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG
|
||||
""
|
||||
CACHE STRING "Flags used by the shared libraries linker during release builds with debug symbols and enabled asserts."
|
||||
FORCE )
|
||||
MARK_AS_ADVANCED(
|
||||
CMAKE_CXX_FLAGS_RELWITHDEBINFOGG
|
||||
CMAKE_C_FLAGS_RELWITHDEBINFOGG
|
||||
CMAKE_EXE_LINKER_FLAGS_RELWITHDEBINFOGG
|
||||
CMAKE_SHARED_LINKER_FLAGS_RELWITHDEBINFOGG )
|
||||
|
||||
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
|
||||
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
|
||||
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo" "ReleaseGG" "RelWithDebInfoGG")
|
||||
endif()
|
@ -1,22 +0,0 @@
|
||||
find_package(Git)
|
||||
|
||||
# the commit's SHA1
|
||||
execute_process(COMMAND
|
||||
"${GIT_EXECUTABLE}" describe --match=NeVeRmAtCh --always --abbrev=8
|
||||
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
|
||||
OUTPUT_VARIABLE GIT_SHA1
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
|
||||
# the date of the commit
|
||||
execute_process(COMMAND
|
||||
"${GIT_EXECUTABLE}" log -1 --format=%ad --date=local
|
||||
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
|
||||
OUTPUT_VARIABLE GIT_DATE
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
|
||||
# the subject of the commit
|
||||
execute_process(COMMAND
|
||||
"${GIT_EXECUTABLE}" log -1 --format=%s
|
||||
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
|
||||
OUTPUT_VARIABLE GIT_COMMIT_SUBJECT
|
||||
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
@ -1,26 +0,0 @@
|
||||
function(ggml_get_flags CCID CCVER)
|
||||
set(C_FLAGS "")
|
||||
set(CXX_FLAGS "")
|
||||
|
||||
if (CCID MATCHES "Clang")
|
||||
set(C_FLAGS -Wunreachable-code-break -Wunreachable-code-return)
|
||||
set(CXX_FLAGS -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi)
|
||||
|
||||
if (
|
||||
(CCID STREQUAL "Clang" AND CCVER VERSION_GREATER_EQUAL 3.8.0) OR
|
||||
(CCID STREQUAL "AppleClang" AND CCVER VERSION_GREATER_EQUAL 7.3.0)
|
||||
)
|
||||
list(APPEND C_FLAGS -Wdouble-promotion)
|
||||
endif()
|
||||
elseif (CCID STREQUAL "GNU")
|
||||
set(C_FLAGS -Wdouble-promotion)
|
||||
set(CXX_FLAGS -Wno-array-bounds)
|
||||
|
||||
if (CCVER VERSION_GREATER_EQUAL 8.1.0)
|
||||
list(APPEND CXX_FLAGS -Wextra-semi)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set(GF_C_FLAGS ${C_FLAGS} PARENT_SCOPE)
|
||||
set(GF_CXX_FLAGS ${CXX_FLAGS} PARENT_SCOPE)
|
||||
endfunction()
|
@ -1,152 +0,0 @@
|
||||
|
||||
@GGML_VARIABLES_EXPANDED@
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
set_and_check(GGML_INCLUDE_DIR "@PACKAGE_GGML_INCLUDE_INSTALL_DIR@")
|
||||
set_and_check(GGML_LIB_DIR "@PACKAGE_GGML_LIB_INSTALL_DIR@")
|
||||
#set_and_check(GGML_BIN_DIR "@PACKAGE_GGML_BIN_INSTALL_DIR@")
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
find_library(GGML_LIBRARY ggml
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
add_library(ggml::ggml UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_LIBRARY}")
|
||||
|
||||
find_library(GGML_BASE_LIBRARY ggml-base
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
add_library(ggml::ggml-base UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml-base
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_BASE_LIBRARY}")
|
||||
|
||||
if (NOT GGML_SHARED_LIB)
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES ${BLAS_LIBRARIES})
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_OPTIONS ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
list(APPEND GGML_METAL_INTERFACE_LINK_LIBRARIES
|
||||
${FOUNDATION_LIBRARY} ${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND GGML_VULKAN_INTERFACE_LINK_LIBRARIES Vulkan::Vulkan)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND GGML_HIP_INTERFACE_LINK_LIBRARIES hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND GGML_SYCL_INTERFACE_LINK_LIBRARIES DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
list(APPEND GGML_SYCL_INTERFACE_LINK_LIBRARIES IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set(_ggml_all_targets "")
|
||||
foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
|
||||
string(REPLACE "-" "_" _ggml_backend_pfx "${_ggml_backend}")
|
||||
string(TOUPPER "${_ggml_backend_pfx}" _ggml_backend_pfx)
|
||||
|
||||
find_library(${_ggml_backend_pfx}_LIBRARY ${_ggml_backend}
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
message(STATUS "Found ${${_ggml_backend_pfx}_LIBRARY}")
|
||||
|
||||
add_library(ggml::${_ggml_backend} UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${GGML_INCLUDE_DIR}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${${_ggml_backend_pfx}_LIBRARY}"
|
||||
INTERFACE_COMPILE_FEATURES c_std_90
|
||||
POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
|
||||
if(is_cpu_variant)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
if(GGML_CPU_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${GGML_CPU_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
|
||||
else()
|
||||
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
if(${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
|
||||
endforeach()
|
||||
|
||||
list(APPEND GGML_INTERFACE_LINK_LIBRARIES ggml::ggml-base "${_ggml_all_targets}")
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
add_library(ggml::all INTERFACE IMPORTED)
|
||||
set_target_properties(ggml::all
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${_ggml_all_targets}")
|
||||
|
||||
check_required_components(ggml)
|
@ -1,76 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
// Tensor allocator
|
||||
struct ggml_tallocr {
|
||||
ggml_backend_buffer_t buffer;
|
||||
void * base;
|
||||
size_t alignment;
|
||||
size_t offset;
|
||||
};
|
||||
|
||||
GGML_API struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer);
|
||||
GGML_API enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor);
|
||||
|
||||
// Graph allocator
|
||||
/*
|
||||
Example usage:
|
||||
ggml_gallocr_t galloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
||||
|
||||
// optional: create a worst-case graph and reserve the buffers to avoid reallocations
|
||||
ggml_gallocr_reserve(galloc, build_graph(max_batch));
|
||||
|
||||
// allocate the graph
|
||||
struct ggml_cgraph * graph = build_graph(batch);
|
||||
ggml_gallocr_alloc_graph(galloc, graph);
|
||||
|
||||
printf("compute buffer size: %zu bytes\n", ggml_gallocr_get_buffer_size(galloc, 0));
|
||||
|
||||
// evaluate the graph
|
||||
ggml_backend_graph_compute(backend, graph);
|
||||
*/
|
||||
|
||||
// special tensor flags for use with the graph allocator:
|
||||
// ggml_set_input(): all input tensors are allocated at the beginning of the graph in non-overlapping addresses
|
||||
// ggml_set_output(): output tensors are never freed and never overwritten
|
||||
|
||||
typedef struct ggml_gallocr * ggml_gallocr_t;
|
||||
|
||||
GGML_API ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs);
|
||||
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
|
||||
|
||||
// pre-allocate buffers from a measure graph - does not allocate or modify the graph
|
||||
// call with a worst-case graph to avoid buffer reallocations
|
||||
// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed
|
||||
// returns false if the buffer allocation failed
|
||||
GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
|
||||
GGML_API bool ggml_gallocr_reserve_n(
|
||||
ggml_gallocr_t galloc,
|
||||
struct ggml_cgraph * graph,
|
||||
const int * node_buffer_ids,
|
||||
const int * leaf_buffer_ids);
|
||||
|
||||
// automatic reallocation if the topology changes when using a single buffer
|
||||
// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers)
|
||||
GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph);
|
||||
|
||||
GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id);
|
||||
|
||||
// Utils
|
||||
// Create a buffer and allocate all the tensors in a ggml_context
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft);
|
||||
GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,354 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
|
||||
#ifdef GGML_BACKEND_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef GGML_BACKEND_BUILD
|
||||
# define GGML_BACKEND_API __declspec(dllexport) extern
|
||||
# else
|
||||
# define GGML_BACKEND_API __declspec(dllimport) extern
|
||||
# endif
|
||||
# else
|
||||
# define GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern
|
||||
# endif
|
||||
#else
|
||||
# define GGML_BACKEND_API extern
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
typedef struct ggml_backend_event * ggml_backend_event_t;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
typedef void * ggml_backend_graph_plan_t;
|
||||
typedef struct ggml_backend_reg * ggml_backend_reg_t;
|
||||
typedef struct ggml_backend_device * ggml_backend_dev_t;
|
||||
|
||||
|
||||
//
|
||||
// Backend buffer type
|
||||
//
|
||||
|
||||
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
|
||||
|
||||
//
|
||||
// Backend buffer
|
||||
//
|
||||
|
||||
enum ggml_backend_buffer_usage {
|
||||
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
|
||||
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
|
||||
GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
|
||||
};
|
||||
|
||||
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API enum ggml_status ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
|
||||
|
||||
// tensor copy between different backends
|
||||
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
//
|
||||
// Backend (stream)
|
||||
//
|
||||
|
||||
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
|
||||
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_free(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
||||
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
||||
GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
|
||||
// "offset" refers to the offset in tensor->data for setting/getting data
|
||||
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
||||
|
||||
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// NOTE: will be removed, use device version instead
|
||||
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
|
||||
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// asynchronous copy
|
||||
// the copy is performed after all the currently queued operations in backend_src
|
||||
// backend_dst will wait for the copy to complete before performing other operations
|
||||
// automatic fallback to sync copy if async is not supported
|
||||
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
GGML_API ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend);
|
||||
|
||||
//
|
||||
// Events
|
||||
//
|
||||
|
||||
GGML_API ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device);
|
||||
GGML_API void ggml_backend_event_free(ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event);
|
||||
|
||||
//
|
||||
// Backend device
|
||||
//
|
||||
|
||||
enum ggml_backend_dev_type {
|
||||
// CPU device using system memory
|
||||
GGML_BACKEND_DEVICE_TYPE_CPU,
|
||||
// GPU device using dedicated memory
|
||||
GGML_BACKEND_DEVICE_TYPE_GPU,
|
||||
// accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
|
||||
GGML_BACKEND_DEVICE_TYPE_ACCEL
|
||||
};
|
||||
|
||||
// functionality supported by the device
|
||||
struct ggml_backend_dev_caps {
|
||||
// asynchronous operations
|
||||
bool async;
|
||||
// pinned host buffer
|
||||
bool host_buffer;
|
||||
// creating buffers from host ptr
|
||||
bool buffer_from_host_ptr;
|
||||
// event synchronization
|
||||
bool events;
|
||||
};
|
||||
|
||||
// all the device properties
|
||||
struct ggml_backend_dev_props {
|
||||
const char * name;
|
||||
const char * description;
|
||||
size_t memory_free;
|
||||
size_t memory_total;
|
||||
enum ggml_backend_dev_type type;
|
||||
struct ggml_backend_dev_caps caps;
|
||||
};
|
||||
|
||||
GGML_API const char * ggml_backend_dev_name(ggml_backend_dev_t device);
|
||||
GGML_API const char * ggml_backend_dev_description(ggml_backend_dev_t device);
|
||||
GGML_API void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total);
|
||||
GGML_API enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device);
|
||||
GGML_API void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props);
|
||||
GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device);
|
||||
GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
|
||||
|
||||
GGML_API bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
|
||||
GGML_API bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft);
|
||||
GGML_API bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
|
||||
|
||||
//
|
||||
// Backend (reg)
|
||||
//
|
||||
|
||||
GGML_API const char * ggml_backend_reg_name(ggml_backend_reg_t reg);
|
||||
GGML_API size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index);
|
||||
GGML_API void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name);
|
||||
|
||||
// Common functions that may be obtained using ggml_backend_reg_get_proc_address
|
||||
|
||||
// Split buffer type for tensor parallelism
|
||||
typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
|
||||
// Set the number of threads for the backend
|
||||
typedef void (*ggml_backend_set_n_threads_t)(ggml_backend_t backend, int n_threads);
|
||||
// Get additional buffer types provided by the device (returns a NULL-terminated array)
|
||||
typedef ggml_backend_buffer_type_t * (*ggml_backend_dev_get_extra_bufts_t)(ggml_backend_dev_t device);
|
||||
// Set the abort callback for the backend
|
||||
typedef void (*ggml_backend_set_abort_callback_t)(ggml_backend_t backend, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
// Get a list of feature flags supported by the backend (returns a NULL-terminated array)
|
||||
struct ggml_backend_feature {
|
||||
const char * name;
|
||||
const char * value;
|
||||
};
|
||||
typedef struct ggml_backend_feature * (*ggml_backend_get_features_t)(ggml_backend_reg_t reg);
|
||||
|
||||
//
|
||||
// Backend registry
|
||||
//
|
||||
|
||||
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
|
||||
|
||||
// Backend (reg) enumeration
|
||||
GGML_API size_t ggml_backend_reg_count(void);
|
||||
GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index);
|
||||
GGML_API ggml_backend_reg_t ggml_backend_reg_by_name(const char * name);
|
||||
|
||||
// Device enumeration
|
||||
GGML_API size_t ggml_backend_dev_count(void);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_dev_get(size_t index);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_dev_by_name(const char * name);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type);
|
||||
|
||||
// Direct backend (stream) initialization
|
||||
// = ggml_backend_dev_init(ggml_backend_dev_by_name(name), params)
|
||||
GGML_API ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params);
|
||||
// = ggml_backend_dev_init(ggml_backend_dev_by_type(type), params)
|
||||
GGML_API ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params);
|
||||
// = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU) OR ggml_backend_dev_by_type(CPU), NULL)
|
||||
GGML_API ggml_backend_t ggml_backend_init_best(void);
|
||||
|
||||
// Load a backend from a dynamic library and register it
|
||||
GGML_API ggml_backend_reg_t ggml_backend_load(const char * path);
|
||||
// Unload a backend if loaded dynamically and unregister it
|
||||
GGML_API void ggml_backend_unload(ggml_backend_reg_t reg);
|
||||
// Load all known backends from dynamic libraries
|
||||
GGML_API void ggml_backend_load_all(void);
|
||||
GGML_API void ggml_backend_load_all_from_path(const char * dir_path);
|
||||
|
||||
//
|
||||
// Backend scheduler
|
||||
//
|
||||
|
||||
// The backend scheduler allows for multiple backend devices to be used together
|
||||
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
|
||||
// The backends are selected based on:
|
||||
// - the backend that supports the operation
|
||||
// - the location of the pre-allocated tensors (e.g. the weights)
|
||||
/*
|
||||
Example usage:
|
||||
|
||||
// operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned
|
||||
// preferrably to run on the same backend as the buffer
|
||||
ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
|
||||
|
||||
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false);
|
||||
|
||||
// initialize buffers from a max size graph (optional)
|
||||
reserve_graph = build_graph(sched, max_batch_size);
|
||||
|
||||
// manually assign nodes to a backend (optional, should not be needed in most cases)
|
||||
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
|
||||
ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu);
|
||||
|
||||
ggml_backend_sched_reserve(sched, reserve_graph);
|
||||
|
||||
// compute
|
||||
graph = build_graph(sched); // the graph and its tensors are single-use in terms of allocation, multi-use in terms of computation
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
ggml_backend_sched_graph_compute(sched, graph); // on the first iteration the graph is allocated automatically
|
||||
}
|
||||
|
||||
// if there are graph inputs:
|
||||
graph = build_graph(sched); // get a new graph that is not allocated (the metadata for the old graph is freed once ggml_free is called)
|
||||
ggml_backend_sched_reset(sched); // clear the allocation of the previous graph
|
||||
ggml_backend_sched_alloc_graph(sched, graph); // explicitly allocate the new graph but do not execute it
|
||||
ggml_backend_tensor_set(input_tensor, ...); // copy data to the newly allocated graph tensors
|
||||
ggml_backend_sched_graph_compute(sched, graph); // execute the graph
|
||||
|
||||
// as an alternative to the above it is also possible to assign the inputs to a dedicated context and
|
||||
// allocate them statically via ggml_backend_alloc_ctx_tensors
|
||||
}
|
||||
*/
|
||||
|
||||
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
||||
|
||||
// Evaluation callback for each node in the graph (set with ggml_backend_sched_set_eval_callback)
|
||||
// when ask == true, the scheduler wants to know if the user wants to observe this node
|
||||
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
|
||||
//
|
||||
// when ask == false, the scheduler is passing the node tensor to the user for observation
|
||||
// if the user returns false, the scheduler will cancel the graph compute
|
||||
//
|
||||
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
|
||||
|
||||
// Initialize a backend scheduler, backends with low index are given priority over backends with high index
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
|
||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||
|
||||
// Initialize backend buffers from a measure graph
|
||||
GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); // returns success
|
||||
|
||||
GGML_API int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched);
|
||||
GGML_API ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i);
|
||||
|
||||
// Get the number of splits of the last graph
|
||||
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
||||
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
|
||||
|
||||
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
|
||||
|
||||
// Allocate and compute graph on the backend scheduler
|
||||
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success
|
||||
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched);
|
||||
|
||||
// Reset all assignments and allocators - must be called before changing the node backends or allocating a new graph.
|
||||
// This in effect deallocates all tensors that were previously allocated and leaves them with dangling pointers.
|
||||
// The correct way to use this API is to discard the deallocated tensors and create new ones.
|
||||
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
|
||||
|
||||
// Set a callback to be called for each resulting node during graph compute
|
||||
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);
|
||||
|
||||
//
|
||||
// Utils
|
||||
//
|
||||
|
||||
struct ggml_backend_graph_copy {
|
||||
ggml_backend_buffer_t buffer;
|
||||
struct ggml_context * ctx_allocated;
|
||||
struct ggml_context * ctx_unallocated;
|
||||
struct ggml_cgraph * graph;
|
||||
};
|
||||
|
||||
// Copy a graph to a different backend
|
||||
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
|
||||
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
|
||||
|
||||
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
|
||||
// Compare the output of two backends
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||
|
||||
// Tensor initialization
|
||||
GGML_API enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
GGML_API enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor);
|
||||
|
||||
// CPU buffer types are always available
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,25 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_blas_init(void);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_blas(ggml_backend_t backend);
|
||||
|
||||
// number of threads used for conversion to float
|
||||
// for openblas and blis, this will also set the number of threads used for blas operations
|
||||
GGML_BACKEND_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_blas_reg(void);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,123 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Maximum number of CANN devices supported.
|
||||
*/
|
||||
#define GGML_CANN_MAX_DEVICES 16
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cann_reg(void);
|
||||
|
||||
/**
|
||||
* @brief Initializes the CANN backend for a specified device.
|
||||
*
|
||||
* This function initializes the CANN backend for the given device.
|
||||
* It verifies the device index, allocates a context, and creates a backend
|
||||
* instance.
|
||||
*
|
||||
* @param device The index of the device to initialize.
|
||||
* @return A pointer to the initialized backend instance, or nullptr on failure.
|
||||
*/
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_cann_init(int32_t device);
|
||||
|
||||
/**
|
||||
* @brief Checks if a given backend is a CANN backend.
|
||||
*
|
||||
* This function verifies if the provided backend is a CANN backend by comparing
|
||||
* its GUID with the CANN backend's GUID.
|
||||
*
|
||||
* @param backend The backend instance to check.
|
||||
* @return True if the backend is a CANN backend, false otherwise.
|
||||
*/
|
||||
GGML_BACKEND_API bool ggml_backend_is_cann(ggml_backend_t backend);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the CANN buffer type for a specified device.
|
||||
*
|
||||
* This function initializes and returns the buffer type interface associated
|
||||
* with the given device. It ensures thread-safe access using a mutex.
|
||||
*
|
||||
* @param device The device index for which to retrieve the buffer type.
|
||||
* @return A pointer to the buffer type interface for the specified device, or
|
||||
* nullptr if the device index is out of range.
|
||||
*/
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t
|
||||
ggml_backend_cann_buffer_type(int32_t device);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the number of CANN devices available.
|
||||
*
|
||||
* This function returns the number of CANN devices available based on
|
||||
* information obtained from `ggml_cann_info()`.
|
||||
*
|
||||
* @return The number of CANN devices available.
|
||||
*/
|
||||
GGML_BACKEND_API int32_t ggml_backend_cann_get_device_count(void);
|
||||
|
||||
/**
|
||||
* @brief pinned host buffer for use with the CPU backend for faster copies between CPU and NPU.
|
||||
*
|
||||
* @return A pointer to the host buffer type interface.
|
||||
*/
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the description of a specific CANN device.
|
||||
*
|
||||
* This function sets the specified device, retrieves the SoC name,
|
||||
* and writes it into the provided description buffer.
|
||||
*
|
||||
* @param device The device index to retrieve the description for.
|
||||
* @param description Pointer to a buffer where the description will be written.
|
||||
* @param description_size Size of the description buffer.
|
||||
*/
|
||||
GGML_BACKEND_API void ggml_backend_cann_get_device_description(
|
||||
int32_t device, char* description, size_t description_size);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the memory information of a specific CANN device.
|
||||
*
|
||||
* This function sets the specified device, retrieves the free and total
|
||||
* memory information of the specified type (ACL_HBM_MEM), and stores them
|
||||
* in the provided pointers.
|
||||
*
|
||||
* @param device The device index to retrieve memory information for.
|
||||
* @param free Pointer to a variable where the free memory size will be stored.
|
||||
* @param total Pointer to a variable where the total memory size will be
|
||||
* stored.
|
||||
*/
|
||||
GGML_BACKEND_API void ggml_backend_cann_get_device_memory(int32_t device,
|
||||
size_t* free,
|
||||
size_t* total);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,39 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#ifndef __cplusplus
|
||||
#error "This header is for C++ only"
|
||||
#endif
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "gguf.h"
|
||||
#include <memory>
|
||||
|
||||
// Smart pointers for ggml types
|
||||
|
||||
// ggml
|
||||
|
||||
struct ggml_context_deleter { void operator()(ggml_context * ctx) { ggml_free(ctx); } };
|
||||
struct gguf_context_deleter { void operator()(gguf_context * ctx) { gguf_free(ctx); } };
|
||||
|
||||
typedef std::unique_ptr<ggml_context, ggml_context_deleter> ggml_context_ptr;
|
||||
typedef std::unique_ptr<gguf_context, gguf_context_deleter> gguf_context_ptr;
|
||||
|
||||
// ggml-alloc
|
||||
|
||||
struct ggml_gallocr_deleter { void operator()(ggml_gallocr_t galloc) { ggml_gallocr_free(galloc); } };
|
||||
|
||||
typedef std::unique_ptr<ggml_gallocr_t, ggml_gallocr_deleter> ggml_gallocr_ptr;
|
||||
|
||||
// ggml-backend
|
||||
|
||||
struct ggml_backend_deleter { void operator()(ggml_backend_t backend) { ggml_backend_free(backend); } };
|
||||
struct ggml_backend_buffer_deleter { void operator()(ggml_backend_buffer_t buffer) { ggml_backend_buffer_free(buffer); } };
|
||||
struct ggml_backend_event_deleter { void operator()(ggml_backend_event_t event) { ggml_backend_event_free(event); } };
|
||||
struct ggml_backend_sched_deleter { void operator()(ggml_backend_sched_t sched) { ggml_backend_sched_free(sched); } };
|
||||
|
||||
typedef std::unique_ptr<ggml_backend, ggml_backend_deleter> ggml_backend_ptr;
|
||||
typedef std::unique_ptr<ggml_backend_buffer, ggml_backend_buffer_deleter> ggml_backend_buffer_ptr;
|
||||
typedef std::unique_ptr<ggml_backend_event, ggml_backend_event_deleter> ggml_backend_event_ptr;
|
||||
typedef std::unique_ptr<ggml_backend_sched, ggml_backend_sched_deleter> ggml_backend_sched_ptr;
|
@ -1,138 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// the compute plan that needs to be prepared for ggml_graph_compute()
|
||||
// since https://github.com/ggml-org/ggml/issues/287
|
||||
struct ggml_cplan {
|
||||
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
||||
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
||||
|
||||
int n_threads;
|
||||
struct ggml_threadpool * threadpool;
|
||||
|
||||
// abort ggml_graph_compute when true
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
// numa strategies
|
||||
enum ggml_numa_strategy {
|
||||
GGML_NUMA_STRATEGY_DISABLED = 0,
|
||||
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
|
||||
GGML_NUMA_STRATEGY_ISOLATE = 2,
|
||||
GGML_NUMA_STRATEGY_NUMACTL = 3,
|
||||
GGML_NUMA_STRATEGY_MIRROR = 4,
|
||||
GGML_NUMA_STRATEGY_COUNT
|
||||
};
|
||||
|
||||
GGML_BACKEND_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
||||
GGML_BACKEND_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
||||
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
||||
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
||||
GGML_BACKEND_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
||||
|
||||
GGML_BACKEND_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_BACKEND_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
||||
|
||||
GGML_BACKEND_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_BACKEND_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
||||
|
||||
GGML_BACKEND_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_BACKEND_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
||||
|
||||
GGML_BACKEND_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_BACKEND_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
||||
|
||||
GGML_BACKEND_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
|
||||
GGML_BACKEND_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API int ggml_threadpool_get_n_threads (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
|
||||
GGML_BACKEND_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
|
||||
|
||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||
GGML_BACKEND_API struct ggml_cplan ggml_graph_plan(
|
||||
const struct ggml_cgraph * cgraph,
|
||||
int n_threads, /* = GGML_DEFAULT_N_THREADS */
|
||||
struct ggml_threadpool * threadpool /* = NULL */ );
|
||||
GGML_BACKEND_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
|
||||
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
||||
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
||||
GGML_BACKEND_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
||||
|
||||
//
|
||||
// system info
|
||||
//
|
||||
|
||||
// x86
|
||||
GGML_BACKEND_API int ggml_cpu_has_sse3 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_ssse3 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx2 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_bmi2 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_f16c (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_fma (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512 (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_vbmi(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_vnni(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_avx512_bf16(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_amx_int8 (void);
|
||||
// ARM
|
||||
GGML_BACKEND_API int ggml_cpu_has_neon (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_arm_fma (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_fp16_va (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_dotprod (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_sve (void);
|
||||
GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
|
||||
GGML_BACKEND_API int ggml_cpu_has_sme (void);
|
||||
// other
|
||||
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
// Internal types and functions exposed for tests and benchmarks
|
||||
|
||||
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
|
||||
const void * GGML_RESTRICT y, size_t by, int nrc);
|
||||
|
||||
struct ggml_type_traits_cpu {
|
||||
ggml_from_float_t from_float;
|
||||
ggml_vec_dot_t vec_dot;
|
||||
enum ggml_type vec_dot_type;
|
||||
int64_t nrows; // number of rows to process simultaneously
|
||||
};
|
||||
|
||||
GGML_BACKEND_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
|
||||
|
||||
GGML_BACKEND_API void ggml_cpu_init(void);
|
||||
|
||||
//
|
||||
// CPU backend
|
||||
//
|
||||
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,47 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_HIP
|
||||
#define GGML_CUDA_NAME "ROCm"
|
||||
#define GGML_CUBLAS_NAME "hipBLAS"
|
||||
#elif defined(GGML_USE_MUSA)
|
||||
#define GGML_CUDA_NAME "MUSA"
|
||||
#define GGML_CUBLAS_NAME "muBLAS"
|
||||
#else
|
||||
#define GGML_CUDA_NAME "CUDA"
|
||||
#define GGML_CUBLAS_NAME "cuBLAS"
|
||||
#endif
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
// backend API
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
|
||||
// device buffer
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
|
||||
GGML_BACKEND_API int ggml_backend_cuda_get_device_count(void);
|
||||
GGML_BACKEND_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_BACKEND_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||
GGML_BACKEND_API void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cuda_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,50 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_KOMPUTE_MAX_DEVICES 16
|
||||
|
||||
struct ggml_vk_device {
|
||||
int index;
|
||||
int type; // same as VkPhysicalDeviceType
|
||||
size_t heapSize;
|
||||
const char * name;
|
||||
const char * vendor;
|
||||
int subgroupSize;
|
||||
uint64_t bufferAlignment;
|
||||
uint64_t maxAlloc;
|
||||
};
|
||||
|
||||
struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count);
|
||||
bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name);
|
||||
bool ggml_vk_has_vulkan(void);
|
||||
bool ggml_vk_has_device(void);
|
||||
struct ggml_vk_device ggml_vk_current_device(void);
|
||||
|
||||
//
|
||||
// backend API
|
||||
//
|
||||
|
||||
// forward declaration
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_kompute_init(int device);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_kompute(ggml_backend_t backend);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,66 +0,0 @@
|
||||
// Note: this description is outdated
|
||||
//
|
||||
// An interface allowing to compute ggml_cgraph with Metal
|
||||
//
|
||||
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
|
||||
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, etc.)
|
||||
//
|
||||
// How it works?
|
||||
//
|
||||
// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
|
||||
// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
|
||||
// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
|
||||
//
|
||||
// You only need to make sure that all memory buffers that you used during the graph creation
|
||||
// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
|
||||
// used during the graph evaluation to determine the arguments of the compute kernels.
|
||||
//
|
||||
// Synchronization between device and host memory (for example for input and output tensors)
|
||||
// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
struct ggml_tensor;
|
||||
struct ggml_cgraph;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//
|
||||
// backend API
|
||||
// user-code should use only these functions
|
||||
//
|
||||
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_metal_init(void);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||
|
||||
GGML_DEPRECATED(
|
||||
GGML_BACKEND_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
|
||||
"obsoleted by the new device interface - https://github.com/ggml-org/llama.cpp/pull/9713");
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||
|
||||
// helper to check if the device supports a specific family
|
||||
// ideally, the user code should be doing these checks
|
||||
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||
GGML_BACKEND_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||
|
||||
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
|
||||
GGML_BACKEND_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_metal_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,26 +0,0 @@
|
||||
#ifndef GGML_OPENCL_H
|
||||
#define GGML_OPENCL_H
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//
|
||||
// backend API
|
||||
//
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_opencl_init(void);
|
||||
GGML_BACKEND_API bool ggml_backend_is_opencl(ggml_backend_t backend);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void);
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_opencl_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // GGML_OPENCL_H
|
@ -1,216 +0,0 @@
|
||||
// This file contains functionality for training models using GGML.
|
||||
// It is not strictly needed vs. just vanilla GGML but it provides a more high-level interface for common needs such as datasets.
|
||||
// At the bottom of this file especially there are relatively high-level functions that are suitable use or adaptation in user code.
|
||||
//
|
||||
// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de)
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_opt_dataset;
|
||||
struct ggml_opt_context;
|
||||
struct ggml_opt_result;
|
||||
|
||||
typedef struct ggml_opt_dataset * ggml_opt_dataset_t;
|
||||
typedef struct ggml_opt_context * ggml_opt_context_t;
|
||||
typedef struct ggml_opt_result * ggml_opt_result_t;
|
||||
|
||||
// ====== Loss ======
|
||||
|
||||
// built-in loss types, i.e. the built-in quantities minimized by the optimizer
|
||||
// custom loss types can be defined via mean or sum which simply reduce the outputs for all datapoints to a single value
|
||||
enum ggml_opt_loss_type {
|
||||
GGML_OPT_LOSS_TYPE_MEAN,
|
||||
GGML_OPT_LOSS_TYPE_SUM,
|
||||
GGML_OPT_LOSS_TYPE_CROSS_ENTROPY,
|
||||
GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR,
|
||||
};
|
||||
|
||||
// ====== Dataset ======
|
||||
|
||||
GGML_API ggml_opt_dataset_t ggml_opt_dataset_init(
|
||||
int64_t ne_datapoint, // number of elements per datapoint
|
||||
int64_t ne_label, // number of elements per label
|
||||
int64_t ndata, // total number of datapoints/labels
|
||||
int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
|
||||
GGML_API void ggml_opt_dataset_free(ggml_opt_dataset_t dataset);
|
||||
|
||||
// get underlying tensors that store the data
|
||||
GGML_API struct ggml_tensor * ggml_opt_dataset_data (ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata]
|
||||
GGML_API struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset); // shape = [nd_label, ndata]
|
||||
|
||||
// shuffle idata first datapoints from dataset with RNG from opt_ctx, shuffle all datapoints if idata is negative
|
||||
GGML_API void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata);
|
||||
|
||||
// get batch at position ibatch from dataset and copy the data to data_batch and labels_batch
|
||||
GGML_API void ggml_opt_dataset_get_batch(
|
||||
ggml_opt_dataset_t dataset,
|
||||
struct ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch]
|
||||
struct ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch]
|
||||
int64_t ibatch);
|
||||
|
||||
// ====== Model / Context ======
|
||||
|
||||
enum ggml_opt_build_type {
|
||||
GGML_OPT_BUILD_TYPE_FORWARD,
|
||||
GGML_OPT_BUILD_TYPE_GRAD,
|
||||
GGML_OPT_BUILD_TYPE_OPT,
|
||||
};
|
||||
|
||||
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
|
||||
struct ggml_opt_optimizer_params {
|
||||
// AdamW optimizer parameters
|
||||
struct {
|
||||
float alpha; // learning rate
|
||||
float beta1;
|
||||
float beta2;
|
||||
float eps; // epsilon for numerical stability
|
||||
float wd; // weight decay for AdamW, use 0.0f to disable
|
||||
} adamw;
|
||||
};
|
||||
|
||||
// callback to calculate optimizer parameters prior to a backward pass
|
||||
// userdata can be used to pass arbitrary data
|
||||
typedef struct ggml_opt_optimizer_params (*ggml_opt_get_optimizer_params)(void * userdata);
|
||||
|
||||
// returns the default optimizer params (constant)
|
||||
// userdata is not used
|
||||
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata);
|
||||
|
||||
// parameters for initializing a new optimization context
|
||||
struct ggml_opt_params {
|
||||
ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs
|
||||
|
||||
struct ggml_context * ctx_compute; // created in user code, holds non-static tensors
|
||||
|
||||
// the forward graph is defined by inputs and outputs
|
||||
// those tensors and all tensors inbetween are not intended to be reusable between multiple optimization contexts
|
||||
struct ggml_tensor * inputs;
|
||||
struct ggml_tensor * outputs;
|
||||
|
||||
enum ggml_opt_loss_type loss_type;
|
||||
enum ggml_opt_build_type build_type;
|
||||
|
||||
int32_t opt_period; // after how many gradient accumulation steps an optimizer step should be done
|
||||
|
||||
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
|
||||
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
|
||||
};
|
||||
|
||||
// get parameters for an optimization context with defaults set where possible
|
||||
// parameters for which no sensible defaults exist are supplied as arguments to this function
|
||||
GGML_API ggml_opt_params ggml_opt_default_params(
|
||||
ggml_backend_sched_t backend_sched,
|
||||
struct ggml_context * ctx_compute,
|
||||
struct ggml_tensor * inputs,
|
||||
struct ggml_tensor * outputs,
|
||||
enum ggml_opt_loss_type loss_type);
|
||||
|
||||
GGML_API ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params);
|
||||
GGML_API void ggml_opt_free(ggml_opt_context_t opt_ctx);
|
||||
|
||||
// set gradients to zero, initilize loss, and optionally reset the optimizer
|
||||
GGML_API void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer);
|
||||
|
||||
// get underlying tensors that store data
|
||||
GGML_API struct ggml_tensor * ggml_opt_inputs( ggml_opt_context_t opt_ctx); // forward graph input tensor
|
||||
GGML_API struct ggml_tensor * ggml_opt_outputs( ggml_opt_context_t opt_ctx); // forward graph output tensor
|
||||
GGML_API struct ggml_tensor * ggml_opt_labels( ggml_opt_context_t opt_ctx); // labels to compare outputs against
|
||||
GGML_API struct ggml_tensor * ggml_opt_loss( ggml_opt_context_t opt_ctx); // scalar tensor that contains the loss
|
||||
GGML_API struct ggml_tensor * ggml_opt_pred( ggml_opt_context_t opt_ctx); // predictions made by outputs
|
||||
GGML_API struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
|
||||
|
||||
// ====== Optimization Result ======
|
||||
|
||||
GGML_API ggml_opt_result_t ggml_opt_result_init();
|
||||
GGML_API void ggml_opt_result_free(ggml_opt_result_t result);
|
||||
GGML_API void ggml_opt_result_reset(ggml_opt_result_t result);
|
||||
|
||||
// get data from result, uncertainties are optional and can be ignored by passing NULL
|
||||
GGML_API void ggml_opt_result_ndata( ggml_opt_result_t result, int64_t * ndata); // writes 1 value, number of datapoints
|
||||
GGML_API void ggml_opt_result_loss( ggml_opt_result_t result, double * loss, double * unc); // writes 1 value
|
||||
GGML_API void ggml_opt_result_pred( ggml_opt_result_t result, int32_t * pred); // writes ndata values
|
||||
GGML_API void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc); // writes 1 value
|
||||
|
||||
// ====== Computation ======
|
||||
|
||||
// do forward pass, increment result if not NULL
|
||||
GGML_API void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
|
||||
|
||||
// do forward pass, increment result if not NULL, do backward pass
|
||||
GGML_API void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
|
||||
|
||||
// ############################################################################
|
||||
// ## The high-level functions start here. They do not depend on any private ##
|
||||
// ## functions or structs and can be copied to and adapted for user code. ##
|
||||
// ############################################################################
|
||||
|
||||
// ====== Intended Usage ======
|
||||
//
|
||||
// 1. Select the appropriate loss for your problem.
|
||||
// 2. Create a dataset and set the data for the "data" tensor. Also set the "labels" tensor if your loss needs them.
|
||||
// Setting the shard size to 1 will be fine, it's the granularity with which data is shuffled/loaded (bigger values are faster).
|
||||
// 3. Create a GGML graph for your model with no_alloc == true. Use two separate contexts for the tensors.
|
||||
// The first context should contain the model parameters and inputs and be allocated statically in user code.
|
||||
// The second context should contain all other tensors and will be (re)allocated automatically.
|
||||
// Due to this automated allocation the data of the second context is not defined when accessed in user code.
|
||||
// Note that the second dimension of the inputs/outputs are interpreted as the number of datapoints in those tensors.
|
||||
// 4. Call ggml_opt_fit. If you need more control you can use ggml_opt_epoch instead.
|
||||
|
||||
// signature for a callback while evaluating opt_ctx on dataset, called after an evaluation
|
||||
typedef void (*ggml_opt_epoch_callback)(
|
||||
bool train, // true after training evaluation, false after validation evaluation
|
||||
ggml_opt_context_t opt_ctx,
|
||||
ggml_opt_dataset_t dataset,
|
||||
ggml_opt_result_t result, // result associated with the dataset subsection
|
||||
int64_t ibatch, // number of batches that have been evaluated so far
|
||||
int64_t ibatch_max, // total number of batches in this dataset subsection
|
||||
int64_t t_start_us); // time at which the evaluation on the dataset subsection was started
|
||||
|
||||
// do training on front of dataset, do evaluation only on back of dataset
|
||||
GGML_API void ggml_opt_epoch(
|
||||
ggml_opt_context_t opt_ctx,
|
||||
ggml_opt_dataset_t dataset,
|
||||
ggml_opt_result_t result_train, // result to increment during training, ignored if NULL
|
||||
ggml_opt_result_t result_eval, // result to increment during evaluation, ignored if NULL
|
||||
int64_t idata_split, // data index at which to split training and evaluation
|
||||
ggml_opt_epoch_callback callback_train,
|
||||
ggml_opt_epoch_callback callback_eval);
|
||||
|
||||
// callback that prints a progress bar on stderr
|
||||
GGML_API void ggml_opt_epoch_callback_progress_bar(
|
||||
bool train,
|
||||
ggml_opt_context_t opt_ctx,
|
||||
ggml_opt_dataset_t dataset,
|
||||
ggml_opt_result_t result,
|
||||
int64_t ibatch,
|
||||
int64_t ibatch_max,
|
||||
int64_t t_start_us);
|
||||
|
||||
// fit model defined by inputs and outputs to dataset
|
||||
GGML_API void ggml_opt_fit(
|
||||
ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs
|
||||
ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
|
||||
ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
|
||||
ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
|
||||
ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
|
||||
enum ggml_opt_loss_type loss_type, // loss to minimize
|
||||
ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
|
||||
int64_t nepoch, // how many times the dataset should be iterated over
|
||||
int64_t nbatch_logical, // datapoints optimizer step, must be a multiple of ndata_batch in inputs/outputs
|
||||
float val_split, // fraction of the dataset to use for validation, must be in [0.0f, 1.0f)
|
||||
bool silent); // whether or not info prints to stderr should be suppressed
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,30 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_RPC_MAX_SERVERS 16
|
||||
|
||||
// backend API
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
||||
GGML_BACKEND_API bool ggml_backend_is_rpc(ggml_backend_t backend);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
|
||||
const char * cache_dir,
|
||||
size_t free_mem, size_t total_mem);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,49 +0,0 @@
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#define GGML_SYCL_NAME "SYCL"
|
||||
#define GGML_SYCL_MAX_DEVICES 48
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_sycl_init(int device);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_sycl(ggml_backend_t backend);
|
||||
|
||||
// devide buffer
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
GGML_BACKEND_API void ggml_backend_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_BACKEND_API void ggml_backend_sycl_get_device_description(int device,
|
||||
char *description,
|
||||
size_t description_size);
|
||||
GGML_BACKEND_API int ggml_backend_sycl_get_device_count();
|
||||
GGML_BACKEND_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
|
||||
// SYCL doesn't support registering host memory, keep here for reference
|
||||
// GGML_BACKEND_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
||||
// GGML_BACKEND_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_sycl_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,29 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_VK_NAME "Vulkan"
|
||||
#define GGML_VK_MAX_DEVICES 16
|
||||
|
||||
// backend API
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_vk(ggml_backend_t backend);
|
||||
GGML_BACKEND_API int ggml_backend_vk_get_device_count(void);
|
||||
GGML_BACKEND_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_BACKEND_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_vk_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
2221
ggml/include/ggml.h
2221
ggml/include/ggml.h
File diff suppressed because it is too large
Load Diff
@ -1,202 +0,0 @@
|
||||
// This file contains functionality related to "GGUF" files, the binary file format used by ggml.
|
||||
// GGUF files have the following structure:
|
||||
//
|
||||
// 1. File magic "GGUF" (4 bytes).
|
||||
// 2. File version (uint32_t).
|
||||
// 3. Number of ggml tensors in file (int64_t).
|
||||
// 4. Number of key-value-pairs in file (int64_t).
|
||||
// 5. For each KV pair:
|
||||
// 1. The key (string).
|
||||
// 2. The value type (gguf_type).
|
||||
// 3a. If the value type is GGUF_TYPE_ARRAY:
|
||||
// 1. The type of the array (gguf_type).
|
||||
// 2. The number of elements in the array (uint64_t).
|
||||
// 3. The binary representation of each element in the array.
|
||||
// 3b. Otherwise:
|
||||
// 1. The binary representation of the value.
|
||||
// 6. For each ggml tensor:
|
||||
// 1. The tensor name (string).
|
||||
// 2. The number of dimensions of the tensor (uint32_t).
|
||||
// 3. For each dimension:
|
||||
// 1. The size of the tensor in the dimension (int64_t).
|
||||
// 4. The tensor data type (ggml_type).
|
||||
// 5. The tensor data offset in the tensor data binary blob (uint64_t).
|
||||
// 7. The tensor data binary blob (optional, aligned).
|
||||
//
|
||||
// Strings are serialized as the string length (uint64_t) followed by the C string without the null terminator.
|
||||
// All enums are stored as int32_t.
|
||||
// All bool values are stored as int8_t.
|
||||
// If the special key "general.alignment" (uint32_t) is defined it is used for alignment,
|
||||
// otherwise GGUF_DEFAULT_ALIGNMENT is used.
|
||||
//
|
||||
// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de)
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#define GGUF_MAGIC "GGUF"
|
||||
#define GGUF_VERSION 3
|
||||
|
||||
#define GGUF_KEY_GENERAL_ALIGNMENT "general.alignment"
|
||||
|
||||
#define GGUF_DEFAULT_ALIGNMENT 32
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// types that can be stored as GGUF KV data
|
||||
enum gguf_type {
|
||||
GGUF_TYPE_UINT8 = 0,
|
||||
GGUF_TYPE_INT8 = 1,
|
||||
GGUF_TYPE_UINT16 = 2,
|
||||
GGUF_TYPE_INT16 = 3,
|
||||
GGUF_TYPE_UINT32 = 4,
|
||||
GGUF_TYPE_INT32 = 5,
|
||||
GGUF_TYPE_FLOAT32 = 6,
|
||||
GGUF_TYPE_BOOL = 7,
|
||||
GGUF_TYPE_STRING = 8,
|
||||
GGUF_TYPE_ARRAY = 9,
|
||||
GGUF_TYPE_UINT64 = 10,
|
||||
GGUF_TYPE_INT64 = 11,
|
||||
GGUF_TYPE_FLOAT64 = 12,
|
||||
GGUF_TYPE_COUNT, // marks the end of the enum
|
||||
};
|
||||
|
||||
struct gguf_context;
|
||||
|
||||
struct gguf_init_params {
|
||||
bool no_alloc;
|
||||
|
||||
// if not NULL, create a ggml_context and allocate the tensor data in it
|
||||
struct ggml_context ** ctx;
|
||||
};
|
||||
|
||||
GGML_API struct gguf_context * gguf_init_empty(void);
|
||||
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
|
||||
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
|
||||
|
||||
GGML_API void gguf_free(struct gguf_context * ctx);
|
||||
|
||||
GGML_API const char * gguf_type_name(enum gguf_type type);
|
||||
|
||||
GGML_API uint32_t gguf_get_version (const struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
|
||||
|
||||
GGML_API int64_t gguf_get_n_kv(const struct gguf_context * ctx);
|
||||
GGML_API int64_t gguf_find_key(const struct gguf_context * ctx, const char * key); // returns -1 if key is not found
|
||||
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// will abort if the wrong type is used for the key
|
||||
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API size_t gguf_get_arr_n (const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// get raw pointer to the first element of the array with the given key_id
|
||||
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// get ith C string from array with given key_id
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
|
||||
|
||||
GGML_API int64_t gguf_get_n_tensors (const struct gguf_context * ctx);
|
||||
GGML_API int64_t gguf_find_tensor (const struct gguf_context * ctx, const char * name); // returns -1 if the tensor is not found
|
||||
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id);
|
||||
GGML_API const char * gguf_get_tensor_name (const struct gguf_context * ctx, int64_t tensor_id);
|
||||
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int64_t tensor_id);
|
||||
GGML_API size_t gguf_get_tensor_size (const struct gguf_context * ctx, int64_t tensor_id);
|
||||
|
||||
// removes key if it exists, returns id that the key had prior to removal (-1 if it didn't exist)
|
||||
GGML_API int64_t gguf_remove_key(struct gguf_context * ctx, const char * key);
|
||||
|
||||
// overrides an existing KV pair or adds a new one, the new KV pair is always at the back
|
||||
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
|
||||
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
|
||||
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
|
||||
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
|
||||
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
|
||||
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
|
||||
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
|
||||
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
|
||||
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
|
||||
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
|
||||
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
|
||||
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
|
||||
|
||||
// creates a new array with n elements of the given type and copies the corresponding number of bytes from data
|
||||
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n);
|
||||
|
||||
// creates a new array with n strings and copies the corresponding strings from data
|
||||
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, size_t n);
|
||||
|
||||
// set or add KV pairs from another context
|
||||
GGML_API void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src);
|
||||
|
||||
// add tensor to GGUF context, tensor name must be unique
|
||||
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
|
||||
|
||||
// after changing a tensor's type, the offsets of all tensors with higher indices are immediately recalculated
|
||||
// in such a way that the tensor data remains as one contiguous block (except for padding)
|
||||
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
|
||||
|
||||
// assumes that at least gguf_get_tensor_size bytes can be read from data
|
||||
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data);
|
||||
|
||||
// writing gguf files can be done in 3 ways:
|
||||
//
|
||||
// - write the entire gguf_context to a binary file in a single pass:
|
||||
//
|
||||
// gguf_write_to_file(ctx, fname, /*only_meta =*/ false);
|
||||
//
|
||||
// - write only the meta data to a file, then re-open the file and append the tensor data:
|
||||
//
|
||||
// gguf_write_to_file(ctx, fname, /*only_meta =*/ true);
|
||||
// FILE * f = fopen(fname, "ab");
|
||||
// fwrite(f, ...); // write tensor data
|
||||
// fclose(f);
|
||||
//
|
||||
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
|
||||
//
|
||||
// FILE * f = fopen(fname, "wb");
|
||||
// const size_t size_meta = gguf_get_meta_size(ctx);
|
||||
// fseek(f, size_meta, SEEK_SET);
|
||||
// fwrite(f, ...); // write tensor data
|
||||
// void * data = malloc(size_meta);
|
||||
// gguf_get_meta_data(ctx, data);
|
||||
// rewind(f);
|
||||
// fwrite(data, 1, data, f);
|
||||
// free(data);
|
||||
// fclose(f);
|
||||
//
|
||||
|
||||
// write the entire context to a binary file
|
||||
GGML_API bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
|
||||
|
||||
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
|
||||
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
||||
|
||||
// writes the meta data to pointer "data"
|
||||
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,342 +0,0 @@
|
||||
include(CheckCXXCompilerFlag)
|
||||
include("../cmake/common.cmake")
|
||||
|
||||
add_compile_definitions(GGML_SCHED_MAX_COPIES=${GGML_SCHED_MAX_COPIES})
|
||||
|
||||
# enable libstdc++ assertions for debug builds
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
add_compile_definitions($<$<CONFIG:Debug>:_GLIBCXX_ASSERTIONS>)
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
if (GGML_SANITIZE_THREAD)
|
||||
add_compile_options(-fsanitize=thread)
|
||||
link_libraries (-fsanitize=thread)
|
||||
endif()
|
||||
|
||||
if (GGML_SANITIZE_ADDRESS)
|
||||
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||
link_libraries (-fsanitize=address)
|
||||
endif()
|
||||
|
||||
if (GGML_SANITIZE_UNDEFINED)
|
||||
add_compile_options(-fsanitize=undefined)
|
||||
link_libraries (-fsanitize=undefined)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_FATAL_WARNINGS)
|
||||
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
list(APPEND C_FLAGS -Werror)
|
||||
list(APPEND CXX_FLAGS -Werror)
|
||||
elseif (CMAKE_CXX_COMPILER_ID STREQUAL "MSVC")
|
||||
add_compile_options(/WX)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
list(APPEND WARNING_FLAGS -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
list(APPEND C_FLAGS -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes
|
||||
-Werror=implicit-int -Werror=implicit-function-declaration)
|
||||
list(APPEND CXX_FLAGS -Wmissing-declarations -Wmissing-noreturn)
|
||||
|
||||
list(APPEND C_FLAGS ${WARNING_FLAGS})
|
||||
list(APPEND CXX_FLAGS ${WARNING_FLAGS})
|
||||
|
||||
ggml_get_flags(${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION})
|
||||
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${C_FLAGS};${GF_C_FLAGS}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${CXX_FLAGS};${GF_CXX_FLAGS}>")
|
||||
else()
|
||||
# todo : msvc
|
||||
set(C_FLAGS "")
|
||||
set(CXX_FLAGS "")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_LTO)
|
||||
include(CheckIPOSupported)
|
||||
check_ipo_supported(RESULT result OUTPUT output)
|
||||
if (result)
|
||||
set(CMAKE_INTERPROCEDURAL_OPTIMIZATION TRUE)
|
||||
else()
|
||||
message(WARNING "IPO is not supported: ${output}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_CCACHE AND NOT CMAKE_C_COMPILER_LAUNCHER AND NOT CMAKE_CXX_COMPILER_LAUNCHER)
|
||||
find_program(GGML_CCACHE_FOUND ccache)
|
||||
find_program(GGML_SCCACHE_FOUND sccache)
|
||||
|
||||
if (GGML_CCACHE_FOUND OR GGML_SCCACHE_FOUND)
|
||||
if(GGML_CCACHE_FOUND)
|
||||
set(GGML_CCACHE_VARIANT ccache)
|
||||
else()
|
||||
set(GGML_CCACHE_VARIANT sccache)
|
||||
endif()
|
||||
# TODO: should not be set globally
|
||||
if (GGML_SYCL AND GGML_CCACHE_FOUND AND WIN32)
|
||||
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "ccache compiler_type=icl")
|
||||
else ()
|
||||
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${GGML_CCACHE_VARIANT}")
|
||||
endif ()
|
||||
set(ENV{CCACHE_SLOPPINESS} time_macros)
|
||||
message(STATUS "${GGML_CCACHE_VARIANT} found, compilation results will be cached. Disable with GGML_CCACHE=OFF.")
|
||||
else()
|
||||
message(STATUS "Warning: ccache not found - consider installing it for faster compilation or disable this warning with GGML_CCACHE=OFF")
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
# this version of Apple ld64 is buggy
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_C_COMPILER} ${CMAKE_EXE_LINKER_FLAGS} -Wl,-v
|
||||
ERROR_VARIABLE output
|
||||
OUTPUT_QUIET
|
||||
)
|
||||
|
||||
if (output MATCHES "dyld-1015\.7")
|
||||
add_compile_definitions(HAVE_BUGGY_APPLE_LINKER)
|
||||
endif()
|
||||
|
||||
# architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
if (MSVC)
|
||||
string(TOLOWER "${CMAKE_GENERATOR_PLATFORM}" CMAKE_GENERATOR_PLATFORM_LWR)
|
||||
message(STATUS "CMAKE_GENERATOR_PLATFORM: ${CMAKE_GENERATOR_PLATFORM}")
|
||||
else ()
|
||||
set(CMAKE_GENERATOR_PLATFORM_LWR "")
|
||||
endif ()
|
||||
|
||||
if (NOT MSVC)
|
||||
if (GGML_STATIC)
|
||||
add_link_options(-static)
|
||||
if (MINGW)
|
||||
add_link_options(-static-libgcc -static-libstdc++)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_GPROF)
|
||||
add_compile_options(-pg)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (MINGW)
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
|
||||
endif()
|
||||
|
||||
#
|
||||
# POSIX conformance
|
||||
#
|
||||
|
||||
# clock_gettime came in POSIX.1b (1993)
|
||||
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
|
||||
|
||||
# Somehow in OpenBSD whenever POSIX conformance is specified
|
||||
# some string functions rely on locale_t availability,
|
||||
# which was introduced in POSIX.1-2008, forcing us to go higher
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
|
||||
add_compile_definitions(_XOPEN_SOURCE=700)
|
||||
else()
|
||||
add_compile_definitions(_XOPEN_SOURCE=600)
|
||||
endif()
|
||||
|
||||
# Data types, macros and functions related to controlling CPU affinity and
|
||||
# some memory allocation are available on Linux through GNU extensions in libc
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux" OR CMAKE_SYSTEM_NAME MATCHES "Android")
|
||||
add_compile_definitions(_GNU_SOURCE)
|
||||
endif()
|
||||
|
||||
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||
# and on macOS its availability depends on enabling Darwin extensions
|
||||
# similarly on DragonFly, enabling BSD extensions is necessary
|
||||
if (
|
||||
CMAKE_SYSTEM_NAME MATCHES "Darwin" OR
|
||||
CMAKE_SYSTEM_NAME MATCHES "iOS" OR
|
||||
CMAKE_SYSTEM_NAME MATCHES "tvOS" OR
|
||||
CMAKE_SYSTEM_NAME MATCHES "DragonFly"
|
||||
)
|
||||
add_compile_definitions(_DARWIN_C_SOURCE)
|
||||
endif()
|
||||
|
||||
# alloca is a non-standard interface that is not visible on BSDs when
|
||||
# POSIX conformance is specified, but not all of them provide a clean way
|
||||
# to enable it in such cases
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
|
||||
add_compile_definitions(__BSD_VISIBLE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
|
||||
add_compile_definitions(_NETBSD_SOURCE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
|
||||
add_compile_definitions(_BSD_SOURCE)
|
||||
endif()
|
||||
|
||||
if (WIN32)
|
||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||
endif()
|
||||
|
||||
# ggml
|
||||
|
||||
if (GGML_BACKEND_DL AND NOT BUILD_SHARED_LIBS)
|
||||
message(FATAL_ERROR "GGML_BACKEND_DL requires BUILD_SHARED_LIBS")
|
||||
endif()
|
||||
|
||||
add_library(ggml-base
|
||||
../include/ggml.h
|
||||
../include/ggml-alloc.h
|
||||
../include/ggml-backend.h
|
||||
../include/ggml-cpp.h
|
||||
../include/ggml-opt.h
|
||||
../include/gguf.h
|
||||
ggml.c
|
||||
ggml-alloc.c
|
||||
ggml-backend.cpp
|
||||
ggml-opt.cpp
|
||||
ggml-threading.cpp
|
||||
ggml-threading.h
|
||||
ggml-quants.c
|
||||
ggml-quants.h
|
||||
gguf.cpp)
|
||||
|
||||
target_include_directories(ggml-base PRIVATE .)
|
||||
if (GGML_BACKEND_DL)
|
||||
target_compile_definitions(ggml-base PUBLIC GGML_BACKEND_DL)
|
||||
endif()
|
||||
|
||||
add_library(ggml
|
||||
ggml-backend-reg.cpp)
|
||||
|
||||
target_link_libraries(ggml PUBLIC ggml-base)
|
||||
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
target_link_libraries(ggml PRIVATE dl stdc++fs)
|
||||
endif()
|
||||
|
||||
function(ggml_add_backend_library backend)
|
||||
if (GGML_BACKEND_DL)
|
||||
add_library(${backend} MODULE ${ARGN})
|
||||
# write the shared library to the output directory
|
||||
set_target_properties(${backend} PROPERTIES LIBRARY_OUTPUT_DIRECTORY ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})
|
||||
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_DL)
|
||||
add_dependencies(ggml ${backend})
|
||||
else()
|
||||
add_library(${backend} ${ARGN})
|
||||
target_link_libraries(ggml PUBLIC ${backend})
|
||||
install(TARGETS ${backend} LIBRARY)
|
||||
endif()
|
||||
|
||||
target_link_libraries(${backend} PRIVATE ggml-base)
|
||||
target_include_directories(${backend} PRIVATE ..)
|
||||
|
||||
if (${BUILD_SHARED_LIBS})
|
||||
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_BUILD)
|
||||
target_compile_definitions(${backend} PUBLIC GGML_BACKEND_SHARED)
|
||||
endif()
|
||||
|
||||
if(NOT GGML_AVAILABLE_BACKENDS)
|
||||
set(GGML_AVAILABLE_BACKENDS "${backend}"
|
||||
CACHE INTERNAL "List of backends for cmake package")
|
||||
else()
|
||||
list(FIND GGML_AVAILABLE_BACKENDS "${backend}" has_backend)
|
||||
if(has_backend EQUAL -1)
|
||||
set(GGML_AVAILABLE_BACKENDS "${GGML_AVAILABLE_BACKENDS};${backend}"
|
||||
CACHE INTERNAL "List of backends for cmake package")
|
||||
endif()
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
function(ggml_add_backend backend)
|
||||
string(TOUPPER "GGML_${backend}" backend_id)
|
||||
if (${backend_id})
|
||||
string(TOLOWER "ggml-${backend}" backend_target)
|
||||
add_subdirectory(${backend_target})
|
||||
message(STATUS "Including ${backend} backend")
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
string(TOUPPER "GGML_USE_${backend}" backend_use)
|
||||
target_compile_definitions(ggml PUBLIC ${backend_use})
|
||||
endif()
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
function(ggml_add_cpu_backend_variant tag_name)
|
||||
set(GGML_CPU_TAG_NAME ${tag_name})
|
||||
# other: OPENMP LLAMAFILE CPU_HBM
|
||||
foreach (feat NATIVE
|
||||
AVX AVX2 BMI2 AVX_VNNI FMA F16C
|
||||
AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16
|
||||
AMX_TILE AMX_INT8 AMX_BF16)
|
||||
set(GGML_${feat} OFF)
|
||||
endforeach()
|
||||
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_${feat} ON)
|
||||
endforeach()
|
||||
|
||||
ggml_add_cpu_backend_variant_impl(${tag_name})
|
||||
endfunction()
|
||||
|
||||
ggml_add_backend(CPU)
|
||||
|
||||
if (GGML_CPU_ALL_VARIANTS)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
|
||||
endif()
|
||||
ggml_add_cpu_backend_variant(sandybridge AVX)
|
||||
ggml_add_cpu_backend_variant(haswell AVX F16C AVX2 BMI2 FMA)
|
||||
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
if (NOT MSVC)
|
||||
# MSVC doesn't support AMX
|
||||
ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
|
||||
endif()
|
||||
elseif (GGML_CPU)
|
||||
ggml_add_cpu_backend_variant_impl("")
|
||||
endif()
|
||||
|
||||
ggml_add_backend(BLAS)
|
||||
ggml_add_backend(CANN)
|
||||
ggml_add_backend(CUDA)
|
||||
ggml_add_backend(HIP)
|
||||
ggml_add_backend(Kompute)
|
||||
ggml_add_backend(METAL)
|
||||
ggml_add_backend(MUSA)
|
||||
ggml_add_backend(RPC)
|
||||
ggml_add_backend(SYCL)
|
||||
ggml_add_backend(Vulkan)
|
||||
ggml_add_backend(OpenCL)
|
||||
|
||||
foreach (target ggml-base ggml)
|
||||
target_include_directories(${target} PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../include> $<INSTALL_INTERFACE:include>)
|
||||
target_compile_features (${target} PRIVATE c_std_11 cxx_std_17) # don't bump
|
||||
endforeach()
|
||||
|
||||
target_link_libraries(ggml-base PRIVATE Threads::Threads)
|
||||
|
||||
find_library(MATH_LIBRARY m)
|
||||
if (MATH_LIBRARY)
|
||||
if (NOT WIN32 OR NOT DEFINED ENV{ONEAPI_ROOT})
|
||||
target_link_libraries(ggml-base PRIVATE m)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Android")
|
||||
target_link_libraries(ggml-base PRIVATE dl)
|
||||
endif()
|
||||
|
||||
if(CMAKE_SYSTEM_NAME MATCHES "visionOS")
|
||||
target_compile_definitions(ggml-base PUBLIC _DARWIN_C_SOURCE)
|
||||
endif()
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
foreach (target ggml-base ggml)
|
||||
set_target_properties(${target} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(${target} PRIVATE GGML_BUILD)
|
||||
target_compile_definitions(${target} PUBLIC GGML_SHARED)
|
||||
endforeach()
|
||||
endif()
|
File diff suppressed because it is too large
Load Diff
@ -1,107 +0,0 @@
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$") AND
|
||||
CMAKE_COMPILER_IS_GNUCC AND CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 11.0)
|
||||
message(STATUS "Using AMX")
|
||||
|
||||
file(GLOB GGML_HEADERS_AMX "*.h")
|
||||
list(APPEND GGML_HEADERS_AMX "../../include/ggml-amx.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_AMX "*.cpp")
|
||||
|
||||
add_library(ggml-amx
|
||||
${GGML_HEADERS_AMX}
|
||||
${GGML_SOURCES_AMX})
|
||||
|
||||
target_link_libraries(ggml-amx PRIVATE ggml-base)
|
||||
target_include_directories(ggml-amx PRIVATE . ..)
|
||||
|
||||
# this is duplicated from the CPU backend, since the AMX backend also depends on the architecture flags
|
||||
# TODO: integrate AMX backend into the CPU backend
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
if (GGML_NATIVE)
|
||||
# TODO: improve, should not reference files from the parent folder
|
||||
include(../ggml-cpu/cmake/FindSIMD.cmake)
|
||||
endif ()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX512)
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
if (GGML_AVX512_VBMI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512BF16__>)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_TILE__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_TILE__>)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_INT8__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_INT8__>)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_BF16__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_BF16__>)
|
||||
endif()
|
||||
elseif (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX2)
|
||||
elseif (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX)
|
||||
endif()
|
||||
else()
|
||||
if (GGML_NATIVE)
|
||||
list(APPEND ARCH_FLAGS -march=native)
|
||||
endif()
|
||||
if (GGML_F16C)
|
||||
list(APPEND ARCH_FLAGS -mf16c)
|
||||
endif()
|
||||
if (GGML_FMA)
|
||||
list(APPEND ARCH_FLAGS -mfma)
|
||||
endif()
|
||||
if (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS -mavx)
|
||||
endif()
|
||||
if (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS -mavx2)
|
||||
endif()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS -mavx512f)
|
||||
list(APPEND ARCH_FLAGS -mavx512dq)
|
||||
list(APPEND ARCH_FLAGS -mavx512bw)
|
||||
endif()
|
||||
if (GGML_AVX512_VBMI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vbmi)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
list(APPEND ARCH_FLAGS -mamx-tile)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
list(APPEND ARCH_FLAGS -mamx-int8)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
list(APPEND ARCH_FLAGS -mamx-bf16)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
target_compile_options(ggml-amx PRIVATE ${ARCH_FLAGS})
|
||||
else()
|
||||
set(GGML_AMX OFF PARENT_SCOPE)
|
||||
message(WARNING "AMX requires x86 and gcc version > 11.0. Turning off GGML_AMX.")
|
||||
endif()
|
@ -1,94 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
// hack until AMX is moved into the CPU backend
|
||||
#include "../ggml-cpu/ggml-cpu-impl.h" // <immintrin.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
|
||||
#if defined(_OPENMP)
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#define TILE_M 16
|
||||
#define TILE_N 16
|
||||
#define TILE_K 32
|
||||
#define VNNI_BLK 4
|
||||
|
||||
#define AMX_BLK_SIZE 32
|
||||
|
||||
#define TMM0 0
|
||||
#define TMM1 1
|
||||
#define TMM2 2
|
||||
#define TMM3 3
|
||||
#define TMM4 4
|
||||
#define TMM5 5
|
||||
#define TMM6 6
|
||||
#define TMM7 7
|
||||
|
||||
// parallel routines
|
||||
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
||||
inline T div_up(T x, T y) { return (x + y - 1) / y; }
|
||||
|
||||
template <typename T>
|
||||
inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
|
||||
#if 0
|
||||
// onednn partition pattern
|
||||
T& n_my = n_end;
|
||||
if (nth <= 1 || n == 0) {
|
||||
n_start = 0;
|
||||
n_my = n;
|
||||
} else {
|
||||
T n1 = div_up(n, nth);
|
||||
T n2 = n1 - 1;
|
||||
T T1 = n - n2 * nth;
|
||||
n_my = ith < T1 ? n1 : n2;
|
||||
n_start = ith <= T1 ? ith*n1 : T1 * n1 + (ith - T1) * n2;
|
||||
}
|
||||
n_end += n_start;
|
||||
#else
|
||||
// pytorch aten partition pattern
|
||||
T n_my = div_up(n, nth);
|
||||
n_start = ith * n_my;
|
||||
n_end = std::min(n_start + n_my, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename func_t>
|
||||
inline void parallel_for(int nth, int n, const func_t& f) {
|
||||
#if defined(_OPENMP)
|
||||
#pragma omp parallel num_threads(nth)
|
||||
{
|
||||
//int nth = omp_get_num_threads();
|
||||
int ith = omp_get_thread_num();
|
||||
int tbegin, tend;
|
||||
balance211(n, nth, ith, tbegin, tend);
|
||||
f(tbegin, tend);
|
||||
}
|
||||
#else
|
||||
f(0, n);
|
||||
|
||||
GGML_UNUSED(nth);
|
||||
#endif
|
||||
}
|
||||
|
||||
// quantized types that have AMX support
|
||||
inline bool qtype_has_amx_kernels(const enum ggml_type type) {
|
||||
// TODO: fix padding for vnni format
|
||||
return (type == GGML_TYPE_Q4_0) ||
|
||||
(type == GGML_TYPE_Q4_1);
|
||||
//(type == GGML_TYPE_Q8_0) ||
|
||||
//(type == GGML_TYPE_Q4_K) ||
|
||||
//(type == GGML_TYPE_Q5_K) ||
|
||||
//(type == GGML_TYPE_Q6_K) ||
|
||||
//(type == GGML_TYPE_IQ4_XS);
|
||||
}
|
||||
|
||||
// ggml backend context
|
||||
struct ggml_backend_amx_context {
|
||||
int n_threads = GGML_DEFAULT_N_THREADS;
|
||||
std::unique_ptr<char[]> work_data;
|
||||
size_t work_size = 0;
|
||||
};
|
@ -1,446 +0,0 @@
|
||||
#include "ggml-amx.h"
|
||||
#include "ggml-amx/common.h"
|
||||
#include "ggml-amx/mmq.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
#include <sys/syscall.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
|
||||
#if defined(__AMX_INT8__)
|
||||
|
||||
// AMX buffer interface
|
||||
static void ggml_backend_amx_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
free(buffer->context);
|
||||
}
|
||||
|
||||
static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *)(buffer->context);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
if (qtype_has_amx_kernels(tensor->type)) {
|
||||
ggml_backend_amx_convert_weight(tensor, data, offset, size);
|
||||
} else {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
}
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(!qtype_has_amx_kernels(tensor->type));
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
if (qtype_has_amx_kernels(src->type)) {
|
||||
ggml_backend_amx_convert_weight(dst, src->data, 0, ggml_backend_amx_get_alloc_size(dst));
|
||||
} else {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
memset(buffer->context, value, buffer->size);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_i ggml_backend_amx_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_amx_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_amx_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .memset_tensor = */ ggml_backend_amx_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_amx_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_amx_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_amx_buffer_cpy_tensor,
|
||||
/* .clear = */ ggml_backend_amx_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
static const char * ggml_backend_amx_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_amx_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * data = aligned_alloc(TENSOR_ALIGNMENT, size);
|
||||
if (data == NULL) {
|
||||
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(buft, ggml_backend_amx_buffer_interface, data, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return TENSOR_ALIGNMENT;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) {
|
||||
return ggml_backend_amx_get_alloc_size(tensor);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type() {
|
||||
static struct ggml_backend_buffer_type ggml_backend_buffer_type_amx = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_amx_buffer_type_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_amx_reg(), 0),
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_buffer_type_amx;
|
||||
}
|
||||
|
||||
// backend interface
|
||||
|
||||
static const char * ggml_backend_amx_name(ggml_backend_t backend) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_free(ggml_backend_t backend) {
|
||||
ggml_backend_amx_context * ctx = (ggml_backend_amx_context *)backend->context;
|
||||
delete ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_amx_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
ggml_backend_amx_context * ctx = (ggml_backend_amx_context *)backend->context;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_backend_amx_mul_mat(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
break;
|
||||
|
||||
default:
|
||||
fprintf(stderr, "%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i ggml_backend_amx_i = {
|
||||
/* .get_name = */ ggml_backend_amx_name,
|
||||
/* .free = */ ggml_backend_amx_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_amx_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_amx_guid() {
|
||||
static ggml_guid guid = { 0x13, 0xb8, 0xa4, 0xc4, 0xba, 0xfe, 0x51, 0x67, 0x87, 0x44, 0x55, 0x15, 0xb2, 0x35, 0x62, 0x3e };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
#define ARCH_GET_XCOMP_PERM 0x1022
|
||||
#define ARCH_REQ_XCOMP_PERM 0x1023
|
||||
#define XFEATURE_XTILECFG 17
|
||||
#define XFEATURE_XTILEDATA 18
|
||||
|
||||
static bool ggml_amx_init() {
|
||||
#if defined(__gnu_linux__)
|
||||
if (syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA)) {
|
||||
fprintf(stderr, "AMX is not ready to be used!\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
#elif defined(_WIN32)
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_amx_init() {
|
||||
|
||||
// invoke a Linux system call to request access to AMX features
|
||||
ggml_amx_init();
|
||||
|
||||
// backend context
|
||||
ggml_backend_amx_context * ctx = new ggml_backend_amx_context;
|
||||
|
||||
// ggml amx backend
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_amx_guid(),
|
||||
/* .interface = */ ggml_backend_amx_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_amx_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_amx(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_amx_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_amx(backend_amx));
|
||||
|
||||
ggml_backend_amx_context * ctx = (ggml_backend_amx_context *)backend_amx->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
// device interface
|
||||
|
||||
static const char * ggml_backend_amx_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_amx_device_get_description(ggml_backend_dev_t dev) {
|
||||
return "Intel Advanced Matrix Extensions";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_amx_device_get_type(ggml_backend_dev_t dev) {
|
||||
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_amx_device_get_name(dev);
|
||||
props->description = ggml_backend_amx_device_get_description(dev);
|
||||
props->type = ggml_backend_amx_device_get_type(dev);
|
||||
ggml_backend_amx_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
|
||||
// `buffer_from_host_ptr` is intended to be used in mmap, when memory layout unchanged
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ false,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_amx_device_init(ggml_backend_dev_t dev, const char * params) {
|
||||
return ggml_backend_amx_init();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_amx_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
return ggml_backend_amx_buffer_type();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
|
||||
// handle only 2d gemm for now
|
||||
auto is_contiguous_2d = [](const struct ggml_tensor * t) {
|
||||
return ggml_is_contiguous(t) && t->ne[3] == 1 && t->ne[2] == 1;
|
||||
};
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
return true;
|
||||
|
||||
case GGML_OP_MUL_MAT: {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
const int64_t ne0 = op->ne[0];
|
||||
|
||||
// amx kernels enables for Q4_0, Q4_1, Q8_0, F16
|
||||
// Q4_K, Q5_K, Q6_K, IQ4_XS enabled for QK_K = 256
|
||||
bool has_amx_kernels = qtype_has_amx_kernels(type) || (type == GGML_TYPE_F16);
|
||||
|
||||
bool can_use_amx =
|
||||
is_contiguous_2d(src0) && // src0 must be contiguous
|
||||
is_contiguous_2d(src1) && // src1 must be contiguous
|
||||
src1->type == GGML_TYPE_F32 && // src1 must be float32
|
||||
has_amx_kernels && // with amx kernel impls
|
||||
ne0 % (TILE_N * 2) == 0; // out_features is 32x
|
||||
|
||||
return can_use_amx;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_amx_buffer_type_get_name;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_device_i ggml_backend_amx_device_i = {
|
||||
/* .get_name = */ ggml_backend_amx_device_get_name,
|
||||
/* .get_description = */ ggml_backend_amx_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_amx_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_amx_device_get_type,
|
||||
/* .get_props = */ ggml_backend_amx_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_amx_device_init,
|
||||
/* .get_buffer_type = */ ggml_backend_amx_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ NULL,
|
||||
/* .supports_op = */ ggml_backend_amx_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_amx_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
// backend reg interface
|
||||
|
||||
static const char * ggml_backend_amx_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_amx_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
static ggml_backend_device ggml_backend_amx_device = {
|
||||
/* .iface = */ ggml_backend_amx_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
return &ggml_backend_amx_device;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(index);
|
||||
}
|
||||
|
||||
static void * ggml_backend_amx_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
|
||||
return (void *)ggml_backend_amx_set_n_threads;
|
||||
}
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(name);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_reg_i ggml_backend_amx_reg_i = {
|
||||
/* .get_name = */ ggml_backend_amx_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_amx_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_amx_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_amx_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_amx_reg(void) {
|
||||
static struct ggml_backend_reg ggml_backend_amx_reg = {
|
||||
/* .iface = */ ggml_backend_amx_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_amx_reg;
|
||||
}
|
||||
|
||||
#else // if defined(__AMX_INT8__)
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_amx(ggml_backend_t backend) {
|
||||
GGML_UNUSED(backend);
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_amx_init(void) {
|
||||
fprintf(stderr, "GGML is not compiled with AMX support!\n");
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads) {
|
||||
fprintf(stderr, "GGML is not compiled with AMX support!\n");
|
||||
|
||||
GGML_UNUSED(backend_amx);
|
||||
GGML_UNUSED(n_threads);
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_amx_reg(void) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@ -1,17 +0,0 @@
|
||||
#pragma once
|
||||
#include "common.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor);
|
||||
|
||||
void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
|
||||
void ggml_backend_amx_mul_mat(ggml_backend_amx_context * ctx, struct ggml_tensor * dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,255 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
// ggml-backend internal header
|
||||
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_BACKEND_API_VERSION 1
|
||||
|
||||
//
|
||||
// Backend buffer type
|
||||
//
|
||||
|
||||
struct ggml_backend_buffer_type_i {
|
||||
const char * (*get_name) (ggml_backend_buffer_type_t buft);
|
||||
// allocate a buffer of this type
|
||||
ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
||||
// tensor alignment
|
||||
size_t (*get_alignment) (ggml_backend_buffer_type_t buft);
|
||||
// (optional) max buffer size that can be allocated (defaults to SIZE_MAX)
|
||||
size_t (*get_max_size) (ggml_backend_buffer_type_t buft);
|
||||
// (optional) data size needed to allocate the tensor, including padding (defaults to ggml_nbytes)
|
||||
size_t (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
|
||||
// (optional) check if tensor data is in host memory and uses standard ggml tensor layout (defaults to false)
|
||||
bool (*is_host) (ggml_backend_buffer_type_t buft);
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer_type {
|
||||
struct ggml_backend_buffer_type_i iface;
|
||||
ggml_backend_dev_t device;
|
||||
void * context;
|
||||
};
|
||||
|
||||
//
|
||||
// Backend buffer
|
||||
//
|
||||
|
||||
struct ggml_backend_buffer_i {
|
||||
// (optional) free the buffer
|
||||
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
||||
// base address of the buffer
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer);
|
||||
// (optional) initialize a tensor in the buffer (eg. add tensor extras)
|
||||
enum ggml_status (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
// tensor data access
|
||||
void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
||||
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
// (optional) tensor copy: dst is in the buffer, src may be in any buffer, including buffers from a different backend (return false if not supported)
|
||||
bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
// clear the entire buffer
|
||||
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
// (optional) reset any internal state due to tensor initialization, such as tensor extras
|
||||
void (*reset) (ggml_backend_buffer_t buffer);
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer {
|
||||
struct ggml_backend_buffer_i iface;
|
||||
ggml_backend_buffer_type_t buft;
|
||||
void * context;
|
||||
size_t size;
|
||||
enum ggml_backend_buffer_usage usage;
|
||||
};
|
||||
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
ggml_backend_buffer_type_t buft,
|
||||
struct ggml_backend_buffer_i iface,
|
||||
void * context,
|
||||
size_t size);
|
||||
|
||||
// do not use directly, use ggml_backend_tensor_copy instead
|
||||
GGML_API bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// multi-buffer
|
||||
// buffer that contains a collection of buffers
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
|
||||
GGML_API bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
|
||||
//
|
||||
// Backend (stream)
|
||||
//
|
||||
|
||||
struct ggml_backend_i {
|
||||
const char * (*get_name)(ggml_backend_t backend);
|
||||
|
||||
void (*free)(ggml_backend_t backend);
|
||||
|
||||
// (optional) asynchronous tensor data access
|
||||
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool (*cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// (optional) complete all pending operations (required if the backend supports async operations)
|
||||
void (*synchronize)(ggml_backend_t backend);
|
||||
|
||||
// (optional) graph plans (not used currently)
|
||||
// compute graph with a plan
|
||||
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
||||
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
// update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology
|
||||
void (*graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
|
||||
// compute the graph with the plan
|
||||
enum ggml_status (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
// compute graph (always async if supported by the backend)
|
||||
enum ggml_status (*graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// (optional) event synchronization
|
||||
// record an event on this stream
|
||||
void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);
|
||||
// wait for an event on on a different stream
|
||||
void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
};
|
||||
|
||||
struct ggml_backend {
|
||||
ggml_guid_t guid;
|
||||
struct ggml_backend_i iface;
|
||||
ggml_backend_dev_t device;
|
||||
void * context;
|
||||
};
|
||||
|
||||
struct ggml_backend_event {
|
||||
struct ggml_backend_device * device;
|
||||
void * context;
|
||||
};
|
||||
|
||||
//
|
||||
// Backend device
|
||||
//
|
||||
|
||||
// Note: if additional properties are needed, we should add a struct with all of them
|
||||
// the current functions to obtain the properties can remain, since they are more convenient for often used properties
|
||||
struct ggml_backend_device_i {
|
||||
// device name: short identifier for this device, such as "CPU" or "CUDA0"
|
||||
const char * (*get_name)(ggml_backend_dev_t dev);
|
||||
|
||||
// device description: short informative description of the device, could be the model name
|
||||
const char * (*get_description)(ggml_backend_dev_t dev);
|
||||
|
||||
// device memory in bytes
|
||||
void (*get_memory)(ggml_backend_dev_t dev, size_t * free, size_t * total);
|
||||
|
||||
// device type
|
||||
enum ggml_backend_dev_type (*get_type)(ggml_backend_dev_t dev);
|
||||
|
||||
// device properties
|
||||
void (*get_props)(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props);
|
||||
|
||||
// backend (stream) initialization
|
||||
ggml_backend_t (*init_backend)(ggml_backend_dev_t dev, const char * params);
|
||||
|
||||
// preferred buffer type
|
||||
ggml_backend_buffer_type_t (*get_buffer_type)(ggml_backend_dev_t dev);
|
||||
|
||||
// (optional) host buffer type (in system memory, typically this is a pinned memory buffer for faster transfers between host and device)
|
||||
ggml_backend_buffer_type_t (*get_host_buffer_type)(ggml_backend_dev_t dev);
|
||||
|
||||
// (optional) buffer from pointer: create a buffer from a host pointer (useful for memory mapped models and importing data from other libraries)
|
||||
ggml_backend_buffer_t (*buffer_from_host_ptr)(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size);
|
||||
|
||||
// check if the backend can compute an operation
|
||||
bool (*supports_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op);
|
||||
|
||||
// check if the backend can use tensors allocated in a buffer type
|
||||
bool (*supports_buft)(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft);
|
||||
|
||||
// (optional) check if the backend wants to run an operation, even if the weights are allocated in an incompatible buffer
|
||||
// these should be expensive operations that may benefit from running on this backend instead of the CPU backend
|
||||
bool (*offload_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op);
|
||||
|
||||
// (optional) event synchronization
|
||||
ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev);
|
||||
void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event);
|
||||
void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event);
|
||||
};
|
||||
|
||||
struct ggml_backend_device {
|
||||
struct ggml_backend_device_i iface;
|
||||
ggml_backend_reg_t reg;
|
||||
void * context;
|
||||
};
|
||||
|
||||
//
|
||||
// Backend (reg)
|
||||
//
|
||||
|
||||
struct ggml_backend_reg_i {
|
||||
const char * (*get_name)(ggml_backend_reg_t reg);
|
||||
|
||||
// enumerate available devices
|
||||
size_t (*get_device_count)(ggml_backend_reg_t reg);
|
||||
ggml_backend_dev_t (*get_device)(ggml_backend_reg_t reg, size_t index);
|
||||
|
||||
// (optional) get a pointer to a function in the backend
|
||||
// backends can add custom functions that are not part of the standard ggml-backend interface
|
||||
void * (*get_proc_address)(ggml_backend_reg_t reg, const char * name);
|
||||
};
|
||||
|
||||
struct ggml_backend_reg {
|
||||
int api_version; // initialize to GGML_BACKEND_API_VERSION
|
||||
struct ggml_backend_reg_i iface;
|
||||
void * context;
|
||||
};
|
||||
|
||||
// Internal backend registry API
|
||||
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
|
||||
|
||||
// Add backend dynamic loading support to the backend
|
||||
|
||||
// Initialize the backend
|
||||
typedef ggml_backend_reg_t (*ggml_backend_init_t)(void);
|
||||
// Optional: obtain a score for the backend based on the system configuration
|
||||
// Higher scores are preferred, 0 means the backend is not supported in the current system
|
||||
typedef int (*ggml_backend_score_t)(void);
|
||||
|
||||
#ifdef GGML_BACKEND_DL
|
||||
# ifdef __cplusplus
|
||||
# define GGML_BACKEND_DL_IMPL(reg_fn) \
|
||||
extern "C" { \
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_init(void); \
|
||||
} \
|
||||
ggml_backend_reg_t ggml_backend_init(void) { \
|
||||
return reg_fn(); \
|
||||
}
|
||||
# define GGML_BACKEND_DL_SCORE_IMPL(score_fn) \
|
||||
extern "C" { \
|
||||
GGML_BACKEND_API int ggml_backend_score(void); \
|
||||
} \
|
||||
int ggml_backend_score(void) { \
|
||||
return score_fn(); \
|
||||
}
|
||||
# else
|
||||
# define GGML_BACKEND_DL_IMPL(reg_fn) \
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_init(void); \
|
||||
ggml_backend_reg_t ggml_backend_init(void) { \
|
||||
return reg_fn(); \
|
||||
}
|
||||
# define GGML_BACKEND_DL_SCORE_IMPL(score_fn) \
|
||||
GGML_BACKEND_API int ggml_backend_score(void); \
|
||||
int ggml_backend_score(void) { \
|
||||
return score_fn(); \
|
||||
}
|
||||
# endif
|
||||
#else
|
||||
# define GGML_BACKEND_DL_IMPL(reg_fn)
|
||||
# define GGML_BACKEND_DL_SCORE_IMPL(score_fn)
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,586 +0,0 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
#include <filesystem>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
#include <cctype>
|
||||
|
||||
#ifdef _WIN32
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
# ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
# endif
|
||||
# include <windows.h>
|
||||
#elif defined(__APPLE__)
|
||||
# include <mach-o/dyld.h>
|
||||
# include <dlfcn.h>
|
||||
#else
|
||||
# include <dlfcn.h>
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
|
||||
// Backend registry
|
||||
#ifdef GGML_USE_CPU
|
||||
#include "ggml-cpu.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
#include "ggml-cuda.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
#include "ggml-metal.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_SYCL
|
||||
#include "ggml-sycl.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_OPENCL
|
||||
#include "ggml-opencl.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_BLAS
|
||||
#include "ggml-blas.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_RPC
|
||||
#include "ggml-rpc.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
#include "ggml-kompute.h"
|
||||
#endif
|
||||
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
||||
#endif
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
|
||||
static std::string path_str(const fs::path & path) {
|
||||
std::string u8path;
|
||||
try {
|
||||
#if defined(__cpp_lib_char8_t)
|
||||
// C++20 and later: u8string() returns std::u8string
|
||||
std::u8string u8str = path.u8string();
|
||||
u8path = std::string(reinterpret_cast<const char*>(u8str.c_str()));
|
||||
#else
|
||||
// C++17: u8string() returns std::string
|
||||
u8path = path.u8string();
|
||||
#endif
|
||||
} catch (...) {
|
||||
}
|
||||
return u8path;
|
||||
}
|
||||
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
using dl_handle = std::remove_pointer_t<HMODULE>;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(HMODULE handle) {
|
||||
FreeLibrary(handle);
|
||||
}
|
||||
};
|
||||
|
||||
static dl_handle * dl_load_library(const fs::path & path) {
|
||||
// suppress error dialogs for missing DLLs
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
HMODULE handle = LoadLibraryW(path.wstring().c_str());
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
void * p = (void *) GetProcAddress(handle, name);
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
using dl_handle = void;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(void * handle) {
|
||||
dlclose(handle);
|
||||
}
|
||||
};
|
||||
|
||||
static void * dl_load_library(const fs::path & path) {
|
||||
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
return dlsym(handle, name);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
|
||||
|
||||
struct ggml_backend_reg_entry {
|
||||
ggml_backend_reg_t reg;
|
||||
dl_handle_ptr handle;
|
||||
};
|
||||
|
||||
struct ggml_backend_registry {
|
||||
std::vector<ggml_backend_reg_entry> backends;
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
|
||||
ggml_backend_registry() {
|
||||
#ifdef GGML_USE_CUDA
|
||||
register_backend(ggml_backend_cuda_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_METAL
|
||||
register_backend(ggml_backend_metal_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_SYCL
|
||||
register_backend(ggml_backend_sycl_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_VULKAN
|
||||
register_backend(ggml_backend_vk_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_OPENCL
|
||||
register_backend(ggml_backend_opencl_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_CANN
|
||||
register_backend(ggml_backend_cann_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_BLAS
|
||||
register_backend(ggml_backend_blas_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_RPC
|
||||
register_backend(ggml_backend_rpc_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
register_backend(ggml_backend_kompute_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU
|
||||
register_backend(ggml_backend_cpu_reg());
|
||||
#endif
|
||||
}
|
||||
|
||||
~ggml_backend_registry() {
|
||||
// FIXME: backends cannot be safely unloaded without a function to destroy all the backend resources,
|
||||
// since backend threads may still be running and accessing resources from the dynamic library
|
||||
for (auto & entry : backends) {
|
||||
if (entry.handle) {
|
||||
entry.handle.release(); // NOLINT
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void register_backend(ggml_backend_reg_t reg, dl_handle_ptr handle = nullptr) {
|
||||
if (!reg) {
|
||||
return;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: registered backend %s (%zu devices)\n",
|
||||
__func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg));
|
||||
#endif
|
||||
backends.push_back({ reg, std::move(handle) });
|
||||
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
|
||||
register_device(ggml_backend_reg_dev_get(reg, i));
|
||||
}
|
||||
}
|
||||
|
||||
void register_device(ggml_backend_dev_t device) {
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
|
||||
#endif
|
||||
devices.push_back(device);
|
||||
}
|
||||
|
||||
ggml_backend_reg_t load_backend(const fs::path & path, bool silent) {
|
||||
dl_handle_ptr handle { dl_load_library(path) };
|
||||
if (!handle) {
|
||||
if (!silent) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(path).c_str());
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (score_fn && score_fn() == 0) {
|
||||
if (!silent) {
|
||||
GGML_LOG_INFO("%s: backend %s is not supported on this system\n", __func__, path_str(path).c_str());
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto backend_init_fn = (ggml_backend_init_t) dl_get_sym(handle.get(), "ggml_backend_init");
|
||||
if (!backend_init_fn) {
|
||||
if (!silent) {
|
||||
GGML_LOG_ERROR("%s: failed to find ggml_backend_init in %s\n", __func__, path_str(path).c_str());
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_backend_reg_t reg = backend_init_fn();
|
||||
if (!reg || reg->api_version != GGML_BACKEND_API_VERSION) {
|
||||
if (!silent) {
|
||||
if (!reg) {
|
||||
GGML_LOG_ERROR("%s: failed to initialize backend from %s: ggml_backend_init returned NULL\n",
|
||||
__func__, path_str(path).c_str());
|
||||
} else {
|
||||
GGML_LOG_ERROR("%s: failed to initialize backend from %s: incompatible API version (backend: %d, current: %d)\n",
|
||||
__func__, path_str(path).c_str(), reg->api_version, GGML_BACKEND_API_VERSION);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path_str(path).c_str());
|
||||
|
||||
register_backend(reg, std::move(handle));
|
||||
|
||||
return reg;
|
||||
}
|
||||
|
||||
void unload_backend(ggml_backend_reg_t reg, bool silent) {
|
||||
auto it = std::find_if(backends.begin(), backends.end(),
|
||||
[reg](const ggml_backend_reg_entry & entry) { return entry.reg == reg; });
|
||||
|
||||
if (it == backends.end()) {
|
||||
if (!silent) {
|
||||
GGML_LOG_ERROR("%s: backend not found\n", __func__);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (!silent) {
|
||||
GGML_LOG_DEBUG("%s: unloading %s backend\n", __func__, ggml_backend_reg_name(reg));
|
||||
}
|
||||
|
||||
// remove devices
|
||||
devices.erase(
|
||||
std::remove_if(devices.begin(), devices.end(),
|
||||
[reg](ggml_backend_dev_t dev) { return ggml_backend_dev_backend_reg(dev) == reg; }),
|
||||
devices.end());
|
||||
|
||||
// remove backend
|
||||
backends.erase(it);
|
||||
}
|
||||
};
|
||||
|
||||
static ggml_backend_registry & get_reg() {
|
||||
static ggml_backend_registry reg;
|
||||
return reg;
|
||||
}
|
||||
|
||||
// Internal API
|
||||
void ggml_backend_register(ggml_backend_reg_t reg) {
|
||||
get_reg().register_backend(reg);
|
||||
}
|
||||
|
||||
void ggml_backend_device_register(ggml_backend_dev_t device) {
|
||||
get_reg().register_device(device);
|
||||
}
|
||||
|
||||
// Backend (reg) enumeration
|
||||
static bool striequals(const char * a, const char * b) {
|
||||
for (; *a && *b; a++, b++) {
|
||||
if (std::tolower(*a) != std::tolower(*b)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return *a == *b;
|
||||
}
|
||||
|
||||
size_t ggml_backend_reg_count() {
|
||||
return get_reg().backends.size();
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
|
||||
GGML_ASSERT(index < ggml_backend_reg_count());
|
||||
return get_reg().backends[index].reg;
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
|
||||
ggml_backend_reg_t reg = ggml_backend_reg_get(i);
|
||||
if (striequals(ggml_backend_reg_name(reg), name)) {
|
||||
return reg;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Device enumeration
|
||||
size_t ggml_backend_dev_count() {
|
||||
return get_reg().devices.size();
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
|
||||
GGML_ASSERT(index < ggml_backend_dev_count());
|
||||
return get_reg().devices[index];
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
if (striequals(ggml_backend_dev_name(dev), name)) {
|
||||
return dev;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
if (ggml_backend_dev_type(dev) == type) {
|
||||
return dev;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Convenience functions
|
||||
ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_name(name);
|
||||
if (!dev) {
|
||||
return nullptr;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, params);
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_type(type);
|
||||
if (!dev) {
|
||||
return nullptr;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, params);
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_init_best(void) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
|
||||
if (!dev) {
|
||||
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
}
|
||||
if (!dev) {
|
||||
return nullptr;
|
||||
}
|
||||
return ggml_backend_dev_init(dev, nullptr);
|
||||
}
|
||||
|
||||
// Dynamic loading
|
||||
ggml_backend_reg_t ggml_backend_load(const char * path) {
|
||||
return get_reg().load_backend(path, false);
|
||||
}
|
||||
|
||||
void ggml_backend_unload(ggml_backend_reg_t reg) {
|
||||
get_reg().unload_backend(reg, true);
|
||||
}
|
||||
|
||||
static fs::path get_executable_path() {
|
||||
#if defined(__APPLE__)
|
||||
// get executable path
|
||||
std::vector<char> path;
|
||||
uint32_t size;
|
||||
while (true) {
|
||||
size = path.size();
|
||||
if (_NSGetExecutablePath(path.data(), &size) == 0) {
|
||||
break;
|
||||
}
|
||||
path.resize(size);
|
||||
}
|
||||
std::string base_path(path.data(), size);
|
||||
// remove executable name
|
||||
auto last_slash = base_path.find_last_of('/');
|
||||
if (last_slash != std::string::npos) {
|
||||
base_path = base_path.substr(0, last_slash);
|
||||
}
|
||||
return base_path + "/";
|
||||
#elif defined(__linux__) || defined(__FreeBSD__)
|
||||
std::string base_path = ".";
|
||||
std::vector<char> path(1024);
|
||||
while (true) {
|
||||
// get executable path
|
||||
# if defined(__linux__)
|
||||
ssize_t len = readlink("/proc/self/exe", path.data(), path.size());
|
||||
# elif defined(__FreeBSD__)
|
||||
ssize_t len = readlink("/proc/curproc/file", path.data(), path.size());
|
||||
# endif
|
||||
if (len == -1) {
|
||||
break;
|
||||
}
|
||||
if (len < (ssize_t) path.size()) {
|
||||
base_path = std::string(path.data(), len);
|
||||
// remove executable name
|
||||
auto last_slash = base_path.find_last_of('/');
|
||||
if (last_slash != std::string::npos) {
|
||||
base_path = base_path.substr(0, last_slash);
|
||||
}
|
||||
break;
|
||||
}
|
||||
path.resize(path.size() * 2);
|
||||
}
|
||||
|
||||
return base_path + "/";
|
||||
#elif defined(_WIN32)
|
||||
std::vector<wchar_t> path(MAX_PATH);
|
||||
DWORD len = GetModuleFileNameW(NULL, path.data(), path.size());
|
||||
if (len == 0) {
|
||||
return {};
|
||||
}
|
||||
std::wstring base_path(path.data(), len);
|
||||
// remove executable name
|
||||
auto last_slash = base_path.find_last_of('\\');
|
||||
if (last_slash != std::string::npos) {
|
||||
base_path = base_path.substr(0, last_slash);
|
||||
}
|
||||
return base_path + L"\\";
|
||||
#else
|
||||
return {};
|
||||
#endif
|
||||
}
|
||||
|
||||
static fs::path backend_filename_prefix() {
|
||||
#ifdef _WIN32
|
||||
return fs::u8path("ggml-");
|
||||
#else
|
||||
return fs::u8path("libggml-");
|
||||
#endif
|
||||
}
|
||||
|
||||
static fs::path backend_filename_extension() {
|
||||
#ifdef _WIN32
|
||||
return fs::u8path(".dll");
|
||||
#else
|
||||
return fs::u8path(".so");
|
||||
#endif
|
||||
}
|
||||
|
||||
static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent, const char * user_search_path) {
|
||||
// enumerate all the files that match [lib]ggml-name-*.[so|dll] in the search paths
|
||||
const fs::path name_path = fs::u8path(name);
|
||||
const fs::path file_prefix = backend_filename_prefix().native() + name_path.native() + fs::u8path("-").native();
|
||||
const fs::path file_extension = backend_filename_extension();
|
||||
|
||||
std::vector<fs::path> search_paths;
|
||||
if (user_search_path == nullptr) {
|
||||
// default search paths: executable directory, current directory
|
||||
search_paths.push_back(get_executable_path());
|
||||
search_paths.push_back(fs::current_path());
|
||||
} else {
|
||||
search_paths.push_back(fs::u8path(user_search_path));
|
||||
}
|
||||
|
||||
int best_score = 0;
|
||||
fs::path best_path;
|
||||
|
||||
for (const auto & search_path : search_paths) {
|
||||
if (!fs::exists(search_path)) {
|
||||
GGML_LOG_DEBUG("%s: search path %s does not exist\n", __func__, path_str(search_path).c_str());
|
||||
continue;
|
||||
}
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
for (const auto & entry : dir_it) {
|
||||
if (entry.is_regular_file()) {
|
||||
auto filename = entry.path().filename();
|
||||
auto ext = entry.path().extension();
|
||||
if (filename.native().find(file_prefix) == 0 && ext == file_extension) {
|
||||
dl_handle_ptr handle { dl_load_library(entry) };
|
||||
if (!handle && !silent) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(entry.path()).c_str());
|
||||
}
|
||||
if (handle) {
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
if (score_fn) {
|
||||
int s = score_fn();
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: %s score: %d\n", __func__, path_str(entry.path()).c_str(), s);
|
||||
#endif
|
||||
if (s > best_score) {
|
||||
best_score = s;
|
||||
best_path = entry.path();
|
||||
}
|
||||
} else {
|
||||
if (!silent) {
|
||||
GGML_LOG_INFO("%s: failed to find ggml_backend_score in %s\n", __func__, path_str(entry.path()).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (best_score == 0) {
|
||||
// try to load the base backend
|
||||
for (const auto & search_path : search_paths) {
|
||||
fs::path filename = backend_filename_prefix().native() + name_path.native() + backend_filename_extension().native();
|
||||
fs::path path = search_path / filename;
|
||||
if (fs::exists(path)) {
|
||||
return get_reg().load_backend(path, silent);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return get_reg().load_backend(best_path, silent);
|
||||
}
|
||||
|
||||
void ggml_backend_load_all() {
|
||||
ggml_backend_load_all_from_path(nullptr);
|
||||
}
|
||||
|
||||
void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
#ifdef NDEBUG
|
||||
bool silent = true;
|
||||
#else
|
||||
bool silent = false;
|
||||
#endif
|
||||
|
||||
ggml_backend_load_best("blas", silent, dir_path);
|
||||
ggml_backend_load_best("cann", silent, dir_path);
|
||||
ggml_backend_load_best("cuda", silent, dir_path);
|
||||
ggml_backend_load_best("hip", silent, dir_path);
|
||||
ggml_backend_load_best("kompute", silent, dir_path);
|
||||
ggml_backend_load_best("metal", silent, dir_path);
|
||||
ggml_backend_load_best("rpc", silent, dir_path);
|
||||
ggml_backend_load_best("sycl", silent, dir_path);
|
||||
ggml_backend_load_best("vulkan", silent, dir_path);
|
||||
ggml_backend_load_best("opencl", silent, dir_path);
|
||||
ggml_backend_load_best("musa", silent, dir_path);
|
||||
ggml_backend_load_best("cpu", silent, dir_path);
|
||||
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
|
||||
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
|
||||
if (backend_path) {
|
||||
ggml_backend_load(backend_path);
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,87 +0,0 @@
|
||||
if (GGML_STATIC)
|
||||
set(BLA_STATIC ON)
|
||||
endif()
|
||||
#if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22)
|
||||
# set(BLA_SIZEOF_INTEGER 8)
|
||||
#endif()
|
||||
|
||||
set(BLA_VENDOR ${GGML_BLAS_VENDOR})
|
||||
find_package(BLAS)
|
||||
|
||||
if (BLAS_FOUND)
|
||||
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
|
||||
|
||||
ggml_add_backend_library(ggml-blas
|
||||
ggml-blas.cpp
|
||||
)
|
||||
|
||||
if (${GGML_BLAS_VENDOR} MATCHES "Apple")
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
|
||||
add_compile_definitions(GGML_BLAS_USE_ACCELERATE)
|
||||
elseif ("${BLAS_INCLUDE_DIRS}" STREQUAL "")
|
||||
# BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
|
||||
# see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
|
||||
find_package(PkgConfig REQUIRED)
|
||||
if (${GGML_BLAS_VENDOR} MATCHES "Generic")
|
||||
pkg_check_modules(DepBLAS blas)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "OpenBLAS")
|
||||
# As of openblas v0.3.22, the 64-bit is named openblas64.pc
|
||||
pkg_check_modules(DepBLAS openblas64)
|
||||
if (NOT DepBLAS_FOUND)
|
||||
pkg_check_modules(DepBLAS openblas)
|
||||
endif()
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "FLAME")
|
||||
add_compile_definitions(GGML_BLAS_USE_BLIS)
|
||||
pkg_check_modules(DepBLAS blis)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "ATLAS")
|
||||
pkg_check_modules(DepBLAS blas-atlas)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "FlexiBLAS")
|
||||
pkg_check_modules(DepBLAS flexiblas_api)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "Intel")
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
# all Intel* libraries share the same include path
|
||||
pkg_check_modules(DepBLAS mkl-sdl)
|
||||
elseif (${GGML_BLAS_VENDOR} MATCHES "NVHPC")
|
||||
# this doesn't provide pkg-config
|
||||
# suggest to assign BLAS_INCLUDE_DIRS on your own
|
||||
if ("${NVHPC_VERSION}" STREQUAL "")
|
||||
message(WARNING "Better to set NVHPC_VERSION")
|
||||
else()
|
||||
set(DepBLAS_FOUND ON)
|
||||
set(DepBLAS_INCLUDE_DIRS "/opt/nvidia/hpc_sdk/${CMAKE_SYSTEM_NAME}_${CMAKE_SYSTEM_PROCESSOR}/${NVHPC_VERSION}/math_libs/include")
|
||||
endif()
|
||||
endif()
|
||||
if (DepBLAS_FOUND)
|
||||
set(BLAS_INCLUDE_DIRS ${DepBLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(WARNING "BLAS_INCLUDE_DIRS neither been provided nor been automatically"
|
||||
" detected by pkgconfig, trying to find cblas.h from possible paths...")
|
||||
find_path(BLAS_INCLUDE_DIRS
|
||||
NAMES cblas.h
|
||||
HINTS
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
/usr/include/openblas
|
||||
/opt/homebrew/opt/openblas/include
|
||||
/usr/local/opt/openblas/include
|
||||
/usr/include/x86_64-linux-gnu/openblas/include
|
||||
)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}")
|
||||
|
||||
target_compile_options(ggml-blas PRIVATE ${BLAS_LINKER_FLAGS})
|
||||
|
||||
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
endif()
|
||||
|
||||
target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES})
|
||||
target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(ERROR "BLAS not found, please refer to "
|
||||
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
|
||||
" to set correct GGML_BLAS_VENDOR")
|
||||
endif()
|
@ -1,517 +0,0 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-blas.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#include <future>
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
|
||||
#if defined(GGML_BLAS_USE_ACCELERATE)
|
||||
# include <Accelerate/Accelerate.h>
|
||||
#elif defined(GGML_BLAS_USE_MKL)
|
||||
# include <mkl.h>
|
||||
#elif defined(GGML_BLAS_USE_BLIS)
|
||||
# include <blis.h>
|
||||
#elif defined(GGML_BLAS_USE_NVPL)
|
||||
# include <nvpl_blas.h>
|
||||
#else
|
||||
# include <cblas.h>
|
||||
#endif
|
||||
|
||||
struct ggml_backend_blas_context {
|
||||
int n_threads = GGML_DEFAULT_N_THREADS;
|
||||
std::unique_ptr<char[]> work_data;
|
||||
size_t work_size = 0;
|
||||
#ifndef GGML_USE_OPENMP
|
||||
std::vector<std::future<void>> tasks;
|
||||
#endif
|
||||
};
|
||||
|
||||
static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
GGML_ASSERT(ne0 == ne01);
|
||||
GGML_ASSERT(ne1 == ne11);
|
||||
GGML_ASSERT(ne2 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == ggml_type_size(type));
|
||||
GGML_ASSERT(nb10 == ggml_type_size(src1->type));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb0 <= nb1);
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// broadcast factors
|
||||
const int64_t r2 = ne12/ne02;
|
||||
const int64_t r3 = ne13/ne03;
|
||||
|
||||
const int64_t ne_plane = ne01*ne00;
|
||||
const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
|
||||
|
||||
if (ctx->work_size < desired_wsize) {
|
||||
ctx->work_data.reset(new char[desired_wsize]);
|
||||
ctx->work_size = desired_wsize;
|
||||
}
|
||||
void * wdata = ctx->work_data.get();
|
||||
|
||||
// convert src0 to float
|
||||
if (type != GGML_TYPE_F32) {
|
||||
const auto * type_traits = ggml_get_type_traits(type);
|
||||
ggml_to_float_t const to_float = type_traits->to_float;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
|
||||
float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
||||
|
||||
const int min_cols_per_thread = 4096;
|
||||
const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
|
||||
const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
|
||||
|
||||
#ifdef GGML_USE_OPENMP
|
||||
#pragma omp parallel for num_threads(n_threads)
|
||||
for (int64_t i01 = 0; i01 < ne01; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
#else
|
||||
for (int i = 1; i < n_threads; i++) {
|
||||
const int64_t start = i*ne01/n_threads;
|
||||
const int64_t end = (i + 1)*ne01/n_threads;
|
||||
if (start < end) {
|
||||
ctx->tasks.push_back(std::async(std::launch::async, [=]() {
|
||||
for (int64_t i01 = start; i01 < end; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
}));
|
||||
}
|
||||
}
|
||||
{
|
||||
// reuse the current thread for the first task
|
||||
const int64_t start = 0;
|
||||
const int64_t end = ne01/n_threads;
|
||||
for (int64_t i01 = start; i01 < end; i01++) {
|
||||
to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef GGML_USE_OPENMP
|
||||
// wait for all tasks to finish
|
||||
for (auto & task : ctx->tasks) {
|
||||
task.get();
|
||||
}
|
||||
ctx->tasks.clear();
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined(OPENBLAS_VERSION)
|
||||
openblas_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
#if defined(GGML_BLAS_USE_BLIS)
|
||||
bli_thread_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
#if defined(GGML_BLAS_USE_NVPL)
|
||||
nvpl_blas_set_num_threads(ctx->n_threads);
|
||||
#endif
|
||||
|
||||
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||
const int64_t i03 = i13/r3;
|
||||
const int64_t i02 = i12/r2;
|
||||
|
||||
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
|
||||
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
|
||||
if (type != GGML_TYPE_F32) {
|
||||
x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
|
||||
}
|
||||
|
||||
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
|
||||
ne1, ne01, ne10,
|
||||
1.0f, y, ne10,
|
||||
x, ne00,
|
||||
0.0f, d, ne01);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
|
||||
const struct ggml_tensor * src0 = dst->src[0];
|
||||
const struct ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(ne0 == ne00);
|
||||
GGML_ASSERT(ne1 == ne10);
|
||||
GGML_ASSERT(ne2 == ne02);
|
||||
GGML_ASSERT(ne02 == ne12);
|
||||
GGML_ASSERT(ne3 == ne13);
|
||||
GGML_ASSERT(ne03 == ne13);
|
||||
|
||||
// we don't support permuted src0 or src1
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
// GGML_ASSERT(nb0 <= nb1);
|
||||
// GGML_ASSERT(nb1 <= nb2);
|
||||
// GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
|
||||
// src0: (k,n)
|
||||
// src1: (k,m)
|
||||
// dst: (m,n)
|
||||
//
|
||||
// Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
|
||||
// Also expressed as (major,minor)
|
||||
// a: (m,k): so src1 transposed
|
||||
// b: (k,n): so src0
|
||||
// c: (m,n)
|
||||
//
|
||||
// However, if ggml_is_transposed(src1) is true, then
|
||||
// src1->data already contains a transposed version, so sgemm mustn't
|
||||
// transpose it further.
|
||||
|
||||
int n = src0->ne[0];
|
||||
int k = src0->ne[1];
|
||||
int m = src1->ne[0];
|
||||
|
||||
CBLAS_TRANSPOSE transposeA;
|
||||
int lda;
|
||||
|
||||
if (!ggml_is_transposed(src1)) {
|
||||
transposeA = CblasTrans;
|
||||
lda = m;
|
||||
} else {
|
||||
transposeA = CblasNoTrans;
|
||||
lda = k;
|
||||
}
|
||||
|
||||
float * a = (float *) ((char *) src1->data);
|
||||
float * b = (float *) ((char *) src0->data);
|
||||
float * c = (float *) ((char *) dst->data);
|
||||
|
||||
cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
|
||||
|
||||
GGML_UNUSED(ctx);
|
||||
}
|
||||
|
||||
// backend interface
|
||||
|
||||
static const char * ggml_backend_blas_get_name(ggml_backend_t backend) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_free(ggml_backend_t backend) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
delete ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
switch (node->op) {
|
||||
case GGML_OP_MUL_MAT:
|
||||
ggml_backend_blas_mul_mat(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_OUT_PROD:
|
||||
ggml_backend_blas_out_prod(ctx, node);
|
||||
break;
|
||||
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
break;
|
||||
|
||||
default:
|
||||
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
|
||||
}
|
||||
}
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static struct ggml_backend_i blas_backend_i = {
|
||||
/* .get_name = */ ggml_backend_blas_get_name,
|
||||
/* .free = */ ggml_backend_blas_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_blas_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_blas_guid(void) {
|
||||
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_blas_init(void) {
|
||||
ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
|
||||
|
||||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_blas_guid(),
|
||||
/* .interface = */ blas_backend_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_blas_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
#if defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
|
||||
if (openblas_get_parallel() != OPENBLAS_OPENMP) {
|
||||
GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
|
||||
GGML_LOG_DEBUG("%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
|
||||
#endif
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_blas(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_blas(backend_blas));
|
||||
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
// device interface
|
||||
|
||||
static const char * ggml_backend_blas_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_blas_device_get_description(ggml_backend_dev_t dev) {
|
||||
#if defined(GGML_BLAS_USE_ACCELERATE)
|
||||
return "Accelerate";
|
||||
#elif defined(GGML_BLAS_USE_MKL)
|
||||
return "MKL";
|
||||
#elif defined(GGML_BLAS_USE_BLIS)
|
||||
return "BLIS";
|
||||
#elif defined(GGML_BLAS_USE_NVPL)
|
||||
return "NVPL";
|
||||
#elif defined(OPENBLAS_VERSION)
|
||||
return "OpenBLAS";
|
||||
#else
|
||||
return "BLAS";
|
||||
#endif
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_blas_device_get_type(ggml_backend_dev_t dev) {
|
||||
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_blas_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_blas_device_get_name(dev);
|
||||
props->description = ggml_backend_blas_device_get_description(dev);
|
||||
props->type = ggml_backend_blas_device_get_type(dev);
|
||||
ggml_backend_blas_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_blas_device_init_backend(ggml_backend_dev_t dev, const char * params) {
|
||||
return ggml_backend_blas_init();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_blas_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
return ggml_backend_cpu_buffer_type();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_blas_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(max_tensor_size);
|
||||
}
|
||||
|
||||
static bool ggml_backend_blas_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
return true;
|
||||
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
// BLAS usually is only faster for large matrices
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
|
||||
const int64_t ne0 = op->ne[0];
|
||||
const int64_t ne1 = op->ne[1];
|
||||
|
||||
// TODO: find the optimal value
|
||||
const int64_t min_batch = 32;
|
||||
|
||||
return ggml_is_contiguous(src0) &&
|
||||
ggml_is_contiguous(src1) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
(ne0 >= min_batch && ne1 >= min_batch && ne10 >= min_batch) &&
|
||||
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
|
||||
}
|
||||
|
||||
case GGML_OP_OUT_PROD:
|
||||
return op->src[0]->type == GGML_TYPE_F32 &&
|
||||
op->src[1]->type == GGML_TYPE_F32 &&
|
||||
ggml_is_matrix(src0) &&
|
||||
ggml_is_matrix(src1) &&
|
||||
ggml_is_contiguous(src0) &&
|
||||
(ggml_is_contiguous(src1) || ggml_is_transposed(src1)) &&
|
||||
(src0->type == GGML_TYPE_F32 || ggml_get_type_traits(src0->type)->to_float != NULL);
|
||||
|
||||
default:
|
||||
return false;
|
||||
|
||||
}
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static bool ggml_backend_blas_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_device_i ggml_backend_blas_device_i = {
|
||||
/* .get_name = */ ggml_backend_blas_device_get_name,
|
||||
/* .get_description = */ ggml_backend_blas_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_blas_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_blas_device_get_type,
|
||||
/* .get_props = */ ggml_backend_blas_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_blas_device_init_backend,
|
||||
/* .get_buffer_type = */ ggml_backend_blas_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ ggml_backend_blas_device_buffer_from_host_ptr,
|
||||
/* .supports_op = */ ggml_backend_blas_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_blas_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
// backend reg interface
|
||||
|
||||
static const char * ggml_backend_blas_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_blas_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_blas_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
static ggml_backend_device ggml_backend_blas_device = {
|
||||
/* .iface = */ ggml_backend_blas_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
return &ggml_backend_blas_device;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(index);
|
||||
}
|
||||
|
||||
static void * ggml_backend_blas_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (std::strcmp(name, "ggml_backend_set_n_threads") == 0) {
|
||||
return (void *)ggml_backend_blas_set_n_threads;
|
||||
}
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(name);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_reg_i ggml_backend_blas_reg_i = {
|
||||
/* .get_name = */ ggml_backend_blas_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_blas_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_blas_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_blas_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_blas_reg(void) {
|
||||
static struct ggml_backend_reg ggml_backend_blas_reg = {
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_blas_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_blas_reg;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_blas_reg)
|
@ -1,74 +0,0 @@
|
||||
if ("cann${CANN_INSTALL_DIR}" STREQUAL "cann" AND DEFINED ENV{ASCEND_TOOLKIT_HOME})
|
||||
set(CANN_INSTALL_DIR $ENV{ASCEND_TOOLKIT_HOME})
|
||||
message(STATUS "CANN: updated CANN_INSTALL_DIR from ASCEND_TOOLKIT_HOME=$ENV{ASCEND_TOOLKIT_HOME}")
|
||||
endif()
|
||||
|
||||
# Auto-detech Soc type and Soc version, if detect failed, will abort build
|
||||
set(SOC_VERSION "")
|
||||
function(detect_ascend_soc_type SOC_VERSION)
|
||||
execute_process(
|
||||
COMMAND bash -c "npu-smi info|awk -F' ' 'NF > 0 && NR==7 {print $3}'"
|
||||
OUTPUT_VARIABLE npu_info
|
||||
RESULT_VARIABLE npu_result
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
if("${npu_info}" STREQUAL "" OR ${npu_result})
|
||||
message(FATAL_ERROR "Auto-detech ascend soc type failed, please specify manually or check ascend device working normally.")
|
||||
endif()
|
||||
set(${SOC_VERSION} "Ascend${npu_info}" PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
if(NOT SOC_TYPE)
|
||||
detect_ascend_soc_type(SOC_VERSION)
|
||||
set(SOC_TYPE "${SOC_VERSION}")
|
||||
message(STATUS "CANN: SOC_VERSION auto-detected is:${SOC_VERSION}")
|
||||
endif()
|
||||
|
||||
string(TOLOWER ${SOC_TYPE} SOC_VERSION) # SOC_VERSION need lower
|
||||
|
||||
# Construct Soc specify compile option: ASCEND_#Soc_Major_SN. Such as ASCEND_910B, ASCEND_310P.
|
||||
string(REGEX MATCH "[0-9]+[a-zA-Z]" SOC_TYPE_MAJOR_SN "${SOC_VERSION}")
|
||||
set(SOC_TYPE_COMPILE_OPTION "ASCEND_${SOC_TYPE_MAJOR_SN}")
|
||||
string(TOUPPER ${SOC_TYPE_COMPILE_OPTION} SOC_TYPE_COMPILE_OPTION)
|
||||
|
||||
if (CANN_INSTALL_DIR)
|
||||
# Only Support Linux.
|
||||
if (NOT UNIX)
|
||||
message(FATAL_ERROR "CANN: CANN toolkit supports unix but not ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
|
||||
# Supported platforms: x86-64, arm64
|
||||
if (CMAKE_SYSTEM_PROCESSOR STREQUAL "aarch64")
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64" OR CMAKE_SYSTEM_PROCESSOR STREQUAL "amd64")
|
||||
else()
|
||||
message(FATAL_ERROR "CANN: CANN toolkit supports x86-64 and arm64 but not ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
endif()
|
||||
|
||||
# Set header and libs
|
||||
set(CANN_INCLUDE_DIRS
|
||||
${CANN_INSTALL_DIR}/include
|
||||
${CANN_INSTALL_DIR}/include/aclnn
|
||||
${CANN_INSTALL_DIR}/acllib/include
|
||||
)
|
||||
|
||||
list(APPEND CANN_LIBRARIES
|
||||
ascendcl
|
||||
nnopbase
|
||||
opapi
|
||||
acl_op_compiler
|
||||
)
|
||||
|
||||
file(GLOB GGML_SOURCES_CANN "*.cpp")
|
||||
|
||||
ggml_add_backend_library(ggml-cann ${GGML_SOURCES_CANN})
|
||||
target_link_libraries(ggml-cann PRIVATE ${CANN_LIBRARIES})
|
||||
target_include_directories(ggml-cann PRIVATE ${CANN_INCLUDE_DIRS})
|
||||
target_link_directories(ggml-cann PRIVATE ${CANN_INSTALL_DIR}/lib64)
|
||||
|
||||
target_compile_definitions(ggml-cann PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
|
||||
|
||||
message(STATUS "CANN: CANN_INCLUDE_DIRS = ${CANN_INCLUDE_DIRS}")
|
||||
message(STATUS "CANN: CANN_LIBRARIES = ${CANN_LIBRARIES}")
|
||||
else()
|
||||
message(FATAL_ERROR "CANN: Can't find CANN_INSTALL_DIR, did you forget to source set_var.sh?")
|
||||
endif()
|
File diff suppressed because it is too large
Load Diff
@ -1,175 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "acl_tensor.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
|
||||
aclDataType ggml_cann_type_mapping(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
return ACL_FLOAT;
|
||||
case GGML_TYPE_F16:
|
||||
return ACL_FLOAT16;
|
||||
case GGML_TYPE_I8:
|
||||
return ACL_INT8;
|
||||
case GGML_TYPE_I16:
|
||||
return ACL_INT16;
|
||||
case GGML_TYPE_I32:
|
||||
return ACL_INT32;
|
||||
case GGML_TYPE_Q4_0:
|
||||
return ACL_INT4;
|
||||
case GGML_TYPE_Q8_0:
|
||||
return ACL_INT8;
|
||||
default:
|
||||
return ACL_DT_UNDEFINED;
|
||||
}
|
||||
return ACL_DT_UNDEFINED;
|
||||
}
|
||||
|
||||
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
size_t* nb, int64_t dims, aclFormat format,
|
||||
size_t offset) {
|
||||
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
|
||||
// added.
|
||||
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
int64_t acl_storage_len = 0;
|
||||
if (ne == nullptr) {
|
||||
acl_storage_len = ggml_nbytes(tensor);
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
acl_ne[i] = tensor->ne[i];
|
||||
// The step size of acl is in elements.
|
||||
acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
|
||||
}
|
||||
} else {
|
||||
// With bcast
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_storage_len += (ne[i] - 1) * nb[i];
|
||||
acl_ne[i] = ne[i];
|
||||
acl_stride[i] = nb[i] / ggml_element_size(tensor);
|
||||
}
|
||||
}
|
||||
|
||||
// Reverse ne and stride.
|
||||
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
|
||||
std::reverse(acl_ne, acl_ne + final_dims);
|
||||
std::reverse(acl_stride, acl_stride + final_dims);
|
||||
|
||||
aclTensor* acl_tensor = aclCreateTensor(
|
||||
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
|
||||
offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
|
||||
tensor->data);
|
||||
|
||||
return acl_tensor;
|
||||
}
|
||||
|
||||
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
|
||||
const ggml_tensor* src1,
|
||||
int64_t* bcast_src0_ne,
|
||||
int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
|
||||
size_t* bcast_src1_nb) {
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0));
|
||||
int bcast_dim_cnt = 0;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
int64_t nr = src0->ne[i] / src1->ne[i];
|
||||
bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
|
||||
bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
|
||||
bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
|
||||
bcast_src1_nb[bcast_dim_cnt] = src1->nb[i];
|
||||
bcast_dim_cnt++;
|
||||
if (nr != 1) {
|
||||
// Need to add an extra dim.
|
||||
bcast_src0_ne[bcast_dim_cnt] = nr;
|
||||
bcast_src1_ne[bcast_dim_cnt] = 1;
|
||||
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
|
||||
bcast_src0_ne[bcast_dim_cnt - 1];
|
||||
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
|
||||
bcast_src1_ne[bcast_dim_cnt - 1];
|
||||
bcast_dim_cnt++;
|
||||
}
|
||||
}
|
||||
return bcast_dim_cnt;
|
||||
}
|
||||
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(
|
||||
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
|
||||
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
|
||||
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
|
||||
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
|
||||
// input and dst shoule in same shape, except first two dims.
|
||||
GGML_ASSERT(input_ne[2] == dst_ne[2]);
|
||||
GGML_ASSERT(input_ne[3] == dst_ne[3]);
|
||||
|
||||
int bcast_dim_cnt = 0;
|
||||
|
||||
// For mul_mat, a dimension needs to be added before the dimension that
|
||||
// weight needs to be expanded to satisfy the bcast rule of matrix
|
||||
// multiplication.
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
int64_t nr = input_ne[i] / weight_ne[i];
|
||||
// Do not use bcast in the first two dimensions because we only support
|
||||
// the bcast batch dimension. Just copy them.
|
||||
if (i < 2 || nr == 1) {
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
|
||||
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
|
||||
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_dim_cnt++;
|
||||
} else {
|
||||
// Need to add an extra dim.
|
||||
bcast_input_ne[bcast_dim_cnt] = nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = nr;
|
||||
bcast_weight_ne[bcast_dim_cnt] = 1;
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
||||
bcast_dim_cnt++;
|
||||
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
|
||||
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
||||
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
|
||||
bcast_input_ne[bcast_dim_cnt - 1];
|
||||
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
|
||||
bcast_dst_ne[bcast_dim_cnt - 1];
|
||||
bcast_weight_nb[bcast_dim_cnt] =
|
||||
bcast_weight_nb[bcast_dim_cnt - 1] *
|
||||
bcast_weight_ne[bcast_dim_cnt - 1];
|
||||
bcast_dim_cnt++;
|
||||
}
|
||||
}
|
||||
return bcast_dim_cnt;
|
||||
}
|
@ -1,258 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef CANN_ACL_TENSOR_H
|
||||
#define CANN_ACL_TENSOR_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
|
||||
#include <aclnn/aclnn_base.h>
|
||||
#include "common.h"
|
||||
|
||||
/**
|
||||
* @brief Maps a ggml_type to its corresponding aclDataType.
|
||||
*
|
||||
* @details This function takes a ggml_type as input and returns the corresponding
|
||||
* aclDataType. It supports mapping for various ggml_types. If the input type
|
||||
* does not match any of the predefined ggml_types, the function returns
|
||||
* ACL_DT_UNDEFINED.
|
||||
*
|
||||
* @param type The ggml_type to be mapped.
|
||||
* @return The corresponding aclDataType. If the input type is not recognized,
|
||||
* ACL_DT_UNDEFINED is returned.
|
||||
*/
|
||||
aclDataType ggml_cann_type_mapping(ggml_type type);
|
||||
|
||||
/**
|
||||
* @brief Creates an ACL tensor from a ggml_tensor with optional shape.
|
||||
*
|
||||
* @details This function creates an ACL tensor based on the properties of the
|
||||
* provided ggml_tensor. It supports customer shape by adjusting dimensions
|
||||
* and strides accordingly. If customer shape is applied, additional
|
||||
* dimensions and strides are calculated based on the provided parameters.
|
||||
*
|
||||
* @param tensor Pointer to the ggml_tensor to be converted to ACL tensor.
|
||||
* @param ne Pointer to an array containing dimensions. Defaults to nullptr
|
||||
* if no customer shape is applied.
|
||||
* @param nb Pointer to an array containing strides. Defaults to nullptr
|
||||
* if no customer shape is applied.
|
||||
* @param dims Number of dimensions in the tensor. Defaults to 0 if no customer
|
||||
* shape is applied.
|
||||
* @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
|
||||
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
|
||||
* @return Pointer to the created ACL tensor.
|
||||
*/
|
||||
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = nullptr,
|
||||
size_t* nb = nullptr, int64_t dims = 0,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0);
|
||||
|
||||
/**
|
||||
* @brief Template for creating an ACL tensor from provided parameters. typename TYPE
|
||||
* should be size_t or float.
|
||||
*
|
||||
* @details This function creates an ACL tensor using the provided data pointer,
|
||||
* data type, dimensions, strides, format, offset, and additional parameters.
|
||||
* It calculates necessary dimensions and strides based on the provided ne and nb
|
||||
* arrays, adjusting them for the ACL tensor creation. The ACL storage length
|
||||
* is also calculated based on the provided dimensions and strides.
|
||||
*
|
||||
* @param data_ptr Pointer to the data buffer for the ACL tensor.
|
||||
* @param dtype ACL data type of the tensor.
|
||||
* @param type_size Size of each element in the tensor data buffer.
|
||||
* @param ne Pointer to an array containing tensor dimensions.
|
||||
* @param nb Pointer to an array containing tensor strides.
|
||||
* @param dims Number of dimensions of the tensor.
|
||||
* @param format ACL tensor format. Defaults to ACL_FORMAT_ND.
|
||||
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
|
||||
* @return Pointer to the created ACL tensor.
|
||||
*/
|
||||
template<typename TYPE>
|
||||
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
TYPE type_size, int64_t* ne, TYPE* nb,
|
||||
int64_t dims,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0) {
|
||||
int64_t tmp_ne[GGML_MAX_DIMS * 2];
|
||||
int64_t tmp_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
memcpy(tmp_ne, ne, dims * sizeof(int64_t));
|
||||
for (int i = 0; i < dims; i++) {
|
||||
tmp_stride[i] = nb[i] / type_size;
|
||||
}
|
||||
|
||||
std::reverse(tmp_ne, tmp_ne + dims);
|
||||
std::reverse(tmp_stride, tmp_stride + dims);
|
||||
|
||||
int64_t acl_storage_len = 0;
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_storage_len += (ne[i] - 1) * nb[i];
|
||||
}
|
||||
|
||||
aclTensor* acl_tensor =
|
||||
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
|
||||
format, &acl_storage_len, 1, data_ptr);
|
||||
|
||||
return acl_tensor;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks if tensors require broadcasting based on their shapes.
|
||||
*
|
||||
* @details This function determines if two ggml_tensors need to be broadcasted for
|
||||
* element-wise operations. Broadcasting is necessary if the shapes of the
|
||||
* tensors are not identical and no dimension in either tensor equals 1.
|
||||
*
|
||||
* @param t0 Pointer to the first ggml_tensor.
|
||||
* @param t1 Pointer to the second ggml_tensor.
|
||||
* @return True if broadcasting is needed, False otherwise.
|
||||
*
|
||||
* @remarks This function iterates over the dimensions of t0 and t1. It checks if each
|
||||
* dimension in t1 differs from t0's corresponding dimension and is not equal
|
||||
* to 1. If such a dimension is found, broadcasting is required to align t1
|
||||
* with t0 for element-wise operations.
|
||||
*/
|
||||
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
|
||||
|
||||
/**
|
||||
* @brief Computes broadcast shapes and strides for two ggml_tensors.
|
||||
*
|
||||
* @details This function calculates the broadcast shapes and strides for two ggml_tensors,
|
||||
* following the broadcasting rules similar to numpy. It adjusts dimensions and
|
||||
* strides to ensure compatibility for element-wise operations where one tensor
|
||||
* can be broadcasted to match the shape of another tensor.
|
||||
*
|
||||
* @param src0 Pointer to the first ggml_tensor.
|
||||
* @param src1 Pointer to the second ggml_tensor.
|
||||
* @param bcast_ne_src0 Output array to store broadcasted dimensions for src0.
|
||||
* @param bcast_ne_src1 Output array to store broadcasted dimensions for src1.
|
||||
* @param bcast_nb_src0 Output array to store broadcasted strides for src0.
|
||||
* @param bcast_nb_src1 Output array to store broadcasted strides for src1.
|
||||
* @return Number of dimensions in the broadcasted shape.
|
||||
*
|
||||
* @pre ggml_can_repeat(src1, src0) must return true, indicating src1 can be broadcasted
|
||||
* to match src0.
|
||||
*
|
||||
* @remarks This function iterates over the dimensions of src0 and src1, calculating the
|
||||
* necessary broadcast dimensions and strides. If a dimension requires broadcasting
|
||||
* (i.e., its size in src1 is smaller than in src0), an additional dimension is
|
||||
* added with size calculated to match src0's dimension. This adjustment ensures
|
||||
* that src1 can be element-wise broadcasted to src0's shape.
|
||||
*
|
||||
* How it works:
|
||||
*
|
||||
* if dim0 has padding.
|
||||
* a -> (2, 2) padding = 2
|
||||
* a: [[1, 2, *, *]
|
||||
* [2, 3, *, *]]
|
||||
* nb = (8, 4, 2)
|
||||
*
|
||||
* if a should bcast with b -> (2, 4)
|
||||
* b' -> (2, 2, 2)
|
||||
* b : [[1, 2, 3, 4, *, *]
|
||||
* [5, 6, 7, 8, *, *]]
|
||||
* nb = (12, 6, 1)
|
||||
*
|
||||
* after bcast:
|
||||
* a' -> (2, 1, 2)
|
||||
* a': [[[1, 2], *, *]
|
||||
* [[2, 3], *, *]]
|
||||
* nb = (8, 4, 2, 1)
|
||||
*
|
||||
* b' : [[[1, 2], [3, 4], *, *]
|
||||
* [[5, 6], [7, 8], *, *]]
|
||||
* nb = (12, 6, 2, 1)
|
||||
* \endcode
|
||||
*
|
||||
* dim1 in a inserted dim, should add nb for dim1,
|
||||
* and all other nb moves to next in order.
|
||||
*/
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
int64_t* bcast_ne_src0, int64_t* bcast_ne_src1,
|
||||
size_t* bcast_nb_src0, size_t* bcast_nb_src1);
|
||||
|
||||
// Bcast macro to avoid duplicate code.
|
||||
#define BCAST_SHAPE(src0, src1) \
|
||||
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_bcast_shape( \
|
||||
src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, bcast_##src0##_nb, \
|
||||
bcast_##src1##_nb);
|
||||
|
||||
#define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
|
||||
|
||||
/**
|
||||
* @brief Calculates broadcast shapes for matrix multiplication.
|
||||
*
|
||||
* @details This function computes the broadcast shapes required for matrix multiplication
|
||||
* based on the input, weight, and destination tensor shapes. It ensures that the
|
||||
* dimensions of weight tensors are expanded appropriately to satisfy matrix
|
||||
* multiplication broadcast rules.
|
||||
*
|
||||
* @param input_ne Array containing the dimensions of the input tensor.
|
||||
* @param weight_ne Array containing the dimensions of the weight tensor.
|
||||
* @param dst_ne Array containing the dimensions of the destination tensor.
|
||||
* @param input_nb Array containing the strides of the input tensor.
|
||||
* @param weight_nb Array containing the strides of the weight tensor.
|
||||
* @param dst_nb Array containing the strides of the destination tensor.
|
||||
* @param bcast_input_ne Output array for broadcasted input tensor dimensions.
|
||||
* @param bcast_weight_ne Output array for broadcasted weight tensor dimensions.
|
||||
* @param bcast_dst_ne Output array for broadcasted destination tensor dimensions.
|
||||
* @param bcast_input_nb Output array for broadcasted input tensor strides.
|
||||
* @param bcast_weight_nb Output array for broadcasted weight tensor strides.
|
||||
* @param bcast_dst_nb Output array for broadcasted destination tensor strides.
|
||||
* @return The number of dimensions in the broadcasted tensors.
|
||||
*
|
||||
* @remarks This function iterates over the tensor dimensions and calculates the broadcast
|
||||
* shapes needed for matrix multiplication. It ensures that dimensions where
|
||||
* weight tensor requires expansion are appropriately handled to conform with
|
||||
* broadcasting rules.
|
||||
* @note compare with ggml_cann_get_bcast_shape, mul_mat broadcast need add this new dim
|
||||
* before cast dim.
|
||||
* @sa ggml_cann_get_bcast_shape
|
||||
*/
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(
|
||||
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
|
||||
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
|
||||
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
|
||||
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb);
|
||||
|
||||
// Bcast macro to avoid duplicate code.
|
||||
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
|
||||
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
|
||||
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, \
|
||||
bcast_##input##_ne, bcast_##weight##_ne, bcast_##dst##_ne, \
|
||||
bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
|
||||
|
||||
#define BCAST_MUL_MAT_PARAM(tensor) \
|
||||
bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
|
||||
|
||||
#endif // CANN_ACL_TENSOR_H
|
File diff suppressed because it is too large
Load Diff
@ -1,592 +0,0 @@
|
||||
#ifndef CANN_ACLNN_OPS
|
||||
#define CANN_ACLNN_OPS
|
||||
|
||||
/**
|
||||
* @file acl_tensor
|
||||
* @brief This file contains related functions of ggml_tensor and acl_tensor.
|
||||
* Contains conversion from ggml_tensor to acl_tensor, broadcast and other
|
||||
* functions.
|
||||
* @author hipudding <huafengchun@gmail.com>
|
||||
* @author wangshuai09 <391746016@qq.com>
|
||||
* @date July 15, 2024
|
||||
*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <aclnnop/aclnn_add.h>
|
||||
#include <aclnnop/aclnn_arange.h>
|
||||
#include <aclnnop/aclnn_argsort.h>
|
||||
#include <aclnnop/aclnn_cat.h>
|
||||
#include <aclnnop/aclnn_clamp.h>
|
||||
#include <aclnnop/aclnn_div.h>
|
||||
#include <aclnnop/aclnn_gelu.h>
|
||||
#include <aclnnop/aclnn_hardsigmoid.h>
|
||||
#include <aclnnop/aclnn_hardswish.h>
|
||||
#include <aclnnop/aclnn_leaky_relu.h>
|
||||
#include <aclnnop/aclnn_mul.h>
|
||||
#include <aclnnop/aclnn_relu.h>
|
||||
#include <aclnnop/aclnn_silu.h>
|
||||
#include <aclnnop/aclnn_tanh.h>
|
||||
#include "acl_tensor.h"
|
||||
#include "common.h"
|
||||
|
||||
/**
|
||||
* @brief Repeats a ggml tensor along each dimension to match the dimensions
|
||||
* of another tensor.
|
||||
*
|
||||
* @details This function repeats the elements of a source ggml tensor along
|
||||
* each dimension to create a destination tensor with the specified
|
||||
* dimensions. The operation is performed using the ACL backend and
|
||||
* executed asynchronously on the device.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The ggml tensor representing the destination, which op is
|
||||
* GGML_OP_REPEAT and specifies the desired dimensions.
|
||||
*/
|
||||
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Adds two ggml tensors using the CANN backend.
|
||||
*
|
||||
* @details This function performs an element-wise addition of two tensors. In
|
||||
* case the tensors do not have the same shape, one or both tensors
|
||||
* will be broadcasted to match the shape of the other before the
|
||||
* addition is performed.The formula for the operation is given by:
|
||||
* \f[
|
||||
* \text{dst} = \text{acl_src0} + \alpha \cdot \text{acl_src1}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The ggml tensor representing the destination, result of the
|
||||
* addition is stored at dst->data, and dst->op is `GGML_OP_ADD`
|
||||
*/
|
||||
void ggml_cann_add(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN
|
||||
* backend.
|
||||
*
|
||||
* @details This function computes the Leaky ReLU activation for each element of
|
||||
* the input tensor. The Leaky ReLU function allows a small gradient
|
||||
* when the unit is not active (i.e., when the input is negative). The
|
||||
* Leaky ReLU function is defined as:
|
||||
* \f[
|
||||
* \text{dst} = \max(0, src) + \text{negativeSlope} \cdot \min(0,
|
||||
* src)
|
||||
* \f]
|
||||
* `negativeSlope` is in dst->params.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the result of the Leaky ReLU
|
||||
* activation is stored, which op is `GGML_OP_LEAKY_RELU`
|
||||
*/
|
||||
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Concatenates multiple tensors along a specified dimension using the
|
||||
* CANN backend.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param tensorList A pointer to the list of tensors to be concatenated.
|
||||
* @param dst The destination tensor where the result of the
|
||||
* concatenation is stored. dst->op is `GGML_OP_CONCAT`.
|
||||
* @param concat_dim The dimension along which the tensors are concatenated.
|
||||
*
|
||||
* @attention tensorList length should be 2 and the dimension using for concat
|
||||
* default to 1.
|
||||
*/
|
||||
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Generates a sequence of evenly spaced values within a specified
|
||||
* interval for a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function creates a sequence of numbers over a specified i
|
||||
* nterval, starting from `start`, ending before `stop`, and
|
||||
* incrementing by `step`. The sequence is stored in the destination
|
||||
* tensor `dst`.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the generated sequence will be stored.
|
||||
* `start`, 'stop' and 'step' are in dst->op_params and dst->op is
|
||||
* `GGML_OP_ARANGE`.
|
||||
*/
|
||||
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the square of the elements of a ggml tensor using the CANN
|
||||
* backend.
|
||||
* @details The function sets the second source tensor of the destination
|
||||
* tensor `dst` to be equal to the first source tensor. This is
|
||||
* effectively squaring the elements since the multiplication becomes
|
||||
* `element * element`.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the squared values will be stored,
|
||||
* which dst->op is `GGML_OP_SQR`.
|
||||
*/
|
||||
void ggml_cann_sqr(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a clamp operation to the elements of a ggml tensor using the
|
||||
* CANN backend.
|
||||
*
|
||||
* @details This function clamps the elements of the input tensor `src` to a
|
||||
* specified range defined by `min` and `max` values. The result is
|
||||
* stored in the destination tensor `dst`. The operation is defined as:
|
||||
* \f[
|
||||
* y = \max(\min(x, max\_value), min\_value)
|
||||
* \f]
|
||||
* where `x` is an element of the input tensor, and `y` is the
|
||||
* corresponding element in the output tensor.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the clamped values will be stored.
|
||||
* dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params.
|
||||
*/
|
||||
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Scales the elements of a ggml tensor by a constant factor using the
|
||||
* CANN backend.
|
||||
*
|
||||
* @details This function multiplies each element of the input tensor `src` by
|
||||
* a scaling factor `scale`, storing the result in the destination
|
||||
* tensor `dst`. The operation is defined as:
|
||||
* \f[
|
||||
* dst = src \times scale
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the scaled values will be stored.
|
||||
* dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params.
|
||||
*/
|
||||
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Sorts the elements of a ggml tensor and returns the indices that
|
||||
* would sort the tensor using the CANN backend.
|
||||
*
|
||||
* @details This function performs an argsort operation on the input tensor
|
||||
* `src`. It sorts the elements of `src` in either ascending or
|
||||
* descending order, depending on the `GGML_SORT_ORDER_DESC`,
|
||||
* and returns the indices that would sort the original tensor.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the sorted indices will be stored.
|
||||
* dst->op is `GGML_OP_ARGSORT`.
|
||||
*/
|
||||
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Layer Normalization for a ggml tensor using the CANN
|
||||
* backend.
|
||||
*
|
||||
* @details This function applies the Layer Normalization operation on the
|
||||
* input tensor `src` and stores the result in the destination tensor
|
||||
* `dst`. Layer Normalization normalizes the features at each sample in
|
||||
* a mini-batch independently. It is commonly used in neural networks
|
||||
* to normalize the activations of a layer by adjusting and scaling
|
||||
* the outputs.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}}
|
||||
* \f]
|
||||
* `Var` defaults dst->ne[0]. `eps` is in dst->params.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the normalized values will be stored.
|
||||
* @attention `Var` defaults to dst->ne[0].
|
||||
*/
|
||||
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Group Normalization for a ggml tensor using the CANN
|
||||
* backend.
|
||||
*
|
||||
* @brief This function applies the Group Normalization operation on the input
|
||||
* tensor `src` and stores the result in the destination tensor `dst`.
|
||||
* Group Normalization divides the channels into groups and normalizes
|
||||
* the features within each group across spatial locations.
|
||||
* It is commonly used in convolutional neural networks to improve
|
||||
* training stability and performance.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text { out }=\frac{x-\mathrm{E}[x]}{\sqrt{\text{Var}[x]+eps}}
|
||||
* \f]
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the normalized values will be stored.
|
||||
* `n_groups` is in dst->params, which split C channel to `n_groups`.
|
||||
* dst->op is `GGML_OP_GROUP_NORM`.
|
||||
*
|
||||
* @attention eps defaults to 1e-6f.
|
||||
*/
|
||||
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the accumulation of tensors using the CANN backend.
|
||||
*
|
||||
* @details This function performs an accumulation operation on two tensors.
|
||||
* Depending on the `inplace` flag, it either updates the destination
|
||||
* tensor `dst` in place by adding `alpha * src1` to it, or it creates
|
||||
* a new tensor as the result of `src0 + alpha * src1` and stores it in
|
||||
* `dst`.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* dst = src0 + alpha \times src1
|
||||
* \f]
|
||||
* if `inplace` is `true`, `src0` is equal to 'dst'.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the accumulated values will be stored.
|
||||
* `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`.
|
||||
*/
|
||||
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the sum of elements along the last dimension of a ggml tensor
|
||||
* using the CANN backend.
|
||||
*
|
||||
* @details This function performs a reduction sum operation along the last
|
||||
* dimension of the input tensor `src`. The result of the sum is stored
|
||||
* in the destination tensor `dst`.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the reduced values will be stored。
|
||||
* dst->op is `GGML_OP_SUM_ROWS`.
|
||||
*
|
||||
* @attention `reduce_dims` defaults to 3, which means the last dimension.
|
||||
*/
|
||||
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using
|
||||
* the CANN backend.
|
||||
*
|
||||
* @details This function performs upsampling of the input tensor `src` using
|
||||
* nearest neighbor interpolation. The upsampling is applied to the
|
||||
* height and width dimensions (last two dimensions) of the tensor. The
|
||||
* result is stored in the destination tensor `dst`, which must have
|
||||
* the appropriate dimensions for the upsampled output.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the upsampled values will be stored.
|
||||
* dst->op is `GGML_OP_UPSCALE`.
|
||||
*/
|
||||
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
|
||||
ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Pads a ggml tensor to match the dimensions of the destination tensor
|
||||
* using the CANN backend.
|
||||
*
|
||||
* @details This function pads the input tensor `src` so that it matches the
|
||||
* dimensions of the destination tensor `dst`. The amount of padding
|
||||
* is calculated based on the difference in sizes between `src` and
|
||||
* `dst` along each dimension. The padded tensor is stored in `dst`.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor, which specifies the target dimensions for
|
||||
* padding. dst->op is `GGML_OP_PAD`.
|
||||
*/
|
||||
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Executes a 2D pooling operation on a ggml tensor using the CANN
|
||||
* backend.
|
||||
*
|
||||
* @details This function dispatches the execution of a 2D pooling operation on
|
||||
* the input tensor `dst`. The type of pooling (average or max) is
|
||||
* determined by the `op` parameter, which is read from the operation
|
||||
* parameters of `dst`. The function supports average pooling
|
||||
* (`GGML_OP_POOL_AVG`) and max pooling (`GGML_OP_POOL_MAX`). If an
|
||||
* invalid operation is encountered, the function asserts a failure.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor on which the pooling operation is to be
|
||||
* performed. dst->op is `GGML_OP_POOL_2D`.
|
||||
*/
|
||||
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Duplicates a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function duplicates the contents of the source tensor `src` to
|
||||
* the destination tensor `dst`. The function supports various tensor
|
||||
* types and configurations, including handling of extra data, type
|
||||
* conversions, and special cases for contiguous and non-contiguous
|
||||
* tensors.
|
||||
*
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the duplicated data will be stored.
|
||||
* dst->op is `GGML_OP_DUP`
|
||||
*
|
||||
* @attention Only support Fp16/FP32. Not support when src and dst have
|
||||
* different shape and dst is no-contiguous.
|
||||
* @note: This func need to simplify.
|
||||
*/
|
||||
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor
|
||||
* using the CANN backend.
|
||||
*
|
||||
* @details This function applies RMS normalization to the input tensor `src`
|
||||
* and stores the result in the destination tensor `dst`. RMS
|
||||
* normalization involves computing the root mean square of the input
|
||||
* tensor along a specified dimension and then dividing each element of
|
||||
* the tensor by this value, adjusted by a small epsilon value to
|
||||
* prevent division by zero.
|
||||
* The operation is defined as:
|
||||
* \f[
|
||||
* \text{RmsNorm}\left(x_i\right)=\frac{x_i}{\text{Rms}(\mathbf{x})} g_i,
|
||||
* \quad \text { where } \text{Rms}(\mathbf{x})=\sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2+e p s}
|
||||
* \f]
|
||||
* `eps` is in dst->op_params.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the normalized values will be stored.
|
||||
* dst->op is `GGML_OP_RMS_NORM`.
|
||||
*/
|
||||
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a diagonal mask to the tensor with a specified value.
|
||||
*
|
||||
* @details This function creates a mask tensor filled with ones, then applies
|
||||
* an upper triangular and lower triangular operation to it based on
|
||||
* the number of past elements specified. Afterward, it adds the masked
|
||||
* tensor to the destination tensor in-place.
|
||||
*
|
||||
* @param ctx The backend CANN context used for operations.
|
||||
* @param dst The destination tensor where the result will be stored. dst->op is
|
||||
* `GGML_OP_DIAG_MASK`
|
||||
* @param value The value to use for masking.
|
||||
*/
|
||||
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value);
|
||||
|
||||
/**
|
||||
* @brief Performs an image-to-column transformation on the input tensor.
|
||||
*
|
||||
* @details This function takes an input tensor and applies an image-to-column
|
||||
* operation, converting spatial dimensions into column-like
|
||||
* structures suitable for convolutional operations. It supports both
|
||||
* half-precision (F16) and single-precision (F32) floating-point data
|
||||
* types.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor that stores the result of the operation.
|
||||
* dst->op is `GGML_OP_IM2COL`.
|
||||
*/
|
||||
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes time step embeddings using sine and cosine functions.
|
||||
*
|
||||
* @details This function calculates time step embeddings by applying sine and
|
||||
* cosine transformations to a given input tensor, which is typically
|
||||
* used in temporal models like diffusion models or transformers to
|
||||
* encode time information effectively.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the result of the embedding operation
|
||||
* will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`.
|
||||
*/
|
||||
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
// @see ggml_cann_dup.
|
||||
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the softmax activation with optional masking.
|
||||
*
|
||||
* @details This function computes the softmax activation over the input tensor,
|
||||
* optionally applying a mask and scaling factor. It supports both FP16
|
||||
* and FP32 data types and can handle masking by broadcasting the mask
|
||||
* across rows if necessary.
|
||||
* The function performs the following steps:
|
||||
* 1. Multiplies the input tensor by a scale factor.
|
||||
* 2. Optionally casts the mask tensor to FP32 if it is in FP16 format.
|
||||
* 3. Broadcasts the mask tensor if its dimensions do not match the
|
||||
* input tensor's dimensions.
|
||||
* 4. Adds the mask to the scaled input tensor.
|
||||
* 5. Applies the softmax activation function along the specified
|
||||
* dimension.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the result will be stored. dst->op is
|
||||
* `GGML_OP_SOFTMAX`.
|
||||
*/
|
||||
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Extracts specific rows from a tensor based on indices.
|
||||
*
|
||||
* @details This function retrieves rows from a source tensor src0 according to
|
||||
* the indices provided in another tensor src1 and stores the result in
|
||||
* a destination tensor (\p dst). It supports different data types
|
||||
* including F32, F16, Q4_0, and Q8_0.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the extracted rows will be stored.
|
||||
* dst->op is `GGML_OP_GET_ROWS`.
|
||||
*/
|
||||
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Executes matrix multiplication for the given tensor.
|
||||
*
|
||||
* @details This function performs matrix multiplication on the source tensors
|
||||
* associated with the destination tensor. It supports matrix
|
||||
* multiplication F32, F16, and Q8_0.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor for storing the result of the matrix
|
||||
* multiplication. dst->op is `GGML_OP_MUL_MAT`.
|
||||
*/
|
||||
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Applies Rotary Positional Embedding (RoPE) to the input tensor.
|
||||
*
|
||||
* @details This function implements the RoPE mechanism, which is a method to
|
||||
* encode positional information into sequence data, particularly
|
||||
* useful in transformer models. It supports both F32 and F16 data
|
||||
* types.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the RoPE-transformed data will be
|
||||
* stored. dst->op is `GGML_OP_ROPE`.
|
||||
*
|
||||
* @note The function currently does not support cases where the n_dims is less
|
||||
* than the input tensor's first dimension.
|
||||
* @note The function currently does not support cases where the freq_factors is
|
||||
* not NULL.
|
||||
* @note The function currently does not support cases where the ext_factor is
|
||||
* not equal 0.
|
||||
* @note The function currently does not support cases where the freq_scale is
|
||||
* not equal 1.
|
||||
*/
|
||||
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
|
||||
aclTensor*, uint64_t*, aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*, aclrtStream)>
|
||||
void ggml_cann_mul_div(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src0 = dst->src[0];
|
||||
ggml_tensor* src1 = dst->src[1];
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
aclTensor* acl_src0;
|
||||
aclTensor* acl_src1;
|
||||
aclTensor* acl_dst;
|
||||
|
||||
// Need bcast
|
||||
if (!ggml_are_same_shape(src0, src1) && ggml_cann_need_bcast(src0, src1)) {
|
||||
BCAST_SHAPE(src0, src1)
|
||||
acl_src0 = ggml_cann_create_tensor(src0, BCAST_PARAM(src0));
|
||||
acl_src1 = ggml_cann_create_tensor(src1, BCAST_PARAM(src1));
|
||||
acl_dst = ggml_cann_create_tensor(dst, BCAST_PARAM(src0));
|
||||
} else {
|
||||
acl_src0 = ggml_cann_create_tensor(src0);
|
||||
acl_src1 = ggml_cann_create_tensor(src1);
|
||||
acl_dst = ggml_cann_create_tensor(dst);
|
||||
}
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src0, acl_src1, acl_dst, &workspaceSize,
|
||||
&executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src0));
|
||||
ACL_CHECK(aclDestroyTensor(acl_src1));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
|
||||
// Activation functions template.
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, aclTensor*, uint64_t*,
|
||||
aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
|
||||
const aclrtStream)>
|
||||
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
|
||||
// Activation functions template for const aclTensors.
|
||||
template <aclnnStatus getWorkspaceSize(const aclTensor*, const aclTensor*,
|
||||
uint64_t*, aclOpExecutor**),
|
||||
aclnnStatus execute(void*, uint64_t, aclOpExecutor*,
|
||||
const aclrtStream)>
|
||||
void ggml_cann_activation(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor* executor;
|
||||
void* workspaceAddr = nullptr;
|
||||
|
||||
ACL_CHECK(getWorkspaceSize(acl_src, acl_dst, &workspaceSize, &executor));
|
||||
if (workspaceSize > 0) {
|
||||
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
|
||||
workspaceAddr = workspace_allocator.get();
|
||||
}
|
||||
|
||||
aclrtStream main_stream = ctx.stream();
|
||||
ACL_CHECK(execute(workspaceAddr, workspaceSize, executor, main_stream));
|
||||
|
||||
ACL_CHECK(aclDestroyTensor(acl_src));
|
||||
ACL_CHECK(aclDestroyTensor(acl_dst));
|
||||
}
|
||||
|
||||
#endif // CANN_ACLNN_OPS
|
@ -1,286 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
* deal in the Software without restriction, including without limitation the
|
||||
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
* sell copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
* IN THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#ifndef CANN_COMMON_H
|
||||
#define CANN_COMMON_H
|
||||
|
||||
#include <acl/acl.h>
|
||||
|
||||
#include <cstdio>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "../include/ggml-cann.h"
|
||||
#include "../include/ggml.h"
|
||||
|
||||
#define MATRIX_ROW_PADDING 512
|
||||
#define GGML_CANN_MAX_STREAMS 8
|
||||
|
||||
/**
|
||||
* @brief Handles CANN-related errors by printing an error message and
|
||||
* terminating the program.
|
||||
* @param stmt The statement that caused the error.
|
||||
* @param func The function in which the error occurred.
|
||||
* @param file The file in which the error occurred.
|
||||
* @param line The line number at which the error occurred.
|
||||
* @param msg The error message.
|
||||
*/
|
||||
[[noreturn]] void ggml_cann_error(const char* stmt, const char* func,
|
||||
const char* file, int line, const char* msg);
|
||||
|
||||
/**
|
||||
* @brief Checks the result of a CANN function call and invokes the error
|
||||
* handler if the call fails.
|
||||
* @param stmt The CANN function call to check.
|
||||
* @param success The success code that indicates the call was successful.
|
||||
* @param error_fn The function to call to retrieve the error message.
|
||||
*/
|
||||
#define ACL_CHECK_GEN(stmt, success, error_fn) \
|
||||
do { \
|
||||
int err_code = (stmt); \
|
||||
if (err_code != (success)) { \
|
||||
ggml_cann_error(#stmt, __func__, __FILE__, __LINE__, error_fn()); \
|
||||
} \
|
||||
} while (0);
|
||||
|
||||
#define ACL_CHECK(stmt) ACL_CHECK_GEN(stmt, 0, aclGetRecentErrMsg)
|
||||
|
||||
/**
|
||||
* @brief Contains information about CANN devices.
|
||||
*/
|
||||
struct ggml_cann_device_info {
|
||||
/**
|
||||
* @brief Number of CANN devices available.
|
||||
*/
|
||||
int32_t device_count;
|
||||
|
||||
/**
|
||||
* @brief Information about a single CANN device.
|
||||
*/
|
||||
struct cann_device_info {
|
||||
int cc; /**< Compute capability. */
|
||||
size_t smpb; /**< Maximum shared memory per block. */
|
||||
bool vmm; /**< Virtual memory support. */
|
||||
size_t vmm_granularity; /**< Granularity of virtual memory. */
|
||||
size_t total_vram; /**< Total video RAM available on the device. */
|
||||
};
|
||||
|
||||
cann_device_info devices[GGML_CANN_MAX_DEVICES] =
|
||||
{}; /**< Array of CANN device information. */
|
||||
};
|
||||
|
||||
const ggml_cann_device_info& ggml_cann_info();
|
||||
|
||||
void ggml_cann_set_device(int32_t device);
|
||||
int32_t ggml_cann_get_device();
|
||||
|
||||
/**
|
||||
* @brief Abstract base class for memory pools used by CANN.
|
||||
*/
|
||||
struct ggml_cann_pool {
|
||||
/**
|
||||
* @brief Virtual destructor for the memory pool.
|
||||
*/
|
||||
virtual ~ggml_cann_pool() = default;
|
||||
|
||||
/**
|
||||
* @brief Allocates memory from the pool.
|
||||
*
|
||||
* @param size The size of the memory block to allocate.
|
||||
* @param actual_size Pointer to a variable where the actual allocated size
|
||||
* will be stored.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
virtual void* alloc(size_t size, size_t* actual_size) = 0;
|
||||
|
||||
/**
|
||||
* @brief Frees a previously allocated memory block.
|
||||
*
|
||||
* @param ptr Pointer to the memory block to free.
|
||||
* @param size Size of the memory block to free.
|
||||
* @note Note that all CANN opertors are running async. Make sure memory is
|
||||
* still avaiable before this operator finished.
|
||||
*/
|
||||
virtual void free(void* ptr, size_t size) = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief RAII wrapper for managing memory allocations from a CANN memory pool.
|
||||
*/
|
||||
struct ggml_cann_pool_alloc {
|
||||
ggml_cann_pool* pool = nullptr; /**< Pointer to the memory pool. */
|
||||
void* ptr = nullptr; /**< Pointer to the allocated memory block. */
|
||||
size_t actual_size = 0; /**< Actual size of the allocated memory block. */
|
||||
|
||||
/**
|
||||
* @brief Default constructor.
|
||||
*/
|
||||
ggml_cann_pool_alloc() = default;
|
||||
|
||||
/**
|
||||
* @brief Constructor that initializes the memory pool.
|
||||
* @param pool Reference to the memory pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_alloc(ggml_cann_pool& pool) : pool(&pool) {}
|
||||
|
||||
/**
|
||||
* @brief Constructor that initializes the memory pool and allocates memory.
|
||||
* @param pool Reference to the memory pool.
|
||||
* @param size Size of the memory block to allocate.
|
||||
*/
|
||||
ggml_cann_pool_alloc(ggml_cann_pool& pool, size_t size) : pool(&pool) {
|
||||
alloc(size);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Destructor that frees the allocated memory block.
|
||||
*/
|
||||
~ggml_cann_pool_alloc() {
|
||||
if (ptr != nullptr) {
|
||||
pool->free(ptr, actual_size);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Allocates memory from the pool.
|
||||
* @param size Size of the memory block to allocate.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
void* alloc(size_t size) {
|
||||
GGML_ASSERT(pool != nullptr);
|
||||
GGML_ASSERT(ptr == nullptr);
|
||||
ptr = pool->alloc(size, &this->actual_size);
|
||||
return ptr;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Allocates memory from a specific memory pool.
|
||||
* @param pool Reference to the memory pool.
|
||||
* @param size Size of the memory block to allocate.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
void* alloc(ggml_cann_pool& pool, size_t size) {
|
||||
this->pool = &pool;
|
||||
return alloc(size);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Gets the pointer to the allocated memory block.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
void* get() { return ptr; }
|
||||
|
||||
// Deleted copy constructor
|
||||
ggml_cann_pool_alloc(const ggml_cann_pool_alloc&) = delete;
|
||||
|
||||
// Deleted move constructor
|
||||
ggml_cann_pool_alloc(ggml_cann_pool_alloc&&) = delete;
|
||||
|
||||
// Deleted copy assignment operator
|
||||
ggml_cann_pool_alloc& operator=(const ggml_cann_pool_alloc&) = delete;
|
||||
|
||||
// Deleted move assignment operator
|
||||
ggml_cann_pool_alloc& operator=(ggml_cann_pool_alloc&&) = delete;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Context for managing CANN backend operations.
|
||||
*/
|
||||
struct ggml_backend_cann_context {
|
||||
int32_t device; /**< Device ID. */
|
||||
std::string name; /**< Name of the device. */
|
||||
std::string description; /**< Description of the device. */
|
||||
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
|
||||
|
||||
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
|
||||
|
||||
/**
|
||||
* @brief Constructor for initializing the context with a given device.
|
||||
* @param device Device ID.
|
||||
*/
|
||||
explicit ggml_backend_cann_context(int device)
|
||||
: device(device), name("CANN" + std::to_string(device)) {
|
||||
ggml_cann_set_device(device);
|
||||
description = aclrtGetSocName();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Destructor for cleaning up resources.
|
||||
*/
|
||||
~ggml_backend_cann_context() {
|
||||
ggml_cann_set_device(device);
|
||||
if (copy_event != nullptr) {
|
||||
ACL_CHECK(aclrtDestroyEvent(copy_event));
|
||||
}
|
||||
for (int i = 0; i < GGML_CANN_MAX_STREAMS; ++i) {
|
||||
if (streams[i] != nullptr) {
|
||||
ACL_CHECK(aclrtDestroyStream(streams[i]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get or create a stream for a given index.
|
||||
* @param stream Index of the stream.
|
||||
* @return The stream corresponding to the given index.
|
||||
*/
|
||||
aclrtStream stream(int stream) {
|
||||
if (streams[stream] == nullptr) {
|
||||
ggml_cann_set_device(device);
|
||||
ACL_CHECK(aclrtCreateStream(&streams[stream]));
|
||||
}
|
||||
return streams[stream];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get or create the default stream (index 0).
|
||||
* @return The default stream.
|
||||
*/
|
||||
aclrtStream stream() { return stream(0); }
|
||||
|
||||
// TODO: each stream should have a memory pool.
|
||||
std::unique_ptr<ggml_cann_pool>
|
||||
mem_pool; /**< Memory pool for the device. */
|
||||
|
||||
/**
|
||||
* @brief Create a new memory pool for a given device.
|
||||
* @param device Device ID.
|
||||
* @return A unique pointer to the new memory pool.
|
||||
*/
|
||||
static std::unique_ptr<ggml_cann_pool> new_pool_for_device(int device);
|
||||
|
||||
/**
|
||||
* @brief Get or create the memory pool for the context.
|
||||
* @return Reference to the memory pool.
|
||||
*/
|
||||
ggml_cann_pool& pool() {
|
||||
if (mem_pool == nullptr) {
|
||||
mem_pool = new_pool_for_device(device);
|
||||
}
|
||||
return *mem_pool;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // CANN_COMMON_H
|
File diff suppressed because it is too large
Load Diff
@ -1,30 +0,0 @@
|
||||
file(GLOB SRC_FILES
|
||||
get_row_f32.cpp
|
||||
get_row_f16.cpp
|
||||
get_row_q4_0.cpp
|
||||
get_row_q8_0.cpp
|
||||
quantize_f32_q8_0.cpp
|
||||
quantize_f16_q8_0.cpp
|
||||
quantize_float_to_q4_0.cpp
|
||||
dup.cpp
|
||||
)
|
||||
|
||||
set(ASCEND_CANN_PACKAGE_PATH ${CANN_INSTALL_DIR})
|
||||
set(RUN_MODE "npu" CACHE STRING "run mode: npu/sim")
|
||||
|
||||
if(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
|
||||
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/compiler/tikcpp/ascendc_kernel_cmake)
|
||||
elseif(EXISTS ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
|
||||
set(ASCENDC_CMAKE_DIR ${ASCEND_CANN_PACKAGE_PATH}/ascendc_devkit/tikcpp/samples/cmake)
|
||||
else()
|
||||
message(FATAL_ERROR "ascendc_kernel_cmake does not exist, please check whether the compiler package is installed.")
|
||||
endif()
|
||||
include(${ASCENDC_CMAKE_DIR}/ascendc.cmake)
|
||||
|
||||
ascendc_library(ascendc_kernels STATIC
|
||||
${SRC_FILES}
|
||||
)
|
||||
|
||||
message(STATUS "CANN: compile ascend kernels witch SOC_TYPE:${SOC_TYPE}, SOC_VERSION:${SOC_VERSION}, compile macro:-D${SOC_TYPE_COMPILE_OPTION}.")
|
||||
ascendc_compile_definitions(ascendc_kernels PRIVATE "-D${SOC_TYPE_COMPILE_OPTION}")
|
||||
# ascendc_compile_definitions(ascendc_kernels PRIVATE -DASCENDC_DUMP)
|
@ -1,19 +0,0 @@
|
||||
#ifndef ASCENDC_KERNELS_H
|
||||
#define ASCENDC_KERNELS_H
|
||||
|
||||
#include "aclrtlaunch_ascendc_get_row_f32.h"
|
||||
#include "aclrtlaunch_ascendc_get_row_f16.h"
|
||||
#include "aclrtlaunch_ascendc_get_row_q8_0.h"
|
||||
#include "aclrtlaunch_ascendc_get_row_q4_0.h"
|
||||
|
||||
#include "aclrtlaunch_ascendc_quantize_f32_q8_0.h"
|
||||
#include "aclrtlaunch_ascendc_quantize_f16_q8_0.h"
|
||||
#include "aclrtlaunch_ascendc_quantize_f16_to_q4_0.h"
|
||||
#include "aclrtlaunch_ascendc_quantize_f32_to_q4_0.h"
|
||||
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp16.h"
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp32.h"
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp32_to_fp16.h"
|
||||
#include "aclrtlaunch_ascendc_dup_by_rows_fp16_to_fp32.h"
|
||||
|
||||
#endif // ASCENDC_KERNELS_H
|
@ -1,234 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
const int64_t SUPPORTED_MAX_DIM = 65535; // currently the limit of max block dim supportted by dup kernel is 65535template <typename SRC_T, typename DST_T>
|
||||
|
||||
template <typename SRC_T, typename DST_T>
|
||||
class DupByRows {
|
||||
public:
|
||||
__aicore__ inline DupByRows() {}
|
||||
__aicore__ inline void init(GM_ADDR src, GM_ADDR dst, int64_t *input_ne_ub,
|
||||
size_t *input_nb_ub) {
|
||||
/* Dup by rows when src is contigous on first dimension and dst is
|
||||
contiguous, each kernel process one row.
|
||||
*/
|
||||
|
||||
// Input has four dims.
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
// param
|
||||
num_rows = input_ne_ub[1] * input_ne_ub[2] * input_ne_ub[3];
|
||||
num_elem = input_ne_ub[0];
|
||||
|
||||
// index for (ne[1], ne[2], ne[3]): (idx_ne1, idx_ne2, idx_ne3)
|
||||
idx_ne3 = op_block_idx / (input_ne_ub[1] * input_ne_ub[2]);
|
||||
idx_ne2 = (op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2]))
|
||||
/ (input_ne_ub[1]);
|
||||
idx_ne1 = op_block_idx - idx_ne3 * (input_ne_ub[1] * input_ne_ub[2])
|
||||
- idx_ne2 * input_ne_ub[1];
|
||||
|
||||
// src may not contiguous in dim [1,2,3], so stride decited by ne&nb
|
||||
src_stride = input_nb_ub[3] * idx_ne3 + input_nb_ub[2] * idx_ne2
|
||||
+ input_nb_ub[1] * idx_ne1;
|
||||
|
||||
// dst is contiguous
|
||||
dst_stride = op_block_idx * (input_ne_ub[0] * sizeof(DST_T));
|
||||
|
||||
src_gm.SetGlobalBuffer(reinterpret_cast<__gm__ SRC_T *>(src +
|
||||
src_stride));
|
||||
dst_gm.SetGlobalBuffer(reinterpret_cast<__gm__ DST_T *>(dst +
|
||||
dst_stride));
|
||||
|
||||
pipe.InitBuffer(src_queue, BUFFER_NUM, (sizeof(SRC_T) * num_elem +
|
||||
32 - 1) / 32 * 32);
|
||||
pipe.InitBuffer(dst_queue, BUFFER_NUM, (sizeof(DST_T) * num_elem +
|
||||
32 - 1) / 32 * 32);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in() {
|
||||
LocalTensor<SRC_T> src_local = src_queue.AllocTensor<SRC_T>();
|
||||
const size_t elem_per_block = 32 / sizeof(SRC_T);
|
||||
size_t tail = num_elem % elem_per_block;
|
||||
size_t cpy_elements_len = tail > 0 ? num_elem + 1 : num_elem;
|
||||
DataCopy(src_local, src_gm, cpy_elements_len);
|
||||
src_queue.EnQue(src_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out() {
|
||||
LocalTensor<DST_T> dst_local = dst_queue.DeQue<DST_T>();
|
||||
#ifdef ASCEND_310P
|
||||
const size_t elem_per_block = 32 / sizeof(DST_T);
|
||||
size_t tail = num_elem % elem_per_block;
|
||||
size_t len = num_elem & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(dst_gm, dst_local, len);
|
||||
}
|
||||
if(tail != 0) {
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
dst_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(dst_gm[len], dst_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
}
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = num_elem * sizeof(DST_T);
|
||||
DataCopyPad(dst_gm, dst_local, dataCopyParams);
|
||||
#endif
|
||||
dst_queue.FreeTensor(dst_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void dup() {
|
||||
// main process, copy one row data from src to dst.
|
||||
copy_in();
|
||||
|
||||
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
|
||||
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
|
||||
|
||||
int32_t BLOCK_NUM = 32 / sizeof(DST_T);
|
||||
DataCopy(dst_local, src_local, (num_elem + BLOCK_NUM - 1)
|
||||
/ BLOCK_NUM * BLOCK_NUM);
|
||||
dst_queue.EnQue<DST_T>(dst_local);
|
||||
|
||||
src_queue.FreeTensor(src_local);
|
||||
copy_out();
|
||||
}
|
||||
|
||||
__aicore__ inline void dup_with_cast() {
|
||||
// main process, copy one row data from src to dst.
|
||||
// cast dtype from src to dst.
|
||||
copy_in();
|
||||
|
||||
LocalTensor<SRC_T> src_local = src_queue.DeQue<SRC_T>();
|
||||
LocalTensor<DST_T> dst_local = dst_queue.AllocTensor<DST_T>();
|
||||
|
||||
Cast(dst_local, src_local, RoundMode::CAST_NONE, num_elem);
|
||||
dst_queue.EnQue<DST_T>(dst_local);
|
||||
|
||||
src_queue.FreeTensor(src_local);
|
||||
copy_out();
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<SRC_T> src_gm;
|
||||
GlobalTensor<DST_T> dst_gm;
|
||||
|
||||
int64_t num_rows;
|
||||
int64_t num_elem;
|
||||
int64_t idx_ne3;
|
||||
int64_t idx_ne2;
|
||||
int64_t idx_ne1;
|
||||
int64_t src_stride;
|
||||
int64_t dst_stride;
|
||||
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> src_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> dst_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<half, half> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<float, float> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp32_to_fp16(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<float, half> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup_with_cast();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_dup_by_rows_fp16_to_fp32(
|
||||
GM_ADDR src_gm,
|
||||
GM_ADDR dst_gm,
|
||||
GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm,
|
||||
GM_ADDR output_ne_gm,
|
||||
GM_ADDR output_nb_gm) {
|
||||
|
||||
// copy params from gm to ub.
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
DupByRows<half, float> op;
|
||||
op.init(src_gm, dst_gm, input_ne_ub, input_nb_ub);
|
||||
op.dup_with_cast();
|
||||
}
|
@ -1,197 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
class GET_ROW_F16 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_F16() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
||||
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
||||
// TODO, use template for F16/f32
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ half *)input);
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
|
||||
& ~31);
|
||||
uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
|
||||
& ~31);
|
||||
|
||||
local_buffer_elems = input_local_buffer_size / sizeof(half);
|
||||
|
||||
// TODO, consider long row that can't put in UB.
|
||||
// All data should asign to 32. It's ok because all data is align to 32.
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
||||
size_t origin_len = len;
|
||||
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
||||
const size_t elem_per_block = 32 / sizeof(half);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if(tail != 0) {
|
||||
len += elem_per_block;
|
||||
}
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
}
|
||||
|
||||
if(tail != 0) {
|
||||
#ifdef ASCEND_310P
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
output_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPad(output_gm[offset + len], output_local[len],
|
||||
dataCopyParams);
|
||||
#endif
|
||||
}
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_row(int64_t idx) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3];
|
||||
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3];
|
||||
|
||||
copy_in(input_offset, input_ne[0]);
|
||||
LocalTensor<half> input_local = input_queue.DeQue<half>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
Cast(output_local, input_local, RoundMode::CAST_NONE,
|
||||
local_buffer_elems);
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset, input_ne[0]);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
calculate_row(i);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
size_t local_buffer_elems;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<half> input_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
int64_t op_block_idx;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_f16(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
||||
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_F16 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
||||
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
@ -1,190 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
class GET_ROW_F32 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_F32() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *indices_ne_ub, size_t *indices_nb_ub,
|
||||
int64_t *output_ne_ub, size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ float *)input);
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
uint64_t local_buffer_size = ((input_ne[0] * sizeof(float) + 31) & ~31);
|
||||
local_buffer_elems = local_buffer_size / sizeof(float);
|
||||
|
||||
// TODO, consider long row that can't put in UB.
|
||||
// All data should asign to 32. It's ok because all data is align to 32.
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, local_buffer_size);
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, local_buffer_size);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if(tail != 0) {
|
||||
len += elem_per_block;
|
||||
}
|
||||
DataCopy(input_local, input_gm[offset], len);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset, size_t len) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
const size_t elem_per_block = 32 / sizeof(float);
|
||||
size_t tail = len % elem_per_block;
|
||||
len = len & ~(elem_per_block - 1);
|
||||
if (len > 0) {
|
||||
DataCopy(output_gm[offset], output_local, len);
|
||||
}
|
||||
|
||||
if(tail != 0) {
|
||||
#ifdef ASCEND_310P
|
||||
for (size_t i = tail; i < elem_per_block; i++) {
|
||||
output_local[len + i].SetValue(0, 0);
|
||||
}
|
||||
SetAtomicAdd<float>();
|
||||
DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
|
||||
SetAtomicNone();
|
||||
#else
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = tail * sizeof(float);
|
||||
DataCopyPad(output_gm[offset + len], output_local[len],
|
||||
dataCopyParams);
|
||||
#endif
|
||||
}
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_row(int64_t idx) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3];
|
||||
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3];
|
||||
|
||||
copy_in(input_offset, input_ne[0]);
|
||||
LocalTensor<float> input_local = input_queue.DeQue<float>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
DataCopy(output_local, input_local, local_buffer_elems);
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset, input_ne[0]);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
calculate_row(i);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
size_t local_buffer_elems;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<float> input_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
int64_t op_block_idx;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_f32(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
|
||||
GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_F32 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
|
||||
indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
@ -1,204 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P // 310P not support 4bit get row
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
||||
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support 4bit get row.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
#define QK4_0 32
|
||||
|
||||
class GET_ROW_Q4_0 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_Q4_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, int64_t *indices_ne_ub,
|
||||
size_t *indices_nb_ub, int64_t *output_ne_ub,
|
||||
size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
scale_ne[i] = input_ne_ub[i];
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// one scale for a group.
|
||||
scale_ne[0] /= QK4_0;
|
||||
|
||||
input_stride[0] = 1;
|
||||
scale_stride[0] = 1;
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
group_size_in_row = input_ne[0] / QK4_0;
|
||||
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
|
||||
input_ne[3] / 2;
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ int4b_t *)input);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK4_0 * sizeof(int4b_t));
|
||||
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK4_0 * sizeof(half));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK4_0 * sizeof(float));
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<int4b_t> input_local = input_queue.AllocTensor<int4b_t>();
|
||||
// 32 * sizeof(int4b_t) = 16, which is not aligned to 32, why no error?
|
||||
DataCopy(input_local, input_gm[offset], QK4_0);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
DataCopy(output_gm[offset], output_local, QK4_0);
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3] +
|
||||
group * QK4_0;
|
||||
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
|
||||
indices_ne1_idx * scale_stride[2] +
|
||||
indices_ne2_idx * scale_stride[3] + group;
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3] +
|
||||
group * QK4_0;
|
||||
|
||||
copy_in(input_offset);
|
||||
LocalTensor<int4b_t> input_local = input_queue.DeQue<int4b_t>();
|
||||
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
// TODO: cast more data to speed up.
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK4_0);
|
||||
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK4_0);
|
||||
|
||||
// Only mul need compile by group.
|
||||
half scale = scale_gm.GetValue(scale_offset);
|
||||
|
||||
Muls(output_local, output_local, (float)scale, QK4_0);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
output_queue.EnQue(output_local);
|
||||
|
||||
copy_out(output_offset);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
calculate_group(i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t scale_ne[4];
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<int4b_t> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
||||
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_Q4_0 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
|
||||
indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
@ -1,191 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
// optimize me. Use template to avoid copy code.
|
||||
using namespace AscendC;
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
|
||||
#define QK8_0 32
|
||||
|
||||
class GET_ROW_Q8_0 {
|
||||
public:
|
||||
__aicore__ inline GET_ROW_Q8_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
|
||||
int64_t *input_ne_ub, int64_t *indices_ne_ub,
|
||||
size_t *indices_nb_ub, int64_t *output_ne_ub,
|
||||
size_t *output_nb_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
indices_ne[i] = indices_ne_ub[i];
|
||||
indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
|
||||
scale_ne[i] = input_ne_ub[i];
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
|
||||
}
|
||||
|
||||
// one scale for a group.
|
||||
scale_ne[0] /= QK8_0;
|
||||
|
||||
input_stride[0] = 1;
|
||||
scale_stride[0] = 1;
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
input_stride[i] = input_stride[i - 1] * input_ne[i - 1];
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
group_size_in_row = input_ne[0] / QK8_0;
|
||||
int64_t scale_offset = input_ne[0] * input_ne[1] * input_ne[2] *
|
||||
input_ne[3] * sizeof(int8_t);
|
||||
|
||||
// Indices has two dims. n_elements = all rows should get.
|
||||
// dr, all rows should this thread get.
|
||||
uint64_t n_elements =
|
||||
indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
|
||||
dr = n_elements / op_block_num;
|
||||
|
||||
uint64_t tails = n_elements % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ int8_t *)input);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(input + scale_offset));
|
||||
indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
|
||||
output_gm.SetGlobalBuffer((__gm__ float *)output);
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
||||
pipe.InitBuffer(cast_queue, BUFFER_NUM, QK8_0 * sizeof(half));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(float));
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<int8_t> input_local = input_queue.AllocTensor<int8_t>();
|
||||
DataCopy(input_local, input_gm[offset], QK8_0);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
LocalTensor<float> output_local = output_queue.DeQue<float>();
|
||||
DataCopy(output_gm[offset], output_local, QK8_0);
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate_group(int64_t idx, int64_t group) {
|
||||
const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
|
||||
const int64_t indices_ne1_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
|
||||
indices_ne[0];
|
||||
const int64_t indices_ne0_idx =
|
||||
(idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
|
||||
indices_ne1_idx * indices_ne[0]);
|
||||
|
||||
const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
|
||||
indices_ne1_idx * indices_stride[1] +
|
||||
indices_ne2_idx * indices_stride[2];
|
||||
const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
|
||||
|
||||
const int64_t input_offset = selected_row_idx * input_stride[1] +
|
||||
indices_ne1_idx * input_stride[2] +
|
||||
indices_ne2_idx * input_stride[3] +
|
||||
group * QK8_0;
|
||||
const int64_t scale_offset = selected_row_idx * scale_stride[1] +
|
||||
indices_ne1_idx * scale_stride[2] +
|
||||
indices_ne2_idx * scale_stride[3] + group;
|
||||
const int64_t output_offset = indices_ne0_idx * output_stride[1] +
|
||||
indices_ne1_idx * output_stride[2] +
|
||||
indices_ne2_idx * output_stride[3] +
|
||||
group * QK8_0;
|
||||
|
||||
copy_in(input_offset);
|
||||
LocalTensor<int8_t> input_local = input_queue.DeQue<int8_t>();
|
||||
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
||||
LocalTensor<float> output_local = output_queue.AllocTensor<float>();
|
||||
|
||||
// TODO: cast more data to speed up.
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
|
||||
Cast(output_local, cast_local, RoundMode::CAST_NONE, QK8_0);
|
||||
|
||||
// Only mul need compile by group.
|
||||
half scale = scale_gm.GetValue(scale_offset);
|
||||
Muls(output_local, output_local, (float)scale, QK8_0);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
output_queue.EnQue(output_local);
|
||||
|
||||
copy_out(output_offset);
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
calculate_group(i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t scale_ne[4];
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t indices_ne[4];
|
||||
size_t indices_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<int8_t> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int32_t> indices_gm;
|
||||
GlobalTensor<float> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> cast_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_get_row_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
|
||||
GM_ADDR input_ne_gm, GM_ADDR indices_ne_gm, GM_ADDR indices_nb_gm,
|
||||
GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
int64_t indices_ne_ub[4];
|
||||
size_t indices_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
size_t output_nb_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
|
||||
copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
copy_to_ub(output_nb_gm, output_nb_ub, 32);
|
||||
|
||||
GET_ROW_Q8_0 op;
|
||||
op.init(input_gm, indices_gm, output_gm, input_ne_ub, indices_ne_ub,
|
||||
indices_nb_ub, output_ne_ub, output_nb_ub);
|
||||
op.calculate();
|
||||
}
|
@ -1,218 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f16->8bit quantization.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
#define QK8_0 32
|
||||
|
||||
class QUANTIZE_F16_Q8_0 {
|
||||
public:
|
||||
__aicore__ inline QUANTIZE_F16_Q8_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *output_ne_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
}
|
||||
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
||||
}
|
||||
|
||||
scale_ne = input_ne;
|
||||
scale_stride[0] = 1;
|
||||
scale_stride[1] = input_ne[0] / QK8_0;
|
||||
for (int i = 2; i < 4; i++) {
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
// split input tensor by rows.
|
||||
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
||||
dr = nr / op_block_num;
|
||||
|
||||
uint64_t tails = nr % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
group_size_in_row = scale_stride[1];
|
||||
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
|
||||
output_ne[3] * sizeof(uint8_t);
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ half *)input);
|
||||
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size + ir *
|
||||
group_size_in_row *
|
||||
sizeof(half)));
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(half));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
||||
pipe.InitBuffer(work_queue, 1, 32);
|
||||
pipe.InitBuffer(max_queue, 1, 32);
|
||||
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
|
||||
pipe.InitBuffer(scale_queue, 1, 32);
|
||||
pipe.InitBuffer(cast_queue ,1 ,QK8_0 * sizeof(float));
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<half> input_local = input_queue.AllocTensor<half>();
|
||||
DataCopy(input_local, input_gm[offset], QK8_0);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
|
||||
DataCopy(output_gm[offset], output_local, QK8_0);
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
||||
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
||||
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
||||
const int64_t i1 =
|
||||
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
||||
|
||||
const int64_t input_offset = i1 * input_stride[1] +
|
||||
i2 * input_stride[2] +
|
||||
i3 * input_stride[3] + QK8_0 * group;
|
||||
|
||||
const int64_t output_offset = i1 * output_stride[1] +
|
||||
i2 * output_stride[2] +
|
||||
i3 * output_stride[3] + QK8_0 * group;
|
||||
|
||||
copy_in(input_offset);
|
||||
LocalTensor<half> input_local = input_queue.DeQue<half>();
|
||||
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
|
||||
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
||||
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
|
||||
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
||||
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
|
||||
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, QK8_0);
|
||||
Abs(abs_local, cast_local, QK8_0);
|
||||
ReduceMax(max_local, abs_local, work_local, QK8_0);
|
||||
|
||||
pipe_barrier(PIPE_ALL);
|
||||
float d = max_local.GetValue(0);
|
||||
d = d / ((1 << 7) - 1);
|
||||
if (d != 0) {
|
||||
Muls(cast_local, cast_local, 1.0f / d, QK8_0);
|
||||
}
|
||||
|
||||
Cast(cast_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
Cast(input_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
Cast(output_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
work_queue.FreeTensor(work_local);
|
||||
abs_queue.FreeTensor(abs_local);
|
||||
max_queue.FreeTensor(max_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
return (half)d;
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
||||
uint32_t scale_local_offset = 0;
|
||||
uint32_t scale_global_offset = 0;
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
half scale = calculate_group(i, j);
|
||||
scale_local.SetValue(scale_local_offset++, scale);
|
||||
if (scale_local_offset == 16) {
|
||||
scale_local_offset = 0;
|
||||
// TODO: OPTIMIZE ME
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
scale_global_offset += 16;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (scale_local_offset != 0) {
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
||||
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
||||
dataCopyParams);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t *scale_ne;
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<half> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int8_t> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, 1> work_queue;
|
||||
TQue<QuePosition::VECOUT, 1> max_queue;
|
||||
TQue<QuePosition::VECIN, 1> abs_queue;
|
||||
TQue<QuePosition::VECOUT, 1> scale_queue;
|
||||
TQue<QuePosition::VECOUT, 1> cast_queue;
|
||||
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
|
||||
QUANTIZE_F16_Q8_0 op;
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
@ -1,216 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P // 310P not support f32->8bit quantization
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f32->8bit quantization.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
#define QK8_0 32
|
||||
|
||||
class QUANTIZE_F32_Q8_0 {
|
||||
public:
|
||||
__aicore__ inline QUANTIZE_F32_Q8_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *output_ne_ub) {
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
}
|
||||
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
||||
}
|
||||
|
||||
scale_ne = input_ne;
|
||||
scale_stride[0] = 1;
|
||||
scale_stride[1] = input_ne[0] / QK8_0;
|
||||
for (int i = 2; i < 4; i++) {
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
// split input tensor by rows.
|
||||
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
||||
dr = nr / op_block_num;
|
||||
|
||||
uint64_t tails = nr % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
group_size_in_row = scale_stride[1];
|
||||
int64_t output_size = output_ne[0] * output_ne[1] * output_ne[2] *
|
||||
output_ne[3] * sizeof(uint8_t);
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ float *)input);
|
||||
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(output + output_size +
|
||||
ir * group_size_in_row *
|
||||
sizeof(half)));
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, QK8_0 * sizeof(float));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM, QK8_0 * sizeof(int8_t));
|
||||
pipe.InitBuffer(work_queue, 1, 32);
|
||||
pipe.InitBuffer(max_queue, 1, 32);
|
||||
pipe.InitBuffer(abs_queue, 1, QK8_0 * sizeof(float));
|
||||
pipe.InitBuffer(cast_queue, 1, QK8_0 * sizeof(half));
|
||||
pipe.InitBuffer(scale_queue, 1, 32);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<float> input_local = input_queue.AllocTensor<float>();
|
||||
DataCopy(input_local, input_gm[offset], QK8_0);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
LocalTensor<int8_t> output_local = output_queue.DeQue<int8_t>();
|
||||
DataCopy(output_gm[offset], output_local, QK8_0);
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
||||
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
||||
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
||||
const int64_t i1 =
|
||||
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
||||
|
||||
const int64_t input_offset = i1 * input_stride[1] +
|
||||
i2 * input_stride[2] +
|
||||
i3 * input_stride[3] + QK8_0 * group;
|
||||
|
||||
const int64_t output_offset = i1 * output_stride[1] +
|
||||
i2 * output_stride[2] +
|
||||
i3 * output_stride[3] + QK8_0 * group;
|
||||
|
||||
copy_in(input_offset);
|
||||
LocalTensor<float> input_local = input_queue.DeQue<float>();
|
||||
LocalTensor<int8_t> output_local = output_queue.AllocTensor<int8_t>();
|
||||
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
||||
LocalTensor<float> abs_local = abs_queue.AllocTensor<float>();
|
||||
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
||||
LocalTensor<half> cast_local = cast_queue.AllocTensor<half>();
|
||||
|
||||
Abs(abs_local, input_local, QK8_0);
|
||||
ReduceMax(max_local, abs_local, work_local, QK8_0);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
float d = max_local.GetValue(0);
|
||||
d = d / ((1 << 7) - 1);
|
||||
if (d != 0) {
|
||||
Muls(input_local, input_local, 1.0f / d, QK8_0);
|
||||
}
|
||||
|
||||
Cast(input_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
Cast(cast_local, input_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
Cast(output_local, cast_local, RoundMode::CAST_ROUND, QK8_0);
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
work_queue.FreeTensor(work_local);
|
||||
abs_queue.FreeTensor(abs_local);
|
||||
max_queue.FreeTensor(max_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
|
||||
return (half)d;
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
||||
uint32_t scale_local_offset = 0;
|
||||
uint32_t scale_global_offset = 0;
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
half scale = calculate_group(i, j);
|
||||
scale_local.SetValue(scale_local_offset++, scale);
|
||||
if (scale_local_offset == 16) {
|
||||
scale_local_offset = 0;
|
||||
// TODO: OPTIMIZE ME
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopy(scale_gm[scale_global_offset], scale_local, 16);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
scale_global_offset += 16;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (scale_local_offset != 0) {
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
||||
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
||||
dataCopyParams);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t *scale_ne;
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<float> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int8_t> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, 1> work_queue;
|
||||
TQue<QuePosition::VECOUT, 1> max_queue;
|
||||
TQue<QuePosition::VECIN, 1> abs_queue;
|
||||
TQue<QuePosition::VECIN, 1> cast_queue;
|
||||
TQue<QuePosition::VECOUT, 1> scale_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f32_q8_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
|
||||
QUANTIZE_F32_Q8_0 op;
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
@ -1,295 +0,0 @@
|
||||
#include "kernel_operator.h"
|
||||
|
||||
using namespace AscendC;
|
||||
#ifdef ASCEND_310P // 310P not support float->4bit quantization
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f32->4bit quantization.\n");
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
// let following test cases can continue run, here just print error information. Of Cource the test case that call this operator is failed.
|
||||
printf("Ascend310P not support f16->4bit quantization.\n");
|
||||
}
|
||||
#else
|
||||
|
||||
#define BUFFER_NUM 2
|
||||
#define Group_Size 32
|
||||
|
||||
template <typename SRC_T>
|
||||
class QUANTIZE_FLOAT_TO_Q4_0 {
|
||||
public:
|
||||
__aicore__ inline QUANTIZE_FLOAT_TO_Q4_0() {}
|
||||
__aicore__ inline void init(GM_ADDR input, GM_ADDR output,
|
||||
int64_t *input_ne_ub, size_t *input_nb_ub,
|
||||
int64_t *output_ne_ub) {
|
||||
// TODO: fix test_case CPY(type_src=f16,type_dst=q4_0,ne=[256,4,4,4],
|
||||
// permute=[0,0,0,0]):
|
||||
// [CPY] NMSE = 0.000008343 > 0.000001000 FAIL
|
||||
int64_t op_block_num = GetBlockNum();
|
||||
int64_t op_block_idx = GetBlockIdx();
|
||||
|
||||
// input stride of data elements
|
||||
for (int i = 0; i < 4; i++) {
|
||||
input_ne[i] = input_ne_ub[i];
|
||||
input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
|
||||
output_ne[i] = output_ne_ub[i];
|
||||
}
|
||||
|
||||
// output stride of data elements
|
||||
output_stride[0] = 1;
|
||||
for (int i = 1; i < 4; i++) {
|
||||
output_stride[i] = output_stride[i - 1] * output_ne[i - 1];
|
||||
}
|
||||
|
||||
// scale saved one by one after data:. [group1_scale, group2_scale, ...]
|
||||
scale_ne = input_ne;
|
||||
scale_stride[0] = 1;
|
||||
scale_stride[1] = input_ne[0] / Group_Size;
|
||||
for (int i = 2; i < 4; i++) {
|
||||
scale_stride[i] = scale_stride[i - 1] * scale_ne[i - 1];
|
||||
}
|
||||
|
||||
// split input tensor by rows.
|
||||
uint64_t nr = input_ne[1] * input_ne[2] * input_ne[3];
|
||||
dr = nr / op_block_num;
|
||||
|
||||
uint64_t tails = nr % op_block_num;
|
||||
if (op_block_idx < tails) {
|
||||
dr += 1;
|
||||
ir = dr * op_block_idx;
|
||||
} else {
|
||||
ir = dr * op_block_idx + tails;
|
||||
}
|
||||
|
||||
group_size_in_row = scale_stride[1];
|
||||
int64_t scale_offset = output_ne[0] * output_ne[1] * output_ne[2] *
|
||||
output_ne[3] * sizeof(uint8_t) / 2;
|
||||
|
||||
input_gm.SetGlobalBuffer((__gm__ SRC_T *)input);
|
||||
output_gm.SetGlobalBuffer((__gm__ int8_t *)output);
|
||||
scale_gm.SetGlobalBuffer((__gm__ half *)(output + scale_offset + ir *
|
||||
group_size_in_row *
|
||||
sizeof(half)));
|
||||
|
||||
pipe.InitBuffer(input_queue, BUFFER_NUM, Group_Size * sizeof(SRC_T));
|
||||
pipe.InitBuffer(output_queue, BUFFER_NUM,
|
||||
Group_Size * sizeof(int8_t) / 2);
|
||||
pipe.InitBuffer(cast_queue , 1, Group_Size * sizeof(float));
|
||||
pipe.InitBuffer(work_queue, 1, Group_Size * sizeof(float));
|
||||
pipe.InitBuffer(max_queue, 1, Group_Size * sizeof(float));
|
||||
pipe.InitBuffer(min_queue, 1, Group_Size * sizeof(float));
|
||||
pipe.InitBuffer(scale_queue, 1, Group_Size / 2 * sizeof(half));
|
||||
pipe.InitBuffer(int8_queue, 1, Group_Size * sizeof(int8_t));
|
||||
pipe.InitBuffer(half_queue, 1, Group_Size * sizeof(half));
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_in(uint32_t offset) {
|
||||
LocalTensor<SRC_T> input_local = input_queue.AllocTensor<SRC_T>();
|
||||
DataCopy(input_local, input_gm[offset], Group_Size);
|
||||
input_queue.EnQue(input_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void copy_out(uint32_t offset) {
|
||||
// reinterpretcast Group_Size(32) * int4b_t to Group_Size / 2 * int8_t,
|
||||
// and using DataCopyPad to avoid 32 bits align.
|
||||
LocalTensor<int4b_t> output_local = output_queue.DeQue<int4b_t>();
|
||||
LocalTensor<int8_t> output_int8_local =
|
||||
output_local.ReinterpretCast<int8_t>();
|
||||
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = Group_Size / 2 * sizeof(int8_t);
|
||||
DataCopyPad(output_gm[offset], output_int8_local, dataCopyParams);
|
||||
|
||||
output_queue.FreeTensor(output_local);
|
||||
}
|
||||
|
||||
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
|
||||
LocalTensor<float> input_local) {
|
||||
DataCopy(cast_local, input_local, Group_Size);
|
||||
}
|
||||
|
||||
__aicore__ inline void input_to_cast(LocalTensor<float> cast_local,
|
||||
LocalTensor<half> input_local) {
|
||||
Cast(cast_local, input_local, RoundMode::CAST_NONE, Group_Size);
|
||||
}
|
||||
|
||||
__aicore__ inline half calculate_group(int64_t row, int64_t group) {
|
||||
const int64_t i3 = row / (input_ne[1] * input_ne[2]);
|
||||
const int64_t i2 = (row - i3 * input_ne[1] * input_ne[2]) / input_ne[1];
|
||||
const int64_t i1 =
|
||||
row - i3 * input_ne[1] * input_ne[2] - i2 * input_ne[1];
|
||||
|
||||
const int64_t input_offset = i1 * input_stride[1] +
|
||||
i2 * input_stride[2] +
|
||||
i3 * input_stride[3] + Group_Size * group;
|
||||
|
||||
// output_offset is stride for output_gm which datatype is int8_t and
|
||||
// divided by 2 is needed for int4b_t.
|
||||
const int64_t output_offset = (i1 * output_stride[1] +
|
||||
i2 * output_stride[2] +
|
||||
i3 * output_stride[3] +
|
||||
Group_Size * group) / 2;
|
||||
copy_in(input_offset);
|
||||
|
||||
LocalTensor<SRC_T> input_local = input_queue.DeQue<SRC_T>();
|
||||
LocalTensor<int4b_t> output_local = output_queue.AllocTensor<int4b_t>();
|
||||
LocalTensor<float> cast_local = cast_queue.AllocTensor<float>();
|
||||
LocalTensor<float> work_local = work_queue.AllocTensor<float>();
|
||||
LocalTensor<float> max_local = max_queue.AllocTensor<float>();
|
||||
LocalTensor<float> min_local = min_queue.AllocTensor<float>();
|
||||
LocalTensor<int8_t> int8_local = int8_queue.AllocTensor<int8_t>();
|
||||
LocalTensor<half> half_local = half_queue.AllocTensor<half>();
|
||||
|
||||
input_to_cast(cast_local, input_local);
|
||||
|
||||
ReduceMax(max_local, cast_local, work_local, Group_Size);
|
||||
ReduceMin(min_local, cast_local, work_local, Group_Size);
|
||||
const float max_value = max_local.GetValue(0);
|
||||
const float min_value = min_local.GetValue(0);
|
||||
float d = max_value;
|
||||
if (min_value < 0 && (-1 * min_value) > max_value) {
|
||||
d = min_value;
|
||||
}
|
||||
|
||||
d = d / (-8);
|
||||
if (d != 0) {
|
||||
Muls(cast_local, cast_local, 1.0f / d, Group_Size);
|
||||
}
|
||||
|
||||
// range: [-8,8] -> [0.5,16.5] -> [0,16] -> [0,15] -> [-8,7]
|
||||
float scalar = 8.5f;
|
||||
Adds(cast_local, cast_local, scalar, Group_Size);
|
||||
Cast(cast_local, cast_local, RoundMode::CAST_FLOOR, Group_Size);
|
||||
scalar = 15.0f;
|
||||
Mins(cast_local, cast_local, scalar, Group_Size);
|
||||
scalar = -8.0f;
|
||||
Adds(cast_local, cast_local, scalar, Group_Size);
|
||||
|
||||
// float->half->int4b
|
||||
Cast(half_local, cast_local, RoundMode::CAST_NONE, Group_Size);
|
||||
Cast(output_local, half_local, RoundMode::CAST_NONE, Group_Size);
|
||||
|
||||
output_queue.EnQue(output_local);
|
||||
copy_out(output_offset);
|
||||
|
||||
input_queue.FreeTensor(input_local);
|
||||
work_queue.FreeTensor(work_local);
|
||||
max_queue.FreeTensor(max_local);
|
||||
min_queue.FreeTensor(min_local);
|
||||
int8_queue.FreeTensor(int8_local);
|
||||
half_queue.FreeTensor(half_local);
|
||||
cast_queue.FreeTensor(cast_local);
|
||||
return (half)d;
|
||||
}
|
||||
|
||||
__aicore__ inline void calculate() {
|
||||
LocalTensor<half> scale_local = scale_queue.AllocTensor<half>();
|
||||
uint32_t scale_local_offset = 0;
|
||||
uint32_t scale_global_offset = 0;
|
||||
for (int64_t i = ir; i < ir + dr; i++) {
|
||||
for (int64_t j = 0; j < group_size_in_row; j++) {
|
||||
half scale = calculate_group(i, j);
|
||||
scale_local.SetValue(scale_local_offset++, scale);
|
||||
// Copy Group_Size/2 length data each time.
|
||||
if (scale_local_offset == Group_Size / 2) {
|
||||
scale_local_offset = 0;
|
||||
// TODO: OPTIMIZE ME
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopy(scale_gm[scale_global_offset], scale_local,
|
||||
Group_Size / 2);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
scale_global_offset += Group_Size / 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (scale_local_offset != 0) {
|
||||
pipe_barrier(PIPE_ALL);
|
||||
DataCopyExtParams dataCopyParams;
|
||||
dataCopyParams.blockCount = 1;
|
||||
dataCopyParams.blockLen = scale_local_offset * sizeof(half);
|
||||
DataCopyPad(scale_gm[scale_global_offset], scale_local,
|
||||
dataCopyParams);
|
||||
pipe_barrier(PIPE_ALL);
|
||||
}
|
||||
scale_queue.FreeTensor(scale_local);
|
||||
}
|
||||
|
||||
private:
|
||||
int64_t input_ne[4];
|
||||
size_t input_stride[4];
|
||||
|
||||
int64_t *scale_ne;
|
||||
size_t scale_stride[4];
|
||||
|
||||
int64_t output_ne[4];
|
||||
size_t output_stride[4];
|
||||
|
||||
int64_t group_size_in_row;
|
||||
|
||||
int64_t ir;
|
||||
int64_t dr;
|
||||
|
||||
TPipe pipe;
|
||||
GlobalTensor<SRC_T> input_gm;
|
||||
GlobalTensor<half> scale_gm;
|
||||
GlobalTensor<int8_t> output_gm;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
|
||||
TQue<QuePosition::VECIN, BUFFER_NUM> work_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> max_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> min_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> scale_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> cast_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> int8_queue;
|
||||
TQue<QuePosition::VECOUT, BUFFER_NUM> half_queue;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
|
||||
auto gm_ptr = (__gm__ uint8_t *)gm;
|
||||
auto ub_ptr = (uint8_t *)(ub);
|
||||
for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
|
||||
*ub_ptr = *gm_ptr;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f16_to_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
|
||||
QUANTIZE_FLOAT_TO_Q4_0<half> op;
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
extern "C" __global__ __aicore__ void ascendc_quantize_f32_to_q4_0(
|
||||
GM_ADDR input_gm, GM_ADDR output_gm, GM_ADDR input_ne_gm,
|
||||
GM_ADDR input_nb_gm, GM_ADDR output_ne_gm) {
|
||||
int64_t input_ne_ub[4];
|
||||
size_t input_nb_ub[4];
|
||||
int64_t output_ne_ub[4];
|
||||
|
||||
copy_to_ub(input_ne_gm, input_ne_ub, 32);
|
||||
copy_to_ub(input_nb_gm, input_nb_ub, 32);
|
||||
copy_to_ub(output_ne_gm, output_ne_ub, 32);
|
||||
|
||||
QUANTIZE_FLOAT_TO_Q4_0<float> op;
|
||||
op.init(input_gm, output_gm, input_ne_ub, input_nb_ub, output_ne_ub);
|
||||
op.calculate();
|
||||
}
|
||||
|
||||
#endif // #ifdef ASCEND_310P
|
File diff suppressed because it is too large
Load Diff
@ -1,489 +0,0 @@
|
||||
function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (tag_name)
|
||||
set(GGML_CPU_NAME ggml-cpu-${tag_name})
|
||||
else()
|
||||
set(GGML_CPU_NAME ggml-cpu)
|
||||
endif()
|
||||
|
||||
ggml_add_backend_library(${GGML_CPU_NAME})
|
||||
|
||||
list (APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/ggml-cpu.c
|
||||
ggml-cpu/ggml-cpu.cpp
|
||||
ggml-cpu/ggml-cpu-aarch64.cpp
|
||||
ggml-cpu/ggml-cpu-aarch64.h
|
||||
ggml-cpu/ggml-cpu-hbm.cpp
|
||||
ggml-cpu/ggml-cpu-hbm.h
|
||||
ggml-cpu/ggml-cpu-quants.c
|
||||
ggml-cpu/ggml-cpu-quants.h
|
||||
ggml-cpu/ggml-cpu-traits.cpp
|
||||
ggml-cpu/ggml-cpu-traits.h
|
||||
ggml-cpu/amx/amx.cpp
|
||||
ggml-cpu/amx/amx.h
|
||||
ggml-cpu/amx/mmq.cpp
|
||||
ggml-cpu/amx/mmq.h
|
||||
ggml-cpu/ggml-cpu-impl.h
|
||||
ggml-cpu/common.h
|
||||
ggml-cpu/binary-ops.h
|
||||
ggml-cpu/binary-ops.cpp
|
||||
ggml-cpu/unary-ops.h
|
||||
ggml-cpu/unary-ops.cpp
|
||||
ggml-cpu/simd-mappings.h
|
||||
ggml-cpu/vec.h
|
||||
ggml-cpu/vec.cpp
|
||||
ggml-cpu/ops.h
|
||||
ggml-cpu/ops.cpp
|
||||
)
|
||||
|
||||
target_compile_features(${GGML_CPU_NAME} PRIVATE c_std_11 cxx_std_17)
|
||||
target_include_directories(${GGML_CPU_NAME} PRIVATE . ggml-cpu)
|
||||
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if (ACCELERATE_FRAMEWORK)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_ACCELERATE)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ACCELERATE_NEW_LAPACK)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ACCELERATE_LAPACK_ILP64)
|
||||
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${ACCELERATE_FRAMEWORK})
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP)
|
||||
if (OpenMP_FOUND)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_OPENMP)
|
||||
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
else()
|
||||
message(WARNING "OpenMP not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_LLAMAFILE)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_LLAMAFILE)
|
||||
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/llamafile/sgemm.cpp
|
||||
ggml-cpu/llamafile/sgemm.h)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
|
||||
message(STATUS "Using memkind for CPU HBM")
|
||||
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_HBM)
|
||||
|
||||
target_link_libraries(${GGML_CPU_NAME} PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
|
||||
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
|
||||
|
||||
message(STATUS "ARM detected")
|
||||
|
||||
if (MSVC AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
message(FATAL_ERROR "MSVC is not supported for ARM, use clang")
|
||||
else()
|
||||
check_cxx_compiler_flag(-mfp16-format=ieee GGML_COMPILER_SUPPORTS_FP16_FORMAT_I3E)
|
||||
if (NOT "${GGML_COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
|
||||
list(APPEND ARCH_FLAGS -mfp16-format=ieee)
|
||||
endif()
|
||||
|
||||
if (GGML_NATIVE)
|
||||
# -mcpu=native does not always enable all the features in some compilers,
|
||||
# so we check for them manually and enable them if available
|
||||
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_C_COMPILER} -mcpu=native -E -v -
|
||||
INPUT_FILE "/dev/null"
|
||||
OUTPUT_QUIET
|
||||
ERROR_VARIABLE ARM_MCPU
|
||||
RESULT_VARIABLE ARM_MCPU_RESULT
|
||||
)
|
||||
if (NOT ARM_MCPU_RESULT)
|
||||
string(REGEX MATCH "-mcpu=[^ ']+" ARM_MCPU_FLAG "${ARM_MCPU}")
|
||||
endif()
|
||||
if ("${ARM_MCPU_FLAG}" STREQUAL "")
|
||||
set(ARM_MCPU_FLAG -mcpu=native)
|
||||
message(STATUS "ARM -mcpu not found, -mcpu=native will be used")
|
||||
endif()
|
||||
|
||||
include(CheckCXXSourceRuns)
|
||||
|
||||
function(check_arm_feature tag code)
|
||||
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
|
||||
set(CMAKE_REQUIRED_FLAGS "${ARM_MCPU_FLAG}+${tag}")
|
||||
check_cxx_source_runs("${code}" GGML_MACHINE_SUPPORTS_${tag})
|
||||
if (GGML_MACHINE_SUPPORTS_${tag})
|
||||
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+${tag}" PARENT_SCOPE)
|
||||
else()
|
||||
set(CMAKE_REQUIRED_FLAGS "${ARM_MCPU_FLAG}+no${tag}")
|
||||
check_cxx_source_compiles("int main() { return 0; }" GGML_MACHINE_SUPPORTS_no${tag})
|
||||
if (GGML_MACHINE_SUPPORTS_no${tag})
|
||||
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+no${tag}" PARENT_SCOPE)
|
||||
endif()
|
||||
endif()
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
|
||||
endfunction()
|
||||
|
||||
check_arm_feature(dotprod "#include <arm_neon.h>\nint main() { int8x16_t _a, _b; volatile int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }")
|
||||
check_arm_feature(i8mm "#include <arm_neon.h>\nint main() { int8x16_t _a, _b; volatile int32x4_t _s = vmmlaq_s32(_s, _a, _b); return 0; }")
|
||||
check_arm_feature(sve "#include <arm_sve.h>\nint main() { svfloat32_t _a, _b; volatile svfloat32_t _c = svadd_f32_z(svptrue_b8(), _a, _b); return 0; }")
|
||||
check_arm_feature(sme "#include <arm_sme.h>\n__arm_locally_streaming int main() { __asm__ volatile(\"smstart; smstop;\"); return 0; }")
|
||||
|
||||
list(APPEND ARCH_FLAGS "${ARM_MCPU_FLAG}${ARM_MCPU_FLAG_FIX}")
|
||||
else()
|
||||
if (GGML_CPU_ARM_ARCH)
|
||||
list(APPEND ARCH_FLAGS -march=${GGML_CPU_ARM_ARCH})
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# show enabled features
|
||||
if (CMAKE_HOST_SYSTEM_NAME STREQUAL "Windows")
|
||||
set(FEAT_INPUT_FILE "NUL")
|
||||
else()
|
||||
set(FEAT_INPUT_FILE "/dev/null")
|
||||
endif()
|
||||
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_C_COMPILER} ${ARCH_FLAGS} -dM -E -
|
||||
INPUT_FILE ${FEAT_INPUT_FILE}
|
||||
OUTPUT_VARIABLE ARM_FEATURE
|
||||
RESULT_VARIABLE ARM_FEATURE_RESULT
|
||||
)
|
||||
if (ARM_FEATURE_RESULT)
|
||||
message(WARNING "Failed to get ARM features")
|
||||
else()
|
||||
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC SME)
|
||||
string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos)
|
||||
if (NOT ${feature_pos} EQUAL -1)
|
||||
message(STATUS "ARM feature ${feature} enabled")
|
||||
endif()
|
||||
endforeach()
|
||||
endif()
|
||||
endif()
|
||||
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
|
||||
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
|
||||
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64|amd64)$"))
|
||||
|
||||
message(STATUS "x86 detected")
|
||||
|
||||
if (MSVC)
|
||||
# instruction set detection for MSVC only
|
||||
if (GGML_NATIVE)
|
||||
include(ggml-cpu/cmake/FindSIMD.cmake)
|
||||
endif ()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX512)
|
||||
# /arch:AVX512 includes: __AVX512F__, __AVX512CD__, __AVX512BW__, __AVX512DQ__, and __AVX512VL__
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX512)
|
||||
if (GGML_AVX512_VBMI)
|
||||
list(APPEND ARCH_DEFINITIONS __AVX512VBMI__)
|
||||
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
list(APPEND ARCH_FLAGS -mavx512vbmi)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
list(APPEND ARCH_DEFINITIONS __AVX512VNNI__ GGML_AVX512_VNNI)
|
||||
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
list(APPEND ARCH_DEFINITIONS __AVX512BF16__ GGML_AVX512_BF16)
|
||||
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
|
||||
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
list(APPEND ARCH_DEFINITIONS __AMX_TILE__ GGML_AMX_TILE)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
list(APPEND ARCH_DEFINITIONS __AMX_INT8__ GGML_AMX_INT8)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
list(APPEND ARCH_DEFINITIONS __AMX_BF16__ GGML_AMX_BF16)
|
||||
endif()
|
||||
elseif (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX2)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX2 GGML_FMA GGML_F16C)
|
||||
elseif (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS /arch:AVX)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX)
|
||||
else ()
|
||||
list(APPEND ARCH_FLAGS /arch:SSE4.2)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_SSE42)
|
||||
endif()
|
||||
if (GGML_AVX_VNNI)
|
||||
list(APPEND ARCH_DEFINITIONS __AVXVNNI__ GGML_AVX_VNNI)
|
||||
endif()
|
||||
if (GGML_BMI2)
|
||||
# MSVC does not define macro __BMI2__
|
||||
list(APPEND ARCH_DEFINITIONS __BMI2__ GGML_BMI2)
|
||||
endif()
|
||||
else ()
|
||||
if (GGML_NATIVE)
|
||||
list(APPEND ARCH_FLAGS -march=native)
|
||||
else ()
|
||||
list(APPEND ARCH_FLAGS -msse4.2)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_SSE42)
|
||||
if (GGML_F16C)
|
||||
list(APPEND ARCH_FLAGS -mf16c)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_F16C)
|
||||
endif()
|
||||
if (GGML_FMA)
|
||||
list(APPEND ARCH_FLAGS -mfma)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_FMA)
|
||||
endif()
|
||||
if (GGML_BMI2)
|
||||
list(APPEND ARCH_FLAGS -mbmi2)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_BMI2)
|
||||
endif()
|
||||
if (GGML_AVX)
|
||||
list(APPEND ARCH_FLAGS -mavx)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX)
|
||||
endif()
|
||||
if (GGML_AVX2)
|
||||
list(APPEND ARCH_FLAGS -mavx2)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX2)
|
||||
endif()
|
||||
if (GGML_AVX_VNNI)
|
||||
list(APPEND ARCH_FLAGS -mavxvnni)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX_VNNI)
|
||||
endif()
|
||||
if (GGML_AVX512)
|
||||
list(APPEND ARCH_FLAGS -mavx512f)
|
||||
list(APPEND ARCH_FLAGS -mavx512cd)
|
||||
list(APPEND ARCH_FLAGS -mavx512vl)
|
||||
list(APPEND ARCH_FLAGS -mavx512dq)
|
||||
list(APPEND ARCH_FLAGS -mavx512bw)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX512)
|
||||
endif()
|
||||
if (GGML_AVX512_VBMI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vbmi)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX512_VBMI)
|
||||
endif()
|
||||
if (GGML_AVX512_VNNI)
|
||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX512_VNNI)
|
||||
endif()
|
||||
if (GGML_AVX512_BF16)
|
||||
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AVX512_BF16)
|
||||
endif()
|
||||
if (GGML_AMX_TILE)
|
||||
list(APPEND ARCH_FLAGS -mamx-tile)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AMX_TILE)
|
||||
endif()
|
||||
if (GGML_AMX_INT8)
|
||||
list(APPEND ARCH_FLAGS -mamx-int8)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AMX_INT8)
|
||||
endif()
|
||||
if (GGML_AMX_BF16)
|
||||
list(APPEND ARCH_FLAGS -mamx-bf16)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_AMX_BF16)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR "${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
|
||||
message(STATUS "PowerPC detected")
|
||||
if (GGML_NATIVE)
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||
file(READ "/proc/cpuinfo" POWER10_M)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "powerpc")
|
||||
execute_process(COMMAND bash -c "prtconf |grep 'Implementation' | head -n 1" OUTPUT_VARIABLE POWER10_M)
|
||||
endif()
|
||||
|
||||
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M}")
|
||||
string(REGEX REPLACE "POWER *([0-9]+)" "\\1" EXTRACTED_NUMBER "${MATCHED_STRING}")
|
||||
|
||||
if (EXTRACTED_NUMBER GREATER_EQUAL 10)
|
||||
list(APPEND ARCH_FLAGS -mcpu=power10 -mpowerpc64)
|
||||
elseif (EXTRACTED_NUMBER EQUAL 9)
|
||||
list(APPEND ARCH_FLAGS -mcpu=power9 -mpowerpc64)
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
|
||||
list(APPEND ARCH_FLAGS -mcpu=powerpc64le -mtune=native)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native -mpowerpc64)
|
||||
endif()
|
||||
else()
|
||||
if (GGML_CPU_POWERPC_CPUTYPE)
|
||||
list(APPEND ARCH_FLAGS -mcpu=${GGML_CPU_POWERPC_CPUTYPE})
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||
message(STATUS "loongarch64 detected")
|
||||
|
||||
list(APPEND ARCH_FLAGS -march=loongarch64)
|
||||
if (GGML_LASX)
|
||||
list(APPEND ARCH_FLAGS -mlasx)
|
||||
endif()
|
||||
if (GGML_LSX)
|
||||
list(APPEND ARCH_FLAGS -mlsx)
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
|
||||
message(STATUS "RISC-V detected")
|
||||
if (GGML_RVV)
|
||||
if (GGML_RV_ZFH)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -DGGML_RV_ZFH -mabi=lp64d)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
|
||||
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
|
||||
|
||||
# TODO: Separation to determine activation of VX/VXE/VXE2
|
||||
if (${S390X_M} MATCHES "8561|8562")
|
||||
message(STATUS "z15 target")
|
||||
list(APPEND ARCH_FLAGS -march=z15 -mtune=z15)
|
||||
elseif (${S390X_M} MATCHES "3931")
|
||||
message(STATUS "z16 target")
|
||||
list(APPEND ARCH_FLAGS -march=z16 -mtune=z16)
|
||||
else()
|
||||
message(STATUS "Unknown target")
|
||||
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")
|
||||
list(APPEND ARCH_FLAGS -march=native -mtune=native)
|
||||
endif()
|
||||
|
||||
if (GGML_VXE)
|
||||
list(APPEND ARCH_FLAGS -mvx -mzvector)
|
||||
endif()
|
||||
else()
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_AARCH64)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_AARCH64)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_KLEIDIAI)
|
||||
message(STATUS "Using KleidiAI optimized kernels if applicable")
|
||||
|
||||
# Disable the KleidiAI tests
|
||||
set(KLEIDIAI_BUILD_TESTS OFF)
|
||||
|
||||
# Fetch KleidiAI sources:
|
||||
include(FetchContent)
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.5.0")
|
||||
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "ea22e1aefb800e9bc8c74d91633cc58e")
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
endif()
|
||||
|
||||
FetchContent_Declare(KleidiAI_Download
|
||||
URL ${KLEIDIAI_DOWNLOAD_URL}
|
||||
DOWNLOAD_EXTRACT_TIMESTAMP NEW
|
||||
URL_HASH MD5=${KLEIDIAI_ARCHIVE_MD5})
|
||||
|
||||
FetchContent_MakeAvailable(KleidiAI_Download)
|
||||
FetchContent_GetProperties(KleidiAI_Download
|
||||
SOURCE_DIR KLEIDIAI_SRC
|
||||
POPULATED KLEIDIAI_POPULATED)
|
||||
|
||||
if (NOT KLEIDIAI_POPULATED)
|
||||
message(FATAL_ERROR "KleidiAI source downloaded failed.")
|
||||
endif()
|
||||
|
||||
add_compile_definitions(GGML_USE_CPU_KLEIDIAI)
|
||||
|
||||
# Remove kleidiai target after fetching it
|
||||
if (TARGET kleidiai)
|
||||
set_target_properties(kleidiai PROPERTIES EXCLUDE_FROM_ALL TRUE)
|
||||
endif()
|
||||
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/kleidiai/kleidiai.cpp
|
||||
ggml-cpu/kleidiai/kernels.cpp
|
||||
ggml-cpu/kleidiai/kleidiai.h
|
||||
ggml-cpu/kleidiai/kernels.h
|
||||
)
|
||||
|
||||
# KleidiAI
|
||||
include_directories(
|
||||
${KLEIDIAI_SRC}/
|
||||
${KLEIDIAI_SRC}/kai/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/)
|
||||
|
||||
set(ARCH_FLAGS_TEMP "${ARCH_FLAGS}")
|
||||
if (NOT ARCH_FLAGS_TEMP)
|
||||
string(REGEX MATCH "-march=[^ ]+" ARCH_FLAGS_TEMP "${CMAKE_C_FLAGS}")
|
||||
endif()
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+dotprod" DOTPROD_ENABLED)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+i8mm" I8MM_ENABLED)
|
||||
string(FIND "${ARCH_FLAGS_TEMP}" "+sme" SME_ENABLED)
|
||||
|
||||
set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS})
|
||||
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
|
||||
|
||||
if (NOT DOTPROD_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c)
|
||||
endif()
|
||||
|
||||
if (NOT I8MM_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.c)
|
||||
endif()
|
||||
|
||||
if (NOT SME_ENABLED MATCHES -1)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c)
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c)
|
||||
set(PRIVATE_ARCH_FLAGS "${PRIVATE_ARCH_FLAGS}+sve+sve2")
|
||||
endif()
|
||||
|
||||
set_source_files_properties(${GGML_KLEIDIAI_SOURCES} PROPERTIES COMPILE_OPTIONS "${PRIVATE_ARCH_FLAGS}")
|
||||
list(APPEND GGML_CPU_SOURCES ${GGML_KLEIDIAI_SOURCES})
|
||||
endif()
|
||||
|
||||
message(STATUS "Adding CPU backend variant ${GGML_CPU_NAME}: ${ARCH_FLAGS} ${ARCH_DEFINITIONS}")
|
||||
target_sources(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_SOURCES})
|
||||
target_compile_options(${GGML_CPU_NAME} PRIVATE ${ARCH_FLAGS})
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
|
||||
if (GGML_BACKEND_DL)
|
||||
if (GGML_NATIVE)
|
||||
# the feature check relies on ARCH_DEFINITIONS, but it is not set with GGML_NATIVE
|
||||
message(FATAL_ERROR "GGML_NATIVE is not compatible with GGML_BACKEND_DL, consider using GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
|
||||
# The feature detection code is compiled as a separate target so that
|
||||
# it can be built without the architecture flags
|
||||
# Since multiple variants of the CPU backend may be included in the same
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${GGML_CPU_NAME}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/cpu-feats-x86.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARCH_DEFINITIONS})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_FEATS_NAME})
|
||||
endif()
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set_target_properties(${GGML_CPU_NAME} PROPERTIES COMPILE_FLAGS "-msimd128")
|
||||
endif()
|
||||
endfunction()
|
@ -1,221 +0,0 @@
|
||||
#include "amx.h"
|
||||
#include "common.h"
|
||||
#include "mmq.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
#include <sys/syscall.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
|
||||
// AMX type_trais
|
||||
namespace ggml::cpu::amx {
|
||||
class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
|
||||
size = ggml_backend_amx_desired_wsize(op);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) override {
|
||||
if (op->op == GGML_OP_MUL_MAT) {
|
||||
ggml_backend_amx_mul_mat(params, op);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struct ggml_tensor *) {
|
||||
static tensor_traits traits;
|
||||
return &traits;
|
||||
}
|
||||
} // namespace ggml::cpu::amx
|
||||
|
||||
// AMX buffer interface
|
||||
static void ggml_backend_amx_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
free(buffer->context);
|
||||
}
|
||||
|
||||
static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *) (buffer->context);
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_amx_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *) ggml::cpu::amx::get_tensor_traits(buffer, tensor);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
||||
uint8_t value, size_t offset, size_t size) {
|
||||
memset((char *) tensor->data + offset, value, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
||||
const void * data, size_t offset, size_t size) {
|
||||
if (qtype_has_amx_kernels(tensor->type)) {
|
||||
GGML_LOG_DEBUG("%s: amx repack tensor %s of type %s\n", __func__, tensor->name, ggml_type_name(tensor->type));
|
||||
ggml_backend_amx_convert_weight(tensor, data, offset, size);
|
||||
} else {
|
||||
memcpy((char *) tensor->data + offset, data, size);
|
||||
}
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
/*
|
||||
// need to figure what we need to do with buffer->extra.
|
||||
static void ggml_backend_amx_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(!qtype_has_amx_kernels(tensor->type));
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
if (qtype_has_amx_kernels(src->type)) {
|
||||
ggml_backend_amx_convert_weight(dst, src->data, 0, ggml_nbytes(dst));
|
||||
} else {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
*/
|
||||
|
||||
static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
memset(buffer->context, value, buffer->size);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_i ggml_backend_amx_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_amx_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_amx_buffer_get_base,
|
||||
/* .init_tensor = */ ggml_backend_amx_buffer_init_tensor,
|
||||
/* .memset_tensor = */ ggml_backend_amx_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_amx_buffer_set_tensor,
|
||||
/* .get_tensor = */ nullptr,
|
||||
/* .cpy_tensor = */ nullptr,
|
||||
/* .clear = */ ggml_backend_amx_buffer_clear,
|
||||
/* .reset = */ nullptr,
|
||||
};
|
||||
|
||||
static const char * ggml_backend_amx_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_amx_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * data = ggml_aligned_malloc(size);
|
||||
if (data == NULL) {
|
||||
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(buft, ggml_backend_amx_buffer_interface, data, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return TENSOR_ALIGNMENT;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
namespace ggml::cpu::amx {
|
||||
class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
||||
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
|
||||
// handle only 2d gemm for now
|
||||
auto is_contiguous_2d = [](const struct ggml_tensor * t) {
|
||||
return ggml_is_contiguous(t) && t->ne[3] == 1 && t->ne[2] == 1;
|
||||
};
|
||||
|
||||
if (op->op == GGML_OP_MUL_MAT && is_contiguous_2d(op->src[0]) && // src0 must be contiguous
|
||||
is_contiguous_2d(op->src[1]) && // src1 must be contiguous
|
||||
op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_amx_buffer_type() &&
|
||||
op->ne[0] % (TILE_N * 2) == 0 && // out_features is 32x
|
||||
(qtype_has_amx_kernels(op->src[0]->type) || (op->src[0]->type == GGML_TYPE_F16))) {
|
||||
// src1 must be host buffer
|
||||
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
|
||||
return false;
|
||||
}
|
||||
// src1 must be float32
|
||||
if (op->src[1]->type == GGML_TYPE_F32) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
|
||||
if (op->op == GGML_OP_MUL_MAT && op->src[0]->buffer &&
|
||||
op->src[0]->buffer->buft == ggml_backend_amx_buffer_type()) {
|
||||
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
|
||||
}
|
||||
|
||||
return nullptr;
|
||||
}
|
||||
};
|
||||
} // namespace ggml::cpu::amx
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
return ggml_backend_amx_get_alloc_size(tensor);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
#define ARCH_GET_XCOMP_PERM 0x1022
|
||||
#define ARCH_REQ_XCOMP_PERM 0x1023
|
||||
#define XFEATURE_XTILECFG 17
|
||||
#define XFEATURE_XTILEDATA 18
|
||||
|
||||
static bool ggml_amx_init() {
|
||||
#if defined(__gnu_linux__)
|
||||
if (syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA)) {
|
||||
fprintf(stderr, "AMX is not ready to be used!\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
#elif defined(_WIN32)
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type() {
|
||||
static struct ggml_backend_buffer_type ggml_backend_buffer_type_amx = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
|
||||
/* .is_host = */ nullptr,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ new ggml::cpu::amx::extra_buffer_type(),
|
||||
};
|
||||
|
||||
if (!ggml_amx_init()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return &ggml_backend_buffer_type_amx;
|
||||
}
|
||||
|
||||
#endif // defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
@ -1,8 +0,0 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
|
||||
#endif
|
@ -1,91 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
|
||||
#if defined(GGML_USE_OPENMP)
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#define TILE_M 16
|
||||
#define TILE_N 16
|
||||
#define TILE_K 32
|
||||
#define VNNI_BLK 4
|
||||
|
||||
#define AMX_BLK_SIZE 32
|
||||
|
||||
#define TMM0 0
|
||||
#define TMM1 1
|
||||
#define TMM2 2
|
||||
#define TMM3 3
|
||||
#define TMM4 4
|
||||
#define TMM5 5
|
||||
#define TMM6 6
|
||||
#define TMM7 7
|
||||
|
||||
// parallel routines
|
||||
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
||||
inline T div_up(T x, T y) { return (x + y - 1) / y; }
|
||||
|
||||
template <typename T>
|
||||
inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
|
||||
#if 0
|
||||
// onednn partition pattern
|
||||
T& n_my = n_end;
|
||||
if (nth <= 1 || n == 0) {
|
||||
n_start = 0;
|
||||
n_my = n;
|
||||
} else {
|
||||
T n1 = div_up(n, nth);
|
||||
T n2 = n1 - 1;
|
||||
T T1 = n - n2 * nth;
|
||||
n_my = ith < T1 ? n1 : n2;
|
||||
n_start = ith <= T1 ? ith*n1 : T1 * n1 + (ith - T1) * n2;
|
||||
}
|
||||
n_end += n_start;
|
||||
#else
|
||||
// pytorch aten partition pattern
|
||||
T n_my = div_up(n, nth);
|
||||
n_start = ith * n_my;
|
||||
n_end = std::min(n_start + n_my, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename func_t>
|
||||
inline void parallel_for(int n, const func_t& f) {
|
||||
#if defined(GGML_USE_OPENMP)
|
||||
#pragma omp parallel
|
||||
{
|
||||
int nth = omp_get_num_threads();
|
||||
int ith = omp_get_thread_num();
|
||||
int tbegin, tend;
|
||||
balance211(n, nth, ith, tbegin, tend);
|
||||
f(tbegin, tend);
|
||||
}
|
||||
#else
|
||||
f(0, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename func_t>
|
||||
inline void parallel_for_ggml(const ggml_compute_params * params, int n, const func_t & f) {
|
||||
int tbegin, tend;
|
||||
balance211(n, params->nth, params->ith, tbegin, tend);
|
||||
f(tbegin, tend);
|
||||
}
|
||||
|
||||
// quantized types that have AMX support
|
||||
inline bool qtype_has_amx_kernels(const enum ggml_type type) {
|
||||
// TODO: fix padding for vnni format
|
||||
return (type == GGML_TYPE_Q4_0) ||
|
||||
(type == GGML_TYPE_Q4_1) ||
|
||||
(type == GGML_TYPE_Q8_0) ||
|
||||
(type == GGML_TYPE_Q4_K) ||
|
||||
(type == GGML_TYPE_Q5_K) ||
|
||||
(type == GGML_TYPE_Q6_K) ||
|
||||
(type == GGML_TYPE_IQ4_XS);
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,10 +0,0 @@
|
||||
#pragma once
|
||||
#include "common.h"
|
||||
|
||||
size_t ggml_backend_amx_desired_wsize(const struct ggml_tensor * dst);
|
||||
|
||||
size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor);
|
||||
|
||||
void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
|
||||
void ggml_backend_amx_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
@ -1,158 +0,0 @@
|
||||
#include "binary-ops.h"
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
using vDSP_fn_t = void (*)(const float *, vDSP_Stride, const float *, vDSP_Stride, float *, vDSP_Stride, vDSP_Length);
|
||||
#endif
|
||||
|
||||
static inline float op_add(float a, float b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
static inline float op_sub(float a, float b) {
|
||||
return a - b;
|
||||
}
|
||||
|
||||
static inline float op_mul(float a, float b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
static inline float op_div(float a, float b) {
|
||||
return a / b;
|
||||
}
|
||||
|
||||
template <float (*op)(float, float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static inline void vec_binary_op_contiguous(const int64_t n, dst_t * z, const src0_t * x, const src1_t * y) {
|
||||
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
|
||||
constexpr auto src1_to_f32 = type_conversion_table<src1_t>::to_f32;
|
||||
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
z[i] = f32_to_dst(op(src0_to_f32(x[i]), src1_to_f32(y[i])));
|
||||
}
|
||||
}
|
||||
|
||||
template <float (*op)(float, float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static inline void vec_binary_op_non_contiguous(const int64_t n, const int64_t ne10, const int64_t nb10, dst_t * z, const src0_t * x, const src1_t * y) {
|
||||
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
|
||||
constexpr auto src1_to_f32 = type_conversion_table<src1_t>::to_f32;
|
||||
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
int i10 = i % ne10;
|
||||
const src1_t * y_ptr = (const src1_t *)((const char *)y + i10*nb10);
|
||||
z[i] = f32_to_dst(op(src0_to_f32(x[i]), src1_to_f32(*y_ptr)));
|
||||
}
|
||||
}
|
||||
|
||||
template <float (*op)(float, float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static void apply_binary_op(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT( nb0 == sizeof(dst_t));
|
||||
GGML_ASSERT(nb00 == sizeof(src0_t));
|
||||
|
||||
const auto [ir0, ir1] = get_thread_range(params, src0);
|
||||
const bool is_src1_contiguous = (nb10 == sizeof(src1_t));
|
||||
|
||||
if (!is_src1_contiguous) { // broadcast not implemented yet for non-contiguous
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src1));
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
vDSP_fn_t vDSP_op = nullptr;
|
||||
// TODO - avoid the f32-only check using type 'trait' lookup tables and row-based src-to-float conversion functions
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
if (op == op_add) {
|
||||
vDSP_op = vDSP_vadd;
|
||||
} else if (op == op_sub) {
|
||||
vDSP_op = vDSP_vsub;
|
||||
} else if (op == op_mul) {
|
||||
vDSP_op = vDSP_vmul;
|
||||
} else if (op == op_div) {
|
||||
vDSP_op = vDSP_vdiv;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
||||
const int64_t i03 = ir/(ne02*ne01);
|
||||
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||
|
||||
const int64_t i13 = i03 % ne13;
|
||||
const int64_t i12 = i02 % ne12;
|
||||
const int64_t i11 = i01 % ne11;
|
||||
|
||||
dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
const src1_t * src1_ptr = (const src1_t *) ((const char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
|
||||
|
||||
if (is_src1_contiguous) {
|
||||
// src1 is broadcastable across src0 and dst in i1, i2, i3
|
||||
const int64_t nr0 = ne00 / ne10;
|
||||
|
||||
for (int64_t r = 0; r < nr0; ++r) {
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
if constexpr (std::is_same_v<src0_t, float> && std::is_same_v<src1_t, float> && std::is_same_v<dst_t, float>) {
|
||||
if (vDSP_op != nullptr) {
|
||||
vDSP_op(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
vec_binary_op_contiguous<op>(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
|
||||
}
|
||||
} else {
|
||||
vec_binary_op_non_contiguous<op>(ne0, ne10, nb10, dst_ptr, src0_ptr, src1_ptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Use the 'traits' lookup table (for type conversion fns), instead of a mass of 'if' conditions with long templates
|
||||
template <float (*op)(float, float)>
|
||||
static void binary_op(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
/* */ if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
|
||||
apply_binary_op<op, float, float, float>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
|
||||
apply_binary_op<op, ggml_fp16_t, ggml_fp16_t, ggml_fp16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
|
||||
apply_binary_op<op, ggml_bf16_t, ggml_bf16_t, ggml_bf16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_BF16) {
|
||||
apply_binary_op<op, ggml_bf16_t, float, ggml_bf16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
apply_binary_op<op, ggml_bf16_t, float, float>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
||||
apply_binary_op<op, ggml_fp16_t, float, ggml_fp16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
apply_binary_op<op, ggml_fp16_t, float, float>(params, dst);
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
|
||||
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_add_non_quantized(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
binary_op<op_add>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sub(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
binary_op<op_sub>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_mul(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
binary_op<op_mul>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_div(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
binary_op<op_div>(params, dst);
|
||||
}
|
@ -1,16 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ggml_compute_forward_add_non_quantized(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sub(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_mul(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_div(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,100 +0,0 @@
|
||||
include(CheckCSourceRuns)
|
||||
|
||||
set(AVX_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m256 a;
|
||||
a = _mm256_set1_ps(0);
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
set(AVX512_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m512i a = _mm512_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0);
|
||||
__m512i b = a;
|
||||
__mmask64 equality_mask = _mm512_cmp_epi8_mask(a, b, _MM_CMPINT_EQ);
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
set(AVX2_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m256i a = {0};
|
||||
a = _mm256_abs_epi16(a);
|
||||
__m256i x;
|
||||
_mm256_extract_epi64(x, 0); // we rely on this in our AVX2 code
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
set(FMA_CODE "
|
||||
#include <immintrin.h>
|
||||
int main()
|
||||
{
|
||||
__m256 acc = _mm256_setzero_ps();
|
||||
const __m256 d = _mm256_setzero_ps();
|
||||
const __m256 p = _mm256_setzero_ps();
|
||||
acc = _mm256_fmadd_ps( d, p, acc );
|
||||
return 0;
|
||||
}
|
||||
")
|
||||
|
||||
macro(check_sse type flags)
|
||||
set(__FLAG_I 1)
|
||||
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
|
||||
foreach (__FLAG ${flags})
|
||||
if (NOT ${type}_FOUND)
|
||||
set(CMAKE_REQUIRED_FLAGS ${__FLAG})
|
||||
check_c_source_runs("${${type}_CODE}" HAS_${type}_${__FLAG_I})
|
||||
if (HAS_${type}_${__FLAG_I})
|
||||
set(${type}_FOUND TRUE CACHE BOOL "${type} support")
|
||||
set(${type}_FLAGS "${__FLAG}" CACHE STRING "${type} flags")
|
||||
endif()
|
||||
math(EXPR __FLAG_I "${__FLAG_I}+1")
|
||||
endif()
|
||||
endforeach()
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
|
||||
|
||||
if (NOT ${type}_FOUND)
|
||||
set(${type}_FOUND FALSE CACHE BOOL "${type} support")
|
||||
set(${type}_FLAGS "" CACHE STRING "${type} flags")
|
||||
endif()
|
||||
|
||||
mark_as_advanced(${type}_FOUND ${type}_FLAGS)
|
||||
endmacro()
|
||||
|
||||
# flags are for MSVC only!
|
||||
check_sse("AVX" " ;/arch:AVX")
|
||||
if (NOT ${AVX_FOUND})
|
||||
set(GGML_AVX OFF)
|
||||
else()
|
||||
set(GGML_AVX ON)
|
||||
endif()
|
||||
|
||||
check_sse("AVX2" " ;/arch:AVX2")
|
||||
check_sse("FMA" " ;/arch:AVX2")
|
||||
if ((NOT ${AVX2_FOUND}) OR (NOT ${FMA_FOUND}))
|
||||
set(GGML_AVX2 OFF)
|
||||
else()
|
||||
set(GGML_AVX2 ON)
|
||||
endif()
|
||||
|
||||
check_sse("AVX512" " ;/arch:AVX512")
|
||||
if (NOT ${AVX512_FOUND})
|
||||
set(GGML_AVX512 OFF)
|
||||
else()
|
||||
set(GGML_AVX512 ON)
|
||||
endif()
|
@ -1,72 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
#include <utility>
|
||||
|
||||
// convenience functions/macros for use in template calls
|
||||
// note: these won't be required after the 'traits' lookup table is used.
|
||||
static inline ggml_fp16_t f32_to_f16(float x) {
|
||||
return GGML_FP32_TO_FP16(x);
|
||||
}
|
||||
|
||||
static inline float f16_to_f32(ggml_fp16_t x) {
|
||||
return GGML_FP16_TO_FP32(x);
|
||||
}
|
||||
|
||||
static inline ggml_bf16_t f32_to_bf16(float x) {
|
||||
return GGML_FP32_TO_BF16(x);
|
||||
}
|
||||
|
||||
static inline float bf16_to_f32(ggml_bf16_t x) {
|
||||
return GGML_BF16_TO_FP32(x);
|
||||
}
|
||||
|
||||
static inline float f32_to_f32(float x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
// TODO - merge this into the traits table, after using row-based conversions
|
||||
template <class T>
|
||||
struct type_conversion_table;
|
||||
|
||||
template <>
|
||||
struct type_conversion_table<ggml_fp16_t> {
|
||||
static constexpr float (*to_f32)(ggml_fp16_t) = f16_to_f32;
|
||||
static constexpr ggml_fp16_t (*from_f32)(float) = f32_to_f16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct type_conversion_table<float> {
|
||||
static constexpr float (*to_f32)(float) = f32_to_f32;
|
||||
static constexpr float (*from_f32)(float) = f32_to_f32;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct type_conversion_table<ggml_bf16_t> {
|
||||
static constexpr float (*to_f32)(ggml_bf16_t) = bf16_to_f32;
|
||||
static constexpr ggml_bf16_t (*from_f32)(float) = f32_to_bf16;
|
||||
};
|
||||
|
||||
static std::pair<int64_t, int64_t> get_thread_range(const struct ggml_compute_params * params, const struct ggml_tensor * src0) {
|
||||
const int64_t ith = params->ith;
|
||||
const int64_t nth = params->nth;
|
||||
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
||||
// rows per thread
|
||||
const int64_t dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int64_t ir0 = dr*ith;
|
||||
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
return {ir0, ir1};
|
||||
}
|
||||
|
||||
#endif
|
@ -1,327 +0,0 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
#include <cstring>
|
||||
#include <vector>
|
||||
#include <bitset>
|
||||
#include <array>
|
||||
#include <string>
|
||||
|
||||
// ref: https://cdrdv2-public.intel.com/782156/325383-sdm-vol-2abcd.pdf
|
||||
struct cpuid_x86 {
|
||||
bool SSE3(void) { return f_1_ecx[0]; }
|
||||
bool PCLMULQDQ(void) { return f_1_ecx[1]; }
|
||||
bool MONITOR(void) { return f_1_ecx[3]; }
|
||||
bool SSSE3(void) { return f_1_ecx[9]; }
|
||||
bool FMA(void) { return f_1_ecx[12]; }
|
||||
bool CMPXCHG16B(void) { return f_1_ecx[13]; }
|
||||
bool SSE41(void) { return f_1_ecx[19]; }
|
||||
bool SSE42(void) { return f_1_ecx[20]; }
|
||||
bool MOVBE(void) { return f_1_ecx[22]; }
|
||||
bool POPCNT(void) { return f_1_ecx[23]; }
|
||||
bool AES(void) { return f_1_ecx[25]; }
|
||||
bool XSAVE(void) { return f_1_ecx[26]; }
|
||||
bool OSXSAVE(void) { return f_1_ecx[27]; }
|
||||
bool AVX(void) { return f_1_ecx[28]; }
|
||||
bool F16C(void) { return f_1_ecx[29]; }
|
||||
bool RDRAND(void) { return f_1_ecx[30]; }
|
||||
|
||||
bool MSR(void) { return f_1_edx[5]; }
|
||||
bool CX8(void) { return f_1_edx[8]; }
|
||||
bool SEP(void) { return f_1_edx[11]; }
|
||||
bool CMOV(void) { return f_1_edx[15]; }
|
||||
bool CLFSH(void) { return f_1_edx[19]; }
|
||||
bool MMX(void) { return f_1_edx[23]; }
|
||||
bool FXSR(void) { return f_1_edx[24]; }
|
||||
bool SSE(void) { return f_1_edx[25]; }
|
||||
bool SSE2(void) { return f_1_edx[26]; }
|
||||
|
||||
bool FSGSBASE(void) { return f_7_ebx[0]; }
|
||||
bool BMI1(void) { return f_7_ebx[3]; }
|
||||
bool HLE(void) { return is_intel && f_7_ebx[4]; }
|
||||
bool AVX2(void) { return f_7_ebx[5]; }
|
||||
bool BMI2(void) { return f_7_ebx[8]; }
|
||||
bool ERMS(void) { return f_7_ebx[9]; }
|
||||
bool INVPCID(void) { return f_7_ebx[10]; }
|
||||
bool RTM(void) { return is_intel && f_7_ebx[11]; }
|
||||
bool AVX512F(void) { return f_7_ebx[16]; }
|
||||
bool AVX512DQ(void) { return f_7_ebx[17]; }
|
||||
bool RDSEED(void) { return f_7_ebx[18]; }
|
||||
bool ADX(void) { return f_7_ebx[19]; }
|
||||
bool AVX512PF(void) { return f_7_ebx[26]; }
|
||||
bool AVX512ER(void) { return f_7_ebx[27]; }
|
||||
bool AVX512CD(void) { return f_7_ebx[28]; }
|
||||
bool AVX512BW(void) { return f_7_ebx[30]; }
|
||||
bool AVX512VL(void) { return f_7_ebx[31]; }
|
||||
|
||||
bool SHA(void) { return f_7_ebx[29]; }
|
||||
|
||||
bool PREFETCHWT1(void) { return f_7_ecx[0]; }
|
||||
|
||||
bool LAHF(void) { return f_81_ecx[0]; }
|
||||
bool LZCNT(void) { return is_intel && f_81_ecx[5]; }
|
||||
bool ABM(void) { return is_amd && f_81_ecx[5]; }
|
||||
bool SSE4a(void) { return is_amd && f_81_ecx[6]; }
|
||||
bool XOP(void) { return is_amd && f_81_ecx[11]; }
|
||||
bool TBM(void) { return is_amd && f_81_ecx[21]; }
|
||||
|
||||
bool SYSCALL(void) { return is_intel && f_81_edx[11]; }
|
||||
bool MMXEXT(void) { return is_amd && f_81_edx[22]; }
|
||||
bool RDTSCP(void) { return is_intel && f_81_edx[27]; }
|
||||
bool _3DNOWEXT(void) { return is_amd && f_81_edx[30]; }
|
||||
bool _3DNOW(void) { return is_amd && f_81_edx[31]; }
|
||||
|
||||
bool AVX512_VBMI(void) { return f_7_ecx[1]; }
|
||||
bool AVX512_VNNI(void) { return f_7_ecx[11]; }
|
||||
bool AVX512_FP16(void) { return f_7_edx[23]; }
|
||||
bool AVX512_BF16(void) { return f_7_1_eax[5]; }
|
||||
bool AVX_VNNI(void) { return f_7_1_eax[4]; }
|
||||
|
||||
bool AMX_TILE(void) { return f_7_edx[24]; }
|
||||
bool AMX_INT8(void) { return f_7_edx[25]; }
|
||||
bool AMX_FP16(void) { return f_7_1_eax[21]; }
|
||||
bool AMX_BF16(void) { return f_7_edx[22]; }
|
||||
|
||||
#ifdef _MSC_VER
|
||||
static void cpuid(int cpu_info[4], int eax) {
|
||||
__cpuid(cpu_info, eax);
|
||||
}
|
||||
static void cpuidex(int cpu_info[4], int eax, int ecx) {
|
||||
__cpuidex(cpu_info, eax, ecx);
|
||||
}
|
||||
#else
|
||||
static void cpuid(int cpu_info[4], int eax) {
|
||||
__asm__ __volatile__(
|
||||
"cpuid"
|
||||
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
|
||||
: "a"(eax), "c"(0));
|
||||
}
|
||||
static void cpuidex(int cpu_info[4], int eax, int ecx) {
|
||||
__asm__ __volatile__(
|
||||
"cpuid"
|
||||
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]), "=d"(cpu_info[3])
|
||||
: "a"(eax), "c"(ecx));
|
||||
}
|
||||
#endif
|
||||
|
||||
cpuid_x86() {
|
||||
std::array<int, 4> cpui;
|
||||
std::vector<std::array<int, 4>> data;
|
||||
|
||||
// calling __cpuid with 0x0 as the function_id argument
|
||||
// gets the number of the highest valid function ID.
|
||||
cpuid(cpui.data(), 0);
|
||||
int n_ids = cpui[0];
|
||||
|
||||
for (int i = 0; i <= n_ids; ++i) {
|
||||
cpuidex(cpui.data(), i, 0);
|
||||
data.push_back(cpui);
|
||||
}
|
||||
|
||||
// capture vendor string
|
||||
char vendor[0x20] = {};
|
||||
*reinterpret_cast<int *>(vendor) = data[0][1];
|
||||
*reinterpret_cast<int *>(vendor + 4) = data[0][3];
|
||||
*reinterpret_cast<int *>(vendor + 8) = data[0][2];
|
||||
this->vendor = vendor;
|
||||
if (this->vendor == "GenuineIntel") {
|
||||
is_intel = true;
|
||||
} else if (this->vendor == "AuthenticAMD") {
|
||||
is_amd = true;
|
||||
}
|
||||
|
||||
// load bitset with flags for function 0x00000001
|
||||
if (n_ids >= 1) {
|
||||
f_1_ecx = data[1][2];
|
||||
f_1_edx = data[1][3];
|
||||
}
|
||||
|
||||
// load bitset with flags for function 0x00000007
|
||||
if (n_ids >= 7) {
|
||||
f_7_ebx = data[7][1];
|
||||
f_7_ecx = data[7][2];
|
||||
f_7_edx = data[7][3];
|
||||
cpuidex(cpui.data(), 7, 1);
|
||||
f_7_1_eax = cpui[0];
|
||||
}
|
||||
|
||||
// calling __cpuid with 0x80000000 as the function_id argument
|
||||
// gets the number of the highest valid extended ID.
|
||||
cpuid(cpui.data(), 0x80000000);
|
||||
unsigned int n_ex_ids = cpui[0];
|
||||
|
||||
std::vector<std::array<int, 4>> ext_data;
|
||||
for (unsigned int i = 0x80000000; i <= n_ex_ids; ++i) {
|
||||
cpuidex(cpui.data(), i, 0);
|
||||
ext_data.push_back(cpui);
|
||||
}
|
||||
|
||||
// load bitset with flags for function 0x80000001
|
||||
if (n_ex_ids >= 0x80000001) {
|
||||
f_81_ecx = ext_data[1][2];
|
||||
f_81_edx = ext_data[1][3];
|
||||
}
|
||||
|
||||
// interpret CPU brand string if reported
|
||||
char brand[0x40] = {};
|
||||
if (n_ex_ids >= 0x80000004) {
|
||||
std::memcpy(brand, ext_data[2].data(), sizeof(cpui));
|
||||
std::memcpy(brand + 16, ext_data[3].data(), sizeof(cpui));
|
||||
std::memcpy(brand + 32, ext_data[4].data(), sizeof(cpui));
|
||||
this->brand = brand;
|
||||
}
|
||||
}
|
||||
|
||||
bool is_intel = false;
|
||||
bool is_amd = false;
|
||||
std::string vendor;
|
||||
std::string brand;
|
||||
std::bitset<32> f_1_ecx;
|
||||
std::bitset<32> f_1_edx;
|
||||
std::bitset<32> f_7_ebx;
|
||||
std::bitset<32> f_7_ecx;
|
||||
std::bitset<32> f_7_edx;
|
||||
std::bitset<32> f_7_1_eax;
|
||||
std::bitset<32> f_81_ecx;
|
||||
std::bitset<32> f_81_edx;
|
||||
};
|
||||
|
||||
#if 0
|
||||
void test_x86_is() {
|
||||
cpuid_x86 is;
|
||||
printf("CPU Vendor: %s\n", is.vendor.c_str());
|
||||
printf("Brand: %s\n", is.brand.c_str());
|
||||
printf("is_intel: %d\n", is.is_intel);
|
||||
printf("is_amd: %d\n", is.is_amd);
|
||||
printf("sse3: %d\n", is.SSE3());
|
||||
printf("pclmulqdq: %d\n", is.PCLMULQDQ());
|
||||
printf("ssse3: %d\n", is.SSSE3());
|
||||
printf("fma: %d\n", is.FMA());
|
||||
printf("cmpxchg16b: %d\n", is.CMPXCHG16B());
|
||||
printf("sse41: %d\n", is.SSE41());
|
||||
printf("sse42: %d\n", is.SSE42());
|
||||
printf("movbe: %d\n", is.MOVBE());
|
||||
printf("popcnt: %d\n", is.POPCNT());
|
||||
printf("aes: %d\n", is.AES());
|
||||
printf("xsave: %d\n", is.XSAVE());
|
||||
printf("osxsave: %d\n", is.OSXSAVE());
|
||||
printf("avx: %d\n", is.AVX());
|
||||
printf("f16c: %d\n", is.F16C());
|
||||
printf("rdrand: %d\n", is.RDRAND());
|
||||
printf("msr: %d\n", is.MSR());
|
||||
printf("cx8: %d\n", is.CX8());
|
||||
printf("sep: %d\n", is.SEP());
|
||||
printf("cmov: %d\n", is.CMOV());
|
||||
printf("clflush: %d\n", is.CLFSH());
|
||||
printf("mmx: %d\n", is.MMX());
|
||||
printf("fxsr: %d\n", is.FXSR());
|
||||
printf("sse: %d\n", is.SSE());
|
||||
printf("sse2: %d\n", is.SSE2());
|
||||
printf("fsgsbase: %d\n", is.FSGSBASE());
|
||||
printf("bmi1: %d\n", is.BMI1());
|
||||
printf("hle: %d\n", is.HLE());
|
||||
printf("avx2: %d\n", is.AVX2());
|
||||
printf("bmi2: %d\n", is.BMI2());
|
||||
printf("erms: %d\n", is.ERMS());
|
||||
printf("invpcid: %d\n", is.INVPCID());
|
||||
printf("rtm: %d\n", is.RTM());
|
||||
printf("avx512f: %d\n", is.AVX512F());
|
||||
printf("rdseed: %d\n", is.RDSEED());
|
||||
printf("adx: %d\n", is.ADX());
|
||||
printf("avx512pf: %d\n", is.AVX512PF());
|
||||
printf("avx512er: %d\n", is.AVX512ER());
|
||||
printf("avx512cd: %d\n", is.AVX512CD());
|
||||
printf("sha: %d\n", is.SHA());
|
||||
printf("prefetchwt1: %d\n", is.PREFETCHWT1());
|
||||
printf("lahf: %d\n", is.LAHF());
|
||||
printf("lzcnt: %d\n", is.LZCNT());
|
||||
printf("abm: %d\n", is.ABM());
|
||||
printf("sse4a: %d\n", is.SSE4a());
|
||||
printf("xop: %d\n", is.XOP());
|
||||
printf("tbm: %d\n", is.TBM());
|
||||
printf("syscall: %d\n", is.SYSCALL());
|
||||
printf("mmxext: %d\n", is.MMXEXT());
|
||||
printf("rdtscp: %d\n", is.RDTSCP());
|
||||
printf("3dnowext: %d\n", is._3DNOWEXT());
|
||||
printf("3dnow: %d\n", is._3DNOW());
|
||||
printf("avx512_vbmi: %d\n", is.AVX512_VBMI());
|
||||
printf("avx512_vnni: %d\n", is.AVX512_VNNI());
|
||||
printf("avx512_fp16: %d\n", is.AVX512_FP16());
|
||||
printf("avx512_bf16: %d\n", is.AVX512_BF16());
|
||||
printf("amx_tile: %d\n", is.AMX_TILE());
|
||||
printf("amx_int8: %d\n", is.AMX_INT8());
|
||||
printf("amx_fp16: %d\n", is.AMX_FP16());
|
||||
printf("amx_bf16: %d\n", is.AMX_BF16());
|
||||
}
|
||||
#endif
|
||||
|
||||
static int ggml_backend_cpu_x86_score() {
|
||||
// FIXME: this does not check for OS support
|
||||
|
||||
int score = 0;
|
||||
cpuid_x86 is;
|
||||
|
||||
#ifdef GGML_FMA
|
||||
if (!is.FMA()) { return 0; }
|
||||
score += 1;
|
||||
#endif
|
||||
#ifdef GGML_F16C
|
||||
if (!is.F16C()) { return 0; }
|
||||
score += 1<<1;
|
||||
#endif
|
||||
#ifdef GGML_SSE42
|
||||
if (!is.SSE42()) { return 0; }
|
||||
score += 1<<2;
|
||||
#endif
|
||||
#ifdef GGML_BMI2
|
||||
if (!is.BMI2()) { return 0; }
|
||||
score += 1<<3;
|
||||
#endif
|
||||
#ifdef GGML_AVX
|
||||
if (!is.AVX()) { return 0; }
|
||||
score += 1<<4;
|
||||
#endif
|
||||
#ifdef GGML_AVX2
|
||||
if (!is.AVX2()) { return 0; }
|
||||
score += 1<<5;
|
||||
#endif
|
||||
#ifdef GGML_AVX_VNNI
|
||||
if (!is.AVX_VNNI()) { return 0; }
|
||||
score += 1<<6;
|
||||
#endif
|
||||
#ifdef GGML_AVX512
|
||||
if (!is.AVX512F()) { return 0; }
|
||||
if (!is.AVX512CD()) { return 0; }
|
||||
if (!is.AVX512VL()) { return 0; }
|
||||
if (!is.AVX512DQ()) { return 0; }
|
||||
if (!is.AVX512BW()) { return 0; }
|
||||
score += 1<<7;
|
||||
#endif
|
||||
#ifdef GGML_AVX512_VBMI
|
||||
if (!is.AVX512_VBMI()) { return 0; }
|
||||
score += 1<<8;
|
||||
#endif
|
||||
#ifdef GGML_AVX512_BF16
|
||||
if (!is.AVX512_BF16()) { return 0; }
|
||||
score += 1<<9;
|
||||
#endif
|
||||
#ifdef GGML_AVX512_VNNI
|
||||
if (!is.AVX512_VNNI()) { return 0; }
|
||||
score += 1<<10;
|
||||
#endif
|
||||
#ifdef GGML_AMX_INT8
|
||||
if (!is.AMX_INT8()) { return 0; }
|
||||
score += 1<<11;
|
||||
#endif
|
||||
|
||||
return score;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_x86_score)
|
||||
|
||||
#endif // defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
|
File diff suppressed because it is too large
Load Diff
@ -1,8 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);
|
@ -1,55 +0,0 @@
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#include "ggml-cpu-hbm.h"
|
||||
|
||||
// buffer type HBM
|
||||
|
||||
#include <hbwmalloc.h>
|
||||
|
||||
static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CPU_HBM";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
hbw_free(buffer->context);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
|
||||
size_t size) {
|
||||
void * ptr;
|
||||
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
|
||||
if (result != 0) {
|
||||
GGML_LOG_ERROR("failed to allocate HBM buffer of size %zu\n", size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
buffer->buft = buft;
|
||||
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
|
||||
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
||||
},
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
return &ggml_backend_cpu_buffer_type_hbm;
|
||||
}
|
||||
#endif
|
@ -1,8 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML CPU internal header
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
@ -1,531 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
// GGML CPU internal header
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
|
||||
//#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h> // memcpy
|
||||
#include <math.h> // fabsf
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_compute_params {
|
||||
// ith = thread index, nth = number of threads
|
||||
int ith, nth;
|
||||
|
||||
// work buffer for all threads
|
||||
size_t wsize;
|
||||
void * wdata;
|
||||
|
||||
struct ggml_threadpool * threadpool;
|
||||
};
|
||||
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define m512bh(p) p
|
||||
#define m512i(p) p
|
||||
|
||||
#else
|
||||
|
||||
#define m512bh(p) (__m512bh)(p)
|
||||
#define m512i(p) (__m512i)(p)
|
||||
|
||||
#endif
|
||||
|
||||
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
||||
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __FMA__
|
||||
#define __FMA__
|
||||
#endif
|
||||
#ifndef __F16C__
|
||||
#define __F16C__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
|
||||
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
|
||||
#ifndef __SSE3__
|
||||
#define __SSE3__
|
||||
#endif
|
||||
#ifndef __SSSE3__
|
||||
#define __SSSE3__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__s390x__) && defined(__VEC__)
|
||||
#ifndef __VXE__
|
||||
#define __VXE__
|
||||
#endif
|
||||
#ifndef __VXE2__
|
||||
#define __VXE2__
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <arm_sve.h>
|
||||
#include <sys/prctl.h>
|
||||
#endif
|
||||
|
||||
// 16-bit float
|
||||
// on Arm, we use __fp16
|
||||
// on x86, we use uint16_t
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
||||
typedef uint16_t ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
|
||||
|
||||
#else
|
||||
|
||||
typedef __fp16 ggml_fp16_internal_t;
|
||||
|
||||
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
|
||||
|
||||
#endif // _MSC_VER
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
// 32-bit ARM compatibility
|
||||
|
||||
// vaddlvq_s16
|
||||
// vpaddq_s16
|
||||
// vpaddq_s32
|
||||
// vaddvq_s32
|
||||
// vaddvq_f32
|
||||
// vmaxvq_f32
|
||||
// vcvtnq_s32_f32
|
||||
// vzip1_u8
|
||||
// vzip2_u8
|
||||
|
||||
inline static int32_t vaddlvq_s16(int16x8_t v) {
|
||||
int32x4_t v0 = vreinterpretq_s32_s64(vpaddlq_s32(vpaddlq_s16(v)));
|
||||
return vgetq_lane_s32(v0, 0) + vgetq_lane_s32(v0, 2);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
|
||||
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
|
||||
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
|
||||
return vcombine_s32(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vaddvq_f32(float32x4_t v) {
|
||||
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vmaxvq_f32(float32x4_t v) {
|
||||
return
|
||||
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
||||
}
|
||||
|
||||
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
||||
int32x4_t res;
|
||||
|
||||
res[0] = roundf(vgetq_lane_f32(v, 0));
|
||||
res[1] = roundf(vgetq_lane_f32(v, 1));
|
||||
res[2] = roundf(vgetq_lane_f32(v, 2));
|
||||
res[3] = roundf(vgetq_lane_f32(v, 3));
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[0]; res[1] = b[0];
|
||||
res[2] = a[1]; res[3] = b[1];
|
||||
res[4] = a[2]; res[5] = b[2];
|
||||
res[6] = a[3]; res[7] = b[3];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
|
||||
uint8x8_t res;
|
||||
|
||||
res[0] = a[4]; res[1] = b[4];
|
||||
res[2] = a[5]; res[3] = b[5];
|
||||
res[4] = a[6]; res[5] = b[6];
|
||||
res[6] = a[7]; res[7] = b[7];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// vld1q_s16_x2
|
||||
// vld1q_u8_x2
|
||||
// vld1q_u8_x4
|
||||
// vld1q_s8_x2
|
||||
// vld1q_s8_x4
|
||||
// TODO: double-check these work correctly
|
||||
|
||||
typedef struct ggml_int16x8x2_t {
|
||||
int16x8_t val[2];
|
||||
} ggml_int16x8x2_t;
|
||||
|
||||
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
|
||||
ggml_int16x8x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s16(ptr + 0);
|
||||
res.val[1] = vld1q_s16(ptr + 8);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
uint8x16_t val[2];
|
||||
} ggml_uint8x16x2_t;
|
||||
|
||||
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
|
||||
ggml_uint8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x4_t {
|
||||
uint8x16_t val[4];
|
||||
} ggml_uint8x16x4_t;
|
||||
|
||||
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
|
||||
ggml_uint8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_u8(ptr + 0);
|
||||
res.val[1] = vld1q_u8(ptr + 16);
|
||||
res.val[2] = vld1q_u8(ptr + 32);
|
||||
res.val[3] = vld1q_u8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x2_t {
|
||||
int8x16_t val[2];
|
||||
} ggml_int8x16x2_t;
|
||||
|
||||
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
|
||||
ggml_int8x16x2_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x4_t {
|
||||
int8x16_t val[4];
|
||||
} ggml_int8x16x4_t;
|
||||
|
||||
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||
ggml_int8x16x4_t res;
|
||||
|
||||
res.val[0] = vld1q_s8(ptr + 0);
|
||||
res.val[1] = vld1q_s8(ptr + 16);
|
||||
res.val[2] = vld1q_s8(ptr + 32);
|
||||
res.val[3] = vld1q_s8(ptr + 48);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
|
||||
int8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// NOTE: not tested
|
||||
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
|
||||
uint8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_int16x8x2_t int16x8x2_t
|
||||
#define ggml_uint8x16x2_t uint8x16x2_t
|
||||
#define ggml_uint8x16x4_t uint8x16x4_t
|
||||
#define ggml_int8x16x2_t int8x16x2_t
|
||||
#define ggml_int8x16x4_t int8x16x4_t
|
||||
|
||||
#define ggml_vld1q_s16_x2 vld1q_s16_x2
|
||||
#define ggml_vld1q_u8_x2 vld1q_u8_x2
|
||||
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
||||
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
||||
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
||||
#define ggml_vqtbl1q_s8 vqtbl1q_s8
|
||||
#define ggml_vqtbl1q_u8 vqtbl1q_u8
|
||||
|
||||
#endif // !defined(__aarch64__)
|
||||
|
||||
#if !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
|
||||
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
||||
|
||||
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
|
||||
|
||||
#endif // !defined(__ARM_FEATURE_DOTPROD)
|
||||
|
||||
#endif // defined(__ARM_NEON)
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
#include <wasm_simd128.h>
|
||||
#else
|
||||
#ifdef __POWER9_VECTOR__
|
||||
#include <altivec.h>
|
||||
#undef bool
|
||||
#define bool _Bool
|
||||
#else
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <intrin.h>
|
||||
#else
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
||||
#if !defined(__riscv)
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef __riscv_v_intrinsic
|
||||
#include <riscv_vector.h>
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch64)
|
||||
#if defined(__loongarch_asx)
|
||||
#include <lasxintrin.h>
|
||||
#endif
|
||||
#if defined(__loongarch_sx)
|
||||
#include <lsxintrin.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__VXE__) || defined(__VXE2__)
|
||||
#include <vecintrin.h>
|
||||
|
||||
#define vec_neg(a) (-(a)) // Vector Negate
|
||||
#define vec_add(a, b) ((a) + (b)) // Vector Add
|
||||
#define vec_sub(a, b) ((a) - (b)) // Vector Subtract
|
||||
#define vec_mul(a, b) ((a) * (b)) // Vector Multiply
|
||||
#define vec_div(a, b) ((a) / (b)) // Vector Divide
|
||||
#define vec_sl(a, b) ((a) << (b)) // Vector Shift Left
|
||||
#define vec_sra(a, b) ((a) >> (b)) // Vector Shift Right
|
||||
#define vec_sr(a, b) ((a) >> (b)) // Vector Shift Right Algebraic
|
||||
#define vec_slo(a, b) vec_slb(a, (b) << 64) // Vector Shift Left by Octet
|
||||
#define vec_sro(a, b) vec_srb(a, (b) << 64) // Vector Shift Right by Octet
|
||||
|
||||
#ifndef vec_and
|
||||
#define vec_and(a, b) ((a) & (b)) // Vector AND
|
||||
#endif
|
||||
|
||||
#ifndef vec_or
|
||||
#define vec_or(a, b) ((a) | (b)) // Vector OR
|
||||
#endif
|
||||
|
||||
#ifndef vec_xor
|
||||
#define vec_xor(a, b) ((a) ^ (b)) // Vector XOR
|
||||
#endif
|
||||
|
||||
typedef signed char char8x16_t __attribute__((vector_size(16)));
|
||||
typedef unsigned char uchar8x16_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef int8_t int8x16_t __attribute__((vector_size(16)));
|
||||
typedef int16_t int16x8_t __attribute__((vector_size(16)));
|
||||
typedef int32_t int32x4_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef uint8_t uint8x16_t __attribute__((vector_size(16)));
|
||||
typedef uint16_t uint16x8_t __attribute__((vector_size(16)));
|
||||
typedef uint32_t uint32x4_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef float float32x4_t __attribute__((vector_size(16)));
|
||||
typedef double double64x2_t __attribute((vector_size(16)));
|
||||
|
||||
typedef signed long long long64x2_t __attribute((vector_size(16)));
|
||||
typedef unsigned long long ulong64x2_t __attribute__((vector_size(16)));
|
||||
|
||||
typedef struct ggml_uint8x16x2_t {
|
||||
uint8x16_t val[2];
|
||||
} ggml_uint8x16x2_t;
|
||||
|
||||
inline static ggml_uint8x16x2_t ggml_vec_xl_u8x2(const uint8_t * ptr) {
|
||||
ggml_uint8x16x2_t res;
|
||||
|
||||
res.val[0] = vec_xl( 0, ptr);
|
||||
res.val[1] = vec_xl(16, ptr);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_uint8x16x4_t {
|
||||
uint8x16_t val[4];
|
||||
} ggml_uint8x16x4_t;
|
||||
|
||||
inline static ggml_uint8x16x4_t ggml_vec_xl_u8x4(const uint8_t * ptr) {
|
||||
ggml_uint8x16x4_t res;
|
||||
|
||||
res.val[0] = vec_xl( 0, ptr);
|
||||
res.val[1] = vec_xl(16, ptr);
|
||||
res.val[2] = vec_xl(32, ptr);
|
||||
res.val[3] = vec_xl(48, ptr);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int8x16x4_t {
|
||||
int8x16_t val[4];
|
||||
} ggml_int8x16x4_t;
|
||||
|
||||
inline static ggml_int8x16x4_t ggml_vec_xl_s8x4(const int8_t * ptr) {
|
||||
ggml_int8x16x4_t res;
|
||||
|
||||
res.val[0] = vec_xl( 0, ptr);
|
||||
res.val[1] = vec_xl(16, ptr);
|
||||
res.val[2] = vec_xl(32, ptr);
|
||||
res.val[3] = vec_xl(48, ptr);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
typedef struct ggml_int16x8x2_t {
|
||||
int16x8_t val[2];
|
||||
} ggml_int16x8x2_t;
|
||||
|
||||
inline static ggml_int16x8x2_t ggml_vec_xl_s16x2(const int16_t * ptr) {
|
||||
ggml_int16x8x2_t res;
|
||||
|
||||
res.val[0] = vec_xl( 0, ptr);
|
||||
res.val[1] = vec_xl(16, ptr);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
! WARNING: Very slow. Use vec_perm if possible. Refer to iq4_xs
|
||||
! or iq4_nl for example implementation.
|
||||
*/
|
||||
inline static int8x16_t ggml_vec_tbl(int8x16_t a, uint8x16_t b) {
|
||||
int8x16_t res;
|
||||
|
||||
res[ 0] = a[b[ 0]];
|
||||
res[ 1] = a[b[ 1]];
|
||||
res[ 2] = a[b[ 2]];
|
||||
res[ 3] = a[b[ 3]];
|
||||
res[ 4] = a[b[ 4]];
|
||||
res[ 5] = a[b[ 5]];
|
||||
res[ 6] = a[b[ 6]];
|
||||
res[ 7] = a[b[ 7]];
|
||||
res[ 8] = a[b[ 8]];
|
||||
res[ 9] = a[b[ 9]];
|
||||
res[10] = a[b[10]];
|
||||
res[11] = a[b[11]];
|
||||
res[12] = a[b[12]];
|
||||
res[13] = a[b[13]];
|
||||
res[14] = a[b[14]];
|
||||
res[15] = a[b[15]];
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
inline static int16x8_t vec_padd_s16(int16x8_t a, int16x8_t b) {
|
||||
const uchar8x16_t v_maske = { 0, 1, 4, 5, 8, 9, 12, 13,
|
||||
16, 17, 20, 21, 24, 25, 28, 29 };
|
||||
|
||||
const int16x8_t v_abo = vec_pack((int32x4_t)a, (int32x4_t)b);
|
||||
const int16x8_t v_abe = vec_perm(a, b, v_maske);
|
||||
return v_abo + v_abe;
|
||||
}
|
||||
|
||||
inline static int32x4_t ggml_vec_dot(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p = vec_mule(a, b) + vec_mulo(a, b);
|
||||
return acc + (vec_unpackh(p) + vec_unpackl(p));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch_asx)
|
||||
/* float type data load instructions */
|
||||
static __m128 __lsx_vreplfr2vr_s(const float val) {
|
||||
v4f32 res = {val, val, val, val};
|
||||
return (__m128)res;
|
||||
}
|
||||
|
||||
static __m256 __lasx_xvreplfr2vr_s(const float val) {
|
||||
v8f32 res = {val, val, val, val, val, val, val, val};
|
||||
return (__m256)res;
|
||||
}
|
||||
#endif
|
||||
|
||||
// TODO: move to ggml-threading
|
||||
void ggml_barrier(struct ggml_threadpool * tp);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@ -1,63 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML CPU internal header
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_tq1_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_tq2_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_tq1_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_tq2_0_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,36 +0,0 @@
|
||||
#include "ggml-cpu-traits.h"
|
||||
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
namespace ggml::cpu {
|
||||
tensor_traits::~tensor_traits() {}
|
||||
|
||||
extra_buffer_type::~extra_buffer_type() {}
|
||||
} // namespace ggml::cpu
|
||||
|
||||
bool ggml_cpu_extra_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) {
|
||||
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
|
||||
if (extra && extra->context) {
|
||||
auto buf_extra = (ggml::cpu::extra_buffer_type *) extra->context;
|
||||
auto tensor_traits = buf_extra->get_tensor_traits(op);
|
||||
if (tensor_traits && tensor_traits->compute_forward(params, op)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ggml_cpu_extra_work_size(int n_threads, const struct ggml_tensor * op, size_t * size) {
|
||||
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
|
||||
if (extra && extra->context) {
|
||||
auto buf_extra = (ggml::cpu::extra_buffer_type *) extra->context;
|
||||
auto tensor_traits = buf_extra->get_tensor_traits(op);
|
||||
if (tensor_traits && tensor_traits->work_size(n_threads, op, *size)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
@ -1,38 +0,0 @@
|
||||
#pragma once
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
# include <vector>
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// return true if op part of extra "accelerator"
|
||||
bool ggml_cpu_extra_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op);
|
||||
bool ggml_cpu_extra_work_size(int n_threads, const struct ggml_tensor * op, size_t * size);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
namespace ggml::cpu {
|
||||
// register in tensor->extra
|
||||
class tensor_traits {
|
||||
public:
|
||||
virtual ~tensor_traits();
|
||||
virtual bool work_size(int n_threads, const struct ggml_tensor * op, size_t & size) = 0;
|
||||
virtual bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) = 0;
|
||||
};
|
||||
|
||||
class extra_buffer_type {
|
||||
public:
|
||||
virtual ~extra_buffer_type();
|
||||
virtual bool supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) = 0;
|
||||
virtual tensor_traits * get_tensor_traits(const struct ggml_tensor * op) = 0;
|
||||
};
|
||||
} // namespace ggml::cpu
|
||||
|
||||
// implemented in ggml-cpu.cpp.
|
||||
std::vector<ggml_backend_buffer_type_t> & ggml_backend_cpu_get_extra_buffers_type();
|
||||
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@ -1,656 +0,0 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-aarch64.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "amx/amx.h"
|
||||
|
||||
#include <cctype>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
#include "ggml-cpu-hbm.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
#include "kleidiai/kleidiai.h"
|
||||
#endif
|
||||
|
||||
#if defined(__APPLE__)
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#endif
|
||||
|
||||
// ggml-backend interface
|
||||
|
||||
std::vector<ggml_backend_buffer_type_t>& ggml_backend_cpu_get_extra_buffers_type() {
|
||||
static std::vector<ggml_backend_buffer_type_t> bufts = []() {
|
||||
std::vector<ggml_backend_buffer_type_t> bufts;
|
||||
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
if (ggml_backend_amx_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_amx_buffer_type());
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
if (ggml_backend_cpu_kleidiai_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_kleidiai_buffer_type());
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
if (ggml_backend_cpu_aarch64_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_aarch64_buffer_type());
|
||||
}
|
||||
#endif
|
||||
|
||||
bufts.push_back(NULL);
|
||||
|
||||
return bufts;
|
||||
}();
|
||||
|
||||
return bufts;
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t * ggml_backend_cpu_device_get_extra_buffers_type(ggml_backend_dev_t device) {
|
||||
return ggml_backend_cpu_get_extra_buffers_type().data();
|
||||
|
||||
GGML_UNUSED(device);
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_is_extra_buffer_type(ggml_backend_buffer_type_t buft) {
|
||||
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
|
||||
if (extra && extra == buft) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// CPU backend - backend (stream)
|
||||
|
||||
struct ggml_backend_cpu_context {
|
||||
int n_threads;
|
||||
ggml_threadpool_t threadpool;
|
||||
|
||||
uint8_t * work_data;
|
||||
size_t work_size;
|
||||
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_free(ggml_backend_t backend) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
delete[] cpu_ctx->work_data;
|
||||
delete cpu_ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
struct ggml_backend_plan_cpu {
|
||||
struct ggml_cplan cplan;
|
||||
struct ggml_cgraph cgraph;
|
||||
};
|
||||
|
||||
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_backend_plan_cpu * cpu_plan = new ggml_backend_plan_cpu;
|
||||
|
||||
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
|
||||
|
||||
if (cpu_plan->cplan.work_size > 0) {
|
||||
cpu_plan->cplan.work_data = new uint8_t[cpu_plan->cplan.work_size];
|
||||
if (cpu_plan->cplan.work_data == NULL) {
|
||||
delete cpu_plan;
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
|
||||
return cpu_plan;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
||||
|
||||
delete[] cpu_plan->cplan.work_data;
|
||||
delete cpu_plan;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
|
||||
|
||||
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
|
||||
if (cpu_ctx->work_size < cplan.work_size) {
|
||||
delete[] cpu_ctx->work_data;
|
||||
cpu_ctx->work_data = new uint8_t[cplan.work_size];
|
||||
if (cpu_ctx->work_data == NULL) {
|
||||
cpu_ctx->work_size = 0;
|
||||
return GGML_STATUS_ALLOC_FAILED;
|
||||
}
|
||||
cpu_ctx->work_size = cplan.work_size;
|
||||
}
|
||||
cplan.work_data = (uint8_t *)cpu_ctx->work_data;
|
||||
|
||||
cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
|
||||
return ggml_graph_compute(cgraph, &cplan);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_i ggml_backend_cpu_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_get_name,
|
||||
/* .free = */ ggml_backend_cpu_free,
|
||||
/* .set_tensor_async = */ NULL,
|
||||
/* .get_tensor_async = */ NULL,
|
||||
/* .cpy_tensor_async = */ NULL,
|
||||
/* .synchronize = */ NULL,
|
||||
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
||||
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cpu_guid(void) {
|
||||
static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
// initialize CPU backend now to avoid slowing the first graph computation
|
||||
ggml_cpu_init();
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = new ggml_backend_cpu_context;
|
||||
if (ctx == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
ctx->n_threads = GGML_DEFAULT_N_THREADS;
|
||||
ctx->threadpool = NULL;
|
||||
ctx->work_data = NULL;
|
||||
ctx->work_size = 0;
|
||||
ctx->abort_callback = NULL;
|
||||
ctx->abort_callback_data = NULL;
|
||||
|
||||
ggml_backend_t cpu_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_cpu_guid(),
|
||||
/* .interface = */ ggml_backend_cpu_i,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
if (cpu_backend == NULL) {
|
||||
delete ctx;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return cpu_backend;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_cpu(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
|
||||
if (ctx->threadpool && ctx->threadpool != threadpool) {
|
||||
// already had a different threadpool, pause/suspend it before switching
|
||||
ggml_threadpool_pause(ctx->threadpool);
|
||||
}
|
||||
ctx->threadpool = threadpool;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
ctx->abort_callback = abort_callback;
|
||||
ctx->abort_callback_data = abort_callback_data;
|
||||
}
|
||||
|
||||
// CPU backend - device
|
||||
|
||||
struct ggml_backend_cpu_device_context {
|
||||
std::string description = "CPU";
|
||||
|
||||
ggml_backend_cpu_device_context() {
|
||||
#ifdef __APPLE__
|
||||
size_t len = 0;
|
||||
if (!sysctlbyname("machdep.cpu.brand_string", NULL, &len, NULL, 0)) {
|
||||
description.resize(len);
|
||||
sysctlbyname("machdep.cpu.brand_string", &description[0], &len, NULL, 0); // NOLINT
|
||||
}
|
||||
#elif defined(__linux__)
|
||||
FILE * f = fopen("/proc/cpuinfo", "r");
|
||||
if (f) {
|
||||
char buf[1024];
|
||||
while (fgets(buf, sizeof(buf), f)) {
|
||||
if (strncmp(buf, "model name", 10) == 0) {
|
||||
char * p = strchr(buf, ':');
|
||||
if (p) {
|
||||
p++;
|
||||
while (std::isspace(*p)) {
|
||||
p++;
|
||||
}
|
||||
while (std::isspace(p[strlen(p) - 1])) {
|
||||
p[strlen(p) - 1] = '\0';
|
||||
}
|
||||
description = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
fclose(f);
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
HKEY hKey;
|
||||
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
|
||||
TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
|
||||
0,
|
||||
KEY_READ,
|
||||
&hKey) == ERROR_SUCCESS) {
|
||||
DWORD cpu_brand_size = 0;
|
||||
if (RegQueryValueExA(hKey,
|
||||
"ProcessorNameString",
|
||||
NULL,
|
||||
NULL,
|
||||
NULL,
|
||||
&cpu_brand_size) == ERROR_SUCCESS) {
|
||||
description.resize(cpu_brand_size);
|
||||
if (RegQueryValueExA(hKey,
|
||||
"ProcessorNameString",
|
||||
NULL,
|
||||
NULL,
|
||||
(LPBYTE)&description[0], // NOLINT
|
||||
&cpu_brand_size) == ERROR_SUCCESS) {
|
||||
if (description.find('\0') != std::string::npos) {
|
||||
description.resize(description.find('\0'));
|
||||
}
|
||||
}
|
||||
}
|
||||
RegCloseKey(hKey);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cpu_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t dev) {
|
||||
struct ggml_backend_cpu_device_context * ctx = (struct ggml_backend_cpu_device_context *)dev->context;
|
||||
|
||||
return ctx->description.c_str();
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
// TODO
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_cpu_device_get_type(ggml_backend_dev_t dev) {
|
||||
return GGML_BACKEND_DEVICE_TYPE_CPU;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_cpu_device_get_name(dev);
|
||||
props->description = ggml_backend_cpu_device_get_description(dev);
|
||||
props->type = ggml_backend_cpu_device_get_type(dev);
|
||||
ggml_backend_cpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_cpu_device_init_backend(ggml_backend_dev_t dev, const char * params) {
|
||||
return ggml_backend_cpu_init();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_cpu_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
return ggml_backend_cpu_buffer_type();
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(max_tensor_size);
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
if (op->op == GGML_OP_NONE || op->op == GGML_OP_RESHAPE || op->op == GGML_OP_VIEW || op->op == GGML_OP_PERMUTE || op->op == GGML_OP_TRANSPOSE) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// extra_buffer_op?
|
||||
for (auto extra : ggml_backend_cpu_get_extra_buffers_type()) {
|
||||
if (extra) {
|
||||
auto buf_extra = (ggml::cpu::extra_buffer_type*) extra->context;
|
||||
if (buf_extra && buf_extra->supports_op(dev, op)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// the other case need host buffer.
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
if (op->src[i] && op->src[i]->buffer && !ggml_backend_buft_is_host(op->src[i]->buffer->buft)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_CPY:
|
||||
return
|
||||
op->type != GGML_TYPE_IQ3_XXS &&
|
||||
op->type != GGML_TYPE_IQ3_S &&
|
||||
op->type != GGML_TYPE_IQ2_XXS &&
|
||||
op->type != GGML_TYPE_IQ2_XS &&
|
||||
op->type != GGML_TYPE_IQ2_S &&
|
||||
op->type != GGML_TYPE_IQ1_S &&
|
||||
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
|
||||
case GGML_OP_MUL_MAT:
|
||||
return src1->type == GGML_TYPE_F32 || src1->type == ggml_get_type_traits_cpu(src0->type)->vec_dot_type;
|
||||
case GGML_OP_SOFT_MAX_BACK: {
|
||||
if (op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type != GGML_TYPE_F32) {
|
||||
return false;
|
||||
}
|
||||
float max_bias = 0.0f;
|
||||
|
||||
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
|
||||
|
||||
return max_bias == 0.0f;
|
||||
}
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
return src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32;
|
||||
case GGML_OP_OUT_PROD:
|
||||
return (src0->type == GGML_TYPE_F32 || (ggml_is_quantized(src0->type) && src0->ne[2] == src1->ne[2] && src0->ne[3] == src1->ne[3])) &&
|
||||
src1->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft) || ggml_backend_cpu_is_extra_buffer_type(buft);
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_device_i ggml_backend_cpu_device_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_device_get_name,
|
||||
/* .get_description = */ ggml_backend_cpu_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_cpu_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_cpu_device_get_type,
|
||||
/* .get_props = */ ggml_backend_cpu_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_cpu_device_init_backend,
|
||||
/* .get_buffer_type = */ ggml_backend_cpu_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ ggml_backend_cpu_device_buffer_from_host_ptr,
|
||||
/* .supports_op = */ ggml_backend_cpu_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_cpu_device_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
// CPU backend - backend (reg)
|
||||
|
||||
static const char * ggml_backend_cpu_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "CPU";
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_cpu_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_cpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
static ggml_backend_cpu_device_context ctx;
|
||||
static ggml_backend_device ggml_backend_cpu_device = {
|
||||
/* .iface = */ ggml_backend_cpu_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ &ctx,
|
||||
};
|
||||
|
||||
return &ggml_backend_cpu_device;
|
||||
}
|
||||
|
||||
// This is intended to replace the the ggml_cpu_has_* functions when loading the CPU backend dynamically,
|
||||
// and additionally to allow other backends to expose their own list of features that applications can query using the same API
|
||||
static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t reg) {
|
||||
static std::vector<ggml_backend_feature> features = []() {
|
||||
ggml_cpu_init();
|
||||
|
||||
std::vector<ggml_backend_feature> features;
|
||||
if (ggml_cpu_has_sse3()) {
|
||||
features.push_back({ "SSE3", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_ssse3()) {
|
||||
features.push_back({ "SSSE3", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx()) {
|
||||
features.push_back({ "AVX", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx_vnni()) {
|
||||
features.push_back({ "AVX_VNNI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx2()) {
|
||||
features.push_back({ "AVX2", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_f16c()) {
|
||||
features.push_back({ "F16C", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_fma()) {
|
||||
features.push_back({ "FMA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_bmi2()) {
|
||||
features.push_back({ "BMI2", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512()) {
|
||||
features.push_back({ "AVX512", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512_vbmi()) {
|
||||
features.push_back({ "AVX512_VBMI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512_vnni()) {
|
||||
features.push_back({ "AVX512_VNNI", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_avx512_bf16()) {
|
||||
features.push_back({ "AVX512_BF16", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_amx_int8()) {
|
||||
features.push_back({ "AMX_INT8", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_neon()) {
|
||||
features.push_back({ "NEON", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_arm_fma()) {
|
||||
features.push_back({ "ARM_FMA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_fp16_va()) {
|
||||
features.push_back({ "FP16_VA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_matmul_int8()) {
|
||||
features.push_back({ "MATMUL_INT8", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_sve()) {
|
||||
features.push_back({ "SVE", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_dotprod()) {
|
||||
features.push_back({ "DOTPROD", "1" });
|
||||
}
|
||||
if (ggml_cpu_get_sve_cnt() > 0) {
|
||||
static std::string sve_cnt = std::to_string(ggml_cpu_get_sve_cnt());
|
||||
features.push_back({ "SVE_CNT", sve_cnt.c_str() });
|
||||
}
|
||||
if (ggml_cpu_has_sme()) {
|
||||
features.push_back({ "SME", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_riscv_v()) {
|
||||
features.push_back({ "RISCV_V", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_vsx()) {
|
||||
features.push_back({ "VSX", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_vxe()) {
|
||||
features.push_back({ "VXE", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_wasm_simd()) {
|
||||
features.push_back({ "WASM_SIMD", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_llamafile()) {
|
||||
features.push_back({ "LLAMAFILE", "1" });
|
||||
}
|
||||
#ifdef GGML_USE_ACCELERATE
|
||||
features.push_back({ "ACCELERATE", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
features.push_back({ "CPU_HBM", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_OPENMP
|
||||
features.push_back({ "OPENMP", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
features.push_back({ "KLEIDIAI", "1" });
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU_AARCH64
|
||||
features.push_back({ "AARCH64_REPACK", "1" });
|
||||
#endif
|
||||
|
||||
features.push_back({ nullptr, nullptr });
|
||||
|
||||
return features;
|
||||
}();
|
||||
|
||||
return features.data();
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
if (strcmp(name, "ggml_backend_set_n_threads") == 0) {
|
||||
ggml_backend_set_n_threads_t fct = ggml_backend_cpu_set_n_threads;
|
||||
return (void *)fct;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) {
|
||||
ggml_backend_dev_get_extra_bufts_t fct = ggml_backend_cpu_device_get_extra_buffers_type;
|
||||
return (void *)fct;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_get_features") == 0) {
|
||||
return (void *)ggml_backend_cpu_get_features;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_set_abort_callback") == 0) {
|
||||
return (void *)ggml_backend_cpu_set_abort_callback;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_cpu_numa_init") == 0) {
|
||||
return (void *)ggml_numa_init;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_cpu_is_numa") == 0) {
|
||||
return (void *)ggml_is_numa;
|
||||
}
|
||||
|
||||
// threadpool - TODO: move to ggml-base
|
||||
if (strcmp(name, "ggml_threadpool_new") == 0) {
|
||||
return (void *)ggml_threadpool_new;
|
||||
}
|
||||
if (strcmp(name, "ggml_threadpool_free") == 0) {
|
||||
return (void *)ggml_threadpool_free;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_cpu_set_threadpool") == 0) {
|
||||
return (void *)ggml_backend_cpu_set_threadpool;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static const struct ggml_backend_reg_i ggml_backend_cpu_reg_i = {
|
||||
/* .get_name = */ ggml_backend_cpu_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_cpu_reg_get_device_count,
|
||||
/* .get_device = */ ggml_backend_cpu_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_cpu_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_cpu_reg(void) {
|
||||
// init CPU feature detection
|
||||
ggml_cpu_init();
|
||||
|
||||
static struct ggml_backend_reg ggml_backend_cpu_reg = {
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_cpu_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
return &ggml_backend_cpu_reg;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_cpu_reg)
|
@ -1,254 +0,0 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
// KleidiAI micro-kernels
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p_qsi4c32p_interface.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32.h"
|
||||
#include "kai_lhs_quant_pack_qsi8d32p_f32_neon.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.h"
|
||||
#include "kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.h"
|
||||
#include "kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.h"
|
||||
#include "kai_common.h"
|
||||
|
||||
#include "kernels.h"
|
||||
|
||||
#define NELEMS(x) sizeof(x) / sizeof(*x)
|
||||
static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
#if defined(__ARM_FEATURE_SME)
|
||||
{
|
||||
/* SME GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
|
||||
},
|
||||
/* SME GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_SME,
|
||||
},
|
||||
#endif
|
||||
#if defined(__APPLE__)
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
{
|
||||
/* DOTPROD GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
},
|
||||
/* DOTPROD GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
|
||||
},
|
||||
#endif
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
{
|
||||
/* i8mm GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
},
|
||||
/* i8mm GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
|
||||
},
|
||||
#endif
|
||||
#else
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
{
|
||||
/* i8mm GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
|
||||
},
|
||||
/* i8mm GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
|
||||
},
|
||||
#endif
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
{
|
||||
/* DOTPROD GEMM */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
|
||||
},
|
||||
/* DOTPROD GEMV */
|
||||
/* .kern_info = */ {
|
||||
/* .get_m_step = */ kai_get_m_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_n_step = */ kai_get_n_step_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_mr = */ kai_get_mr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
|
||||
},
|
||||
/* .lhs_info = */ {
|
||||
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
|
||||
},
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature features) {
|
||||
ggml_kleidiai_kernels * kernels = nullptr;
|
||||
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
|
||||
if ((features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu) {
|
||||
kernels = &gemm_gemv_kernels[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return kernels;
|
||||
}
|
@ -1,60 +0,0 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
enum cpu_feature {
|
||||
CPU_FEATURE_NONE = 0,
|
||||
CPU_FEATURE_DOTPROD = 1,
|
||||
CPU_FEATURE_I8MM = 2,
|
||||
CPU_FEATURE_SVE = 4,
|
||||
CPU_FEATURE_SME = 8
|
||||
};
|
||||
inline cpu_feature& operator|=(cpu_feature& lhs, cpu_feature rhs) {
|
||||
lhs = static_cast<cpu_feature>(lhs | rhs);
|
||||
return lhs;
|
||||
}
|
||||
inline cpu_feature operator|(cpu_feature lhs, cpu_feature rhs) {
|
||||
return static_cast<cpu_feature>(static_cast<int>(lhs) | static_cast<int>(rhs));
|
||||
}
|
||||
|
||||
struct kernel_info {
|
||||
size_t (*get_m_step)(void);
|
||||
size_t (*get_n_step)(void);
|
||||
size_t (*get_mr)(void);
|
||||
size_t (*get_nr)(void);
|
||||
size_t (*get_kr)(void);
|
||||
size_t (*get_sr)(void);
|
||||
size_t (*get_lhs_offset)(size_t m_idx, size_t k, size_t bl);
|
||||
size_t (*get_rhs_packed_offset)(size_t n_idx, size_t k, size_t bl);
|
||||
size_t (*get_dst_offset)(size_t m_idx, size_t n_idx, size_t stride);
|
||||
size_t (*get_dst_size)(size_t m, size_t n);
|
||||
void (*run_kernel)(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
|
||||
float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max);
|
||||
};
|
||||
|
||||
struct lhs_packing_info {
|
||||
size_t (*get_offset)(size_t m_idx, size_t lhs_stride);
|
||||
size_t (*get_packed_offset)(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
|
||||
size_t (*packed_size)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
|
||||
void (*pack_func)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
|
||||
size_t lhs_stride, void* lhs_packed);
|
||||
};
|
||||
|
||||
struct rhs_packing_info {
|
||||
size_t (*packed_size)(size_t n, size_t k, size_t nr, size_t kr, size_t bl);
|
||||
void (*pack_func)(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
|
||||
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params);
|
||||
};
|
||||
|
||||
struct ggml_kleidiai_kernels {
|
||||
kernel_info gemm;
|
||||
kernel_info gemv;
|
||||
lhs_packing_info lhs_info;
|
||||
rhs_packing_info rhs_info;
|
||||
|
||||
cpu_feature required_cpu;
|
||||
};
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features);
|
@ -1,287 +0,0 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
#include <assert.h>
|
||||
#include <cfloat>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#if defined(__linux__)
|
||||
#include <asm/hwcap.h>
|
||||
#include <sys/auxv.h>
|
||||
#elif defined(__APPLE__)
|
||||
#include <string_view>
|
||||
#include <sys/sysctl.h>
|
||||
#include <sys/types.h>
|
||||
#elif defined(_WIN32)
|
||||
#include <windows.h>
|
||||
#include <excpt.h>
|
||||
#endif
|
||||
|
||||
#include "kleidiai.h"
|
||||
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-threading.h"
|
||||
#include "ggml-cpu-traits.h"
|
||||
|
||||
#include "kernels.h"
|
||||
|
||||
#include "kai_common.h"
|
||||
|
||||
#define GGML_COMMON_DECL_CPP
|
||||
#include "ggml-common.h"
|
||||
|
||||
struct ggml_kleidiai_context {
|
||||
ggml_kleidiai_kernels * kernels;
|
||||
} static ctx = { NULL };
|
||||
|
||||
static void init_kleidiai_context(void) {
|
||||
|
||||
ggml_critical_section_start();
|
||||
static bool initialized = false;
|
||||
|
||||
if (!initialized) {
|
||||
initialized = true;
|
||||
const char *env_var = getenv("GGML_KLEIDIAI_SME");
|
||||
int sme_enabled = 0;
|
||||
|
||||
cpu_feature features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) |
|
||||
(ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE);
|
||||
|
||||
if (env_var) {
|
||||
sme_enabled = atoi(env_var);
|
||||
}
|
||||
|
||||
if (sme_enabled != 0) {
|
||||
features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
|
||||
}
|
||||
ctx.kernels = ggml_kleidiai_select_kernels(features);
|
||||
}
|
||||
ggml_critical_section_end();
|
||||
}
|
||||
|
||||
static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) {
|
||||
GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
|
||||
return tensor->ne[dim];
|
||||
}
|
||||
|
||||
namespace ggml::cpu::kleidiai {
|
||||
class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
|
||||
|
||||
size_t k = op->src[0]->ne[0];
|
||||
size_t m = op->src[1]->ne[1];
|
||||
|
||||
size_t mr = kernel->get_mr();
|
||||
size_t kr = kernel->get_kr();
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
size = ctx.kernels->lhs_info.packed_size(m, k, QK4_0, mr, kr, sr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override {
|
||||
if (dst->op == GGML_OP_MUL_MAT) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
kernel_info * kernel = src1->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm;
|
||||
lhs_packing_info * lhs_info = &ctx.kernels->lhs_info;
|
||||
|
||||
GGML_ASSERT(kernel);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const size_t k = ne00;
|
||||
const size_t m = ne11;
|
||||
const size_t n = ne01;
|
||||
|
||||
const size_t n_step = kernel->get_n_step();
|
||||
const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step);
|
||||
const size_t n_start = ith * num_n_per_thread;
|
||||
|
||||
size_t n_to_process = num_n_per_thread;
|
||||
if ((n_start + n_to_process) > n) {
|
||||
n_to_process = n - n_start;
|
||||
}
|
||||
|
||||
const uint8_t * lhs = static_cast<const uint8_t *>(src1->data);
|
||||
uint8_t * lhs_packed = (uint8_t*)params->wdata;
|
||||
const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data);
|
||||
|
||||
size_t mr = kernel->get_mr();
|
||||
size_t kr = kernel->get_kr();
|
||||
size_t sr = kernel->get_sr();
|
||||
|
||||
// Calculate number of columns to be processed per thread
|
||||
const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth;
|
||||
const size_t m_start = ith * num_m_per_thread;
|
||||
size_t m_to_process = num_m_per_thread;
|
||||
if ((m_start + m_to_process) > m) {
|
||||
m_to_process = m - m_start;
|
||||
}
|
||||
|
||||
if(m_start < m) {
|
||||
// Transform LHS
|
||||
const size_t src_stride = src1->nb[1];
|
||||
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
|
||||
const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr);
|
||||
void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
|
||||
|
||||
lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
// Perform the operation
|
||||
const size_t dst_stride = dst->nb[1];
|
||||
const size_t lhs_packed_offset = lhs_info->get_packed_offset(0, k, QK4_0, mr, kr, sr);
|
||||
const size_t rhs_packed_offset = kernel->get_rhs_packed_offset(n_start, k, QK4_0);
|
||||
const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
|
||||
const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
|
||||
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
|
||||
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
|
||||
|
||||
kernel->run_kernel(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr,
|
||||
dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
public:
|
||||
int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) {
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
const size_t n = tensor->ne[1];
|
||||
const size_t k = tensor->ne[0];
|
||||
size_t nr = ctx.kernels->gemm.get_nr();
|
||||
size_t kr = ctx.kernels->gemm.get_kr();
|
||||
size_t sr = ctx.kernels->gemm.get_sr();
|
||||
|
||||
#ifndef NDEBUG
|
||||
const size_t repacked_size = ctx.kernels->rhs_info.packed_size(n, k, nr, kr, QK4_0);
|
||||
GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!");
|
||||
#endif
|
||||
struct kai_rhs_pack_qs4cxs1s0_param params;
|
||||
params.lhs_zero_point = 1;
|
||||
params.rhs_zero_point = 8;
|
||||
ctx.kernels->rhs_info.pack_func(1, n, k, nr, kr, sr, QK4_0, (const uint8_t *)data, NULL, tensor->data, 0, ¶ms);
|
||||
|
||||
return 0;
|
||||
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
};
|
||||
|
||||
static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struct ggml_tensor *) {
|
||||
static tensor_traits traits;
|
||||
return &traits;
|
||||
}
|
||||
} // namespace ggml::cpu::kleidiai
|
||||
|
||||
GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_kleidiai_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
||||
const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
|
||||
auto tensor_traits = (ggml::cpu::kleidiai::tensor_traits *) tensor->extra;
|
||||
auto OK = tensor_traits->repack(tensor, data, size);
|
||||
|
||||
GGML_ASSERT(OK == 0);
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static const char * ggml_backend_cpu_kleidiai_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CPU_KLEIDIAI";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
||||
|
||||
if (buffer == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
buffer->buft = buft;
|
||||
buffer->iface.init_tensor = ggml_backend_cpu_kleidiai_buffer_init_tensor;
|
||||
buffer->iface.set_tensor = ggml_backend_cpu_kleidiai_buffer_set_tensor;
|
||||
buffer->iface.get_tensor = nullptr;
|
||||
buffer->iface.cpy_tensor = nullptr;
|
||||
return buffer;
|
||||
}
|
||||
|
||||
static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return TENSOR_ALIGNMENT;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
namespace ggml::cpu::kleidiai {
|
||||
class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
||||
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
|
||||
if ( op->op == GGML_OP_MUL_MAT &&
|
||||
op->src[0]->type == GGML_TYPE_Q4_0 &&
|
||||
op->src[0]->buffer &&
|
||||
(ggml_n_dims(op->src[0]) == 2) &&
|
||||
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels
|
||||
) {
|
||||
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[1]->type == GGML_TYPE_F32 &&
|
||||
ggml_ne(op->src[1], 2) == 1 && ggml_ne(op->src[1], 3) == 1) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
|
||||
if (op->op == GGML_OP_MUL_MAT) {
|
||||
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
|
||||
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
};
|
||||
} // namespace ggml::cpu::kleidiai
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void) {
|
||||
static ggml::cpu::kleidiai::extra_buffer_type ctx;
|
||||
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_kleidiai = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_cpu_kleidiai_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_kleidiai_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
|
||||
/* .is_host = */ nullptr,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ &ctx,
|
||||
};
|
||||
|
||||
init_kleidiai_context();
|
||||
|
||||
return &ggml_backend_cpu_buffer_type_kleidiai;
|
||||
}
|
@ -1,17 +0,0 @@
|
||||
// SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml-alloc.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@ -1,14 +0,0 @@
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t, int64_t, int64_t,
|
||||
const void *, int64_t, const void *, int64_t, void *, int64_t,
|
||||
int, int, int);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
File diff suppressed because it is too large
Load Diff
@ -1,128 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
//
|
||||
// cache line
|
||||
//
|
||||
|
||||
#if defined(__cpp_lib_hardware_interference_size)
|
||||
#define CACHE_LINE_SIZE std::hardware_destructive_interference_size
|
||||
#else
|
||||
#if defined(__POWER9_VECTOR__)
|
||||
#define CACHE_LINE_SIZE 128
|
||||
#elif defined(__VXE__) || defined(__VXE2__)
|
||||
#define CACHE_LINE_SIZE 256
|
||||
#else
|
||||
#define CACHE_LINE_SIZE 64
|
||||
#endif
|
||||
#endif
|
||||
|
||||
static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ggml_compute_forward_dup(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_add(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_add1(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_acc(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sum(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sum_rows(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_mean(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_argmax(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_count_equal(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_repeat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_repeat_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_concat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_silu_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_norm(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_rms_norm(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_rms_norm_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_group_norm(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_l2_norm(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_out_prod(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_scale(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_set(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_cpy(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_cont(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_reshape(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_view(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_permute(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_transpose(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_get_rows(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_get_rows_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_diag(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_diag_mask_inf(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_diag_mask_zero(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_soft_max(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_soft_max_ext_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_rope(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_rope_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_clamp(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pool_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pool_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_upscale(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pad_reflect_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_arange(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_leaky_relu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_flash_attn_ext(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * q,
|
||||
const struct ggml_tensor * k,
|
||||
const struct ggml_tensor * v,
|
||||
const struct ggml_tensor * mask,
|
||||
struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_flash_attn_back(
|
||||
const struct ggml_compute_params * params,
|
||||
const bool masked,
|
||||
struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_ssm_conv(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_ssm_scan(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_win_part(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_win_unpart(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_unary(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_get_rel_pos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_add_rel_pos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_rwkv_wkv6(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_rwkv_wkv7(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_gla(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_map_unary(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_unary_op_f32_t fun);
|
||||
void ggml_compute_forward_map_binary(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_binary_op_f32_t fun);
|
||||
void ggml_compute_forward_map_custom1_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_custom1_op_f32_t fun);
|
||||
void ggml_compute_forward_map_custom2_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_custom2_op_f32_t fun);
|
||||
void ggml_compute_forward_map_custom3_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_custom3_op_f32_t fun);
|
||||
void ggml_compute_forward_map_custom1(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_map_custom2(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_map_custom3(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_cross_entropy_loss(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_cross_entropy_loss_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_opt_step_adamw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,884 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml-cpu-impl.h"
|
||||
|
||||
//
|
||||
// simd mappings
|
||||
//
|
||||
|
||||
// we define a common set of C macros which map to specific intrinsics based on the current architecture
|
||||
// we then implement the fundamental computation operations below using only these macros
|
||||
// adding support for new architectures requires to define the corresponding SIMD macros
|
||||
//
|
||||
// GGML_F32_STEP / GGML_F16_STEP
|
||||
// number of elements to process in a single step
|
||||
//
|
||||
// GGML_F32_EPR / GGML_F16_EPR
|
||||
// number of elements to fit in a single register
|
||||
//
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 NEON
|
||||
|
||||
#define GGML_F32_STEP 16
|
||||
#define GGML_F32_EPR 4
|
||||
|
||||
#define GGML_F32x4 float32x4_t
|
||||
#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
|
||||
#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
|
||||
#define GGML_F32x4_LOAD vld1q_f32
|
||||
#define GGML_F32x4_STORE vst1q_f32
|
||||
#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
||||
#define GGML_F32x4_ADD vaddq_f32
|
||||
#define GGML_F32x4_MUL vmulq_f32
|
||||
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
|
||||
#define GGML_F32x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
(res) = (ggml_float) GGML_F32x4_REDUCE_ONE((x)[0]); \
|
||||
}
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x4
|
||||
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
// F16 NEON
|
||||
|
||||
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
#define GGML_F16_STEP 32
|
||||
#define GGML_F16_EPR 8
|
||||
|
||||
#define GGML_F16x8 float16x8_t
|
||||
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
|
||||
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
|
||||
#define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
|
||||
#define GGML_F16x8_STORE vst1q_f16
|
||||
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
|
||||
#define GGML_F16x8_ADD vaddq_f16
|
||||
#define GGML_F16x8_MUL vmulq_f16
|
||||
#define GGML_F16x8_REDUCE(res, x) \
|
||||
do { \
|
||||
int offset = GGML_F16_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
|
||||
} \
|
||||
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
|
||||
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
|
||||
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
|
||||
} while (0)
|
||||
|
||||
#define GGML_F16_VEC GGML_F16x8
|
||||
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), (r)[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
|
||||
#else
|
||||
// if FP16 vector arithmetic is not supported, we use FP32 instead
|
||||
// and take advantage of the vcvt_ functions to convert to/from FP16
|
||||
|
||||
#define GGML_F16_STEP 16
|
||||
#define GGML_F16_EPR 4
|
||||
|
||||
#define GGML_F32Cx4 float32x4_t
|
||||
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
|
||||
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
|
||||
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
|
||||
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
|
||||
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
|
||||
#define GGML_F32Cx4_ADD vaddq_f32
|
||||
#define GGML_F32Cx4_MUL vmulq_f32
|
||||
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
#define GGML_F16_VEC GGML_F32Cx4
|
||||
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
||||
#endif
|
||||
|
||||
#elif defined(__AVX512F__)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 AVX512
|
||||
|
||||
#define GGML_F32_STEP 64
|
||||
#define GGML_F32_EPR 16
|
||||
|
||||
#define GGML_F32x16 __m512
|
||||
#define GGML_F32x16_ZERO _mm512_setzero_ps()
|
||||
#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
|
||||
#define GGML_F32x16_LOAD _mm512_loadu_ps
|
||||
#define GGML_F32x16_STORE _mm512_storeu_ps
|
||||
// _mm512_fmadd_ps is defined in AVX512F so no guard is required
|
||||
#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
|
||||
#define GGML_F32x16_ADD _mm512_add_ps
|
||||
#define GGML_F32x16_MUL _mm512_mul_ps
|
||||
#define GGML_F32x16_REDUCE(res, x) \
|
||||
do { \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
|
||||
} while (0)
|
||||
|
||||
// TODO: is this optimal ?
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x16
|
||||
#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32x16_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32x16_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32x16_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32x16_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32x16_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
|
||||
|
||||
// F16 AVX512
|
||||
|
||||
// F16 AVX
|
||||
|
||||
#define GGML_F16_STEP 64
|
||||
#define GGML_F16_EPR 16
|
||||
|
||||
// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
|
||||
|
||||
#define GGML_F32Cx16 __m512
|
||||
#define GGML_F32Cx16_ZERO _mm512_setzero_ps()
|
||||
#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
|
||||
|
||||
// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
|
||||
// so F16C guard isn't required
|
||||
#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
|
||||
#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
|
||||
|
||||
#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
|
||||
#define GGML_F32Cx16_ADD _mm512_add_ps
|
||||
#define GGML_F32Cx16_MUL _mm512_mul_ps
|
||||
#define GGML_F32Cx16_REDUCE(res, x) \
|
||||
do { \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
|
||||
} while (0)
|
||||
|
||||
#define GGML_F16_VEC GGML_F32Cx16
|
||||
#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
|
||||
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
|
||||
#elif defined(__AVX__)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 AVX
|
||||
|
||||
#define GGML_F32_STEP 32
|
||||
#define GGML_F32_EPR 8
|
||||
|
||||
#define GGML_F32x8 __m256
|
||||
#define GGML_F32x8_ZERO _mm256_setzero_ps()
|
||||
#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
|
||||
#define GGML_F32x8_LOAD _mm256_loadu_ps
|
||||
#define GGML_F32x8_STORE _mm256_storeu_ps
|
||||
#if defined(__FMA__)
|
||||
#define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
|
||||
#else
|
||||
#define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
|
||||
#endif
|
||||
#define GGML_F32x8_ADD _mm256_add_ps
|
||||
#define GGML_F32x8_MUL _mm256_mul_ps
|
||||
#define GGML_F32x8_REDUCE(res, x) \
|
||||
do { \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
|
||||
_mm256_extractf128_ps(x[0], 1)); \
|
||||
const __m128 t1 = _mm_hadd_ps(t0, t0); \
|
||||
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
|
||||
} while (0)
|
||||
// TODO: is this optimal ?
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x8
|
||||
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
|
||||
|
||||
// F16 AVX
|
||||
|
||||
#define GGML_F16_STEP 32
|
||||
#define GGML_F16_EPR 8
|
||||
|
||||
// F16 arithmetic is not supported by AVX, so we use F32 instead
|
||||
|
||||
#define GGML_F32Cx8 __m256
|
||||
#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
|
||||
#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
|
||||
|
||||
#if defined(__F16C__)
|
||||
// the _mm256_cvt intrinsics require F16C
|
||||
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
|
||||
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
|
||||
#else
|
||||
static inline __m256 __avx_f32cx8_load(const ggml_fp16_t * x) {
|
||||
float tmp[8];
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
tmp[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
|
||||
return _mm256_loadu_ps(tmp);
|
||||
}
|
||||
static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
|
||||
float arr[8];
|
||||
|
||||
_mm256_storeu_ps(arr, y);
|
||||
|
||||
for (int i = 0; i < 8; i++)
|
||||
x[i] = GGML_FP32_TO_FP16(arr[i]);
|
||||
}
|
||||
#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
|
||||
#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
|
||||
#endif
|
||||
|
||||
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
|
||||
#define GGML_F32Cx8_ADD _mm256_add_ps
|
||||
#define GGML_F32Cx8_MUL _mm256_mul_ps
|
||||
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
|
||||
|
||||
#define GGML_F16_VEC GGML_F32Cx8
|
||||
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
|
||||
|
||||
#elif defined(__POWER9_VECTOR__)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 POWER9
|
||||
|
||||
#define GGML_F32_STEP 32
|
||||
#define GGML_F32_EPR 4
|
||||
|
||||
#define GGML_F32x4 vector float
|
||||
#define GGML_F32x4_ZERO 0.0f
|
||||
#define GGML_F32x4_SET1 vec_splats
|
||||
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
|
||||
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
|
||||
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
|
||||
#define GGML_F32x4_ADD vec_add
|
||||
#define GGML_F32x4_MUL vec_mul
|
||||
#define GGML_F32x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = vec_add(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = vec_add(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = vec_add(x[i], x[offset+i]); \
|
||||
} \
|
||||
res = vec_extract(x[0], 0) + \
|
||||
vec_extract(x[0], 1) + \
|
||||
vec_extract(x[0], 2) + \
|
||||
vec_extract(x[0], 3); \
|
||||
}
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x4
|
||||
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
// F16 POWER9
|
||||
#define GGML_F16_STEP GGML_F32_STEP
|
||||
#define GGML_F16_EPR GGML_F32_EPR
|
||||
#define GGML_F16_VEC GGML_F32x4
|
||||
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
|
||||
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32x4_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
|
||||
// Use vec_xl, not vec_ld, in case the load address is not aligned.
|
||||
#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
|
||||
vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
|
||||
vec_extract_fp32_from_shortl(vec_xl(0, p))
|
||||
#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
|
||||
#define GGML_F16_VEC_STORE(p, r, i) \
|
||||
if (i & 0x1) \
|
||||
vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
|
||||
r[i - GGML_ENDIAN_BYTE(0)]), \
|
||||
0, p - GGML_F16_EPR)
|
||||
|
||||
#elif defined(__wasm_simd128__)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 WASM
|
||||
|
||||
#define GGML_F32_STEP 16
|
||||
#define GGML_F32_EPR 4
|
||||
|
||||
#define GGML_F32x4 v128_t
|
||||
#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
|
||||
#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
|
||||
#define GGML_F32x4_LOAD wasm_v128_load
|
||||
#define GGML_F32x4_STORE wasm_v128_store
|
||||
#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
|
||||
#define GGML_F32x4_ADD wasm_f32x4_add
|
||||
#define GGML_F32x4_MUL wasm_f32x4_mul
|
||||
#define GGML_F32x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||||
} \
|
||||
res = wasm_f32x4_extract_lane(x[0], 0) + \
|
||||
wasm_f32x4_extract_lane(x[0], 1) + \
|
||||
wasm_f32x4_extract_lane(x[0], 2) + \
|
||||
wasm_f32x4_extract_lane(x[0], 3); \
|
||||
}
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x4
|
||||
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
// F16 WASM
|
||||
|
||||
#define GGML_F16_STEP 16
|
||||
#define GGML_F16_EPR 4
|
||||
|
||||
inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
|
||||
float tmp[4];
|
||||
|
||||
tmp[0] = GGML_FP16_TO_FP32(p[0]);
|
||||
tmp[1] = GGML_FP16_TO_FP32(p[1]);
|
||||
tmp[2] = GGML_FP16_TO_FP32(p[2]);
|
||||
tmp[3] = GGML_FP16_TO_FP32(p[3]);
|
||||
|
||||
return wasm_v128_load(tmp);
|
||||
}
|
||||
|
||||
inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
|
||||
float tmp[4];
|
||||
|
||||
wasm_v128_store(tmp, x);
|
||||
|
||||
p[0] = GGML_FP32_TO_FP16(tmp[0]);
|
||||
p[1] = GGML_FP32_TO_FP16(tmp[1]);
|
||||
p[2] = GGML_FP32_TO_FP16(tmp[2]);
|
||||
p[3] = GGML_FP32_TO_FP16(tmp[3]);
|
||||
}
|
||||
|
||||
#define GGML_F16x4 v128_t
|
||||
#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
|
||||
#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
|
||||
#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
|
||||
#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
|
||||
#define GGML_F16x4_FMA GGML_F32x4_FMA
|
||||
#define GGML_F16x4_ADD wasm_f32x4_add
|
||||
#define GGML_F16x4_MUL wasm_f32x4_mul
|
||||
#define GGML_F16x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F16_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
|
||||
} \
|
||||
res = (ggml_float) (wasm_f32x4_extract_lane(x[0], 0) + \
|
||||
wasm_f32x4_extract_lane(x[0], 1) + \
|
||||
wasm_f32x4_extract_lane(x[0], 2) + \
|
||||
wasm_f32x4_extract_lane(x[0], 3)); \
|
||||
}
|
||||
|
||||
#define GGML_F16_VEC GGML_F16x4
|
||||
#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F16x4_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F16x4_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F16x4_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
|
||||
|
||||
#elif defined(__SSE3__)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 SSE
|
||||
|
||||
#define GGML_F32_STEP 32
|
||||
#define GGML_F32_EPR 4
|
||||
|
||||
#define GGML_F32x4 __m128
|
||||
#define GGML_F32x4_ZERO _mm_setzero_ps()
|
||||
#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
|
||||
#define GGML_F32x4_LOAD _mm_loadu_ps
|
||||
#define GGML_F32x4_STORE _mm_storeu_ps
|
||||
#if defined(__FMA__)
|
||||
// TODO: Does this work?
|
||||
#define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
|
||||
#else
|
||||
#define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
|
||||
#endif
|
||||
#define GGML_F32x4_ADD _mm_add_ps
|
||||
#define GGML_F32x4_MUL _mm_mul_ps
|
||||
#define GGML_F32x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = _mm_add_ps(x[i], x[offset+i]); \
|
||||
} \
|
||||
const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
|
||||
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
|
||||
}
|
||||
// TODO: is this optimal ?
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x4
|
||||
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
// F16 SSE
|
||||
|
||||
#define GGML_F16_STEP 32
|
||||
#define GGML_F16_EPR 4
|
||||
|
||||
static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) {
|
||||
float tmp[4];
|
||||
|
||||
tmp[0] = GGML_FP16_TO_FP32(x[0]);
|
||||
tmp[1] = GGML_FP16_TO_FP32(x[1]);
|
||||
tmp[2] = GGML_FP16_TO_FP32(x[2]);
|
||||
tmp[3] = GGML_FP16_TO_FP32(x[3]);
|
||||
|
||||
return _mm_loadu_ps(tmp);
|
||||
}
|
||||
|
||||
static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
||||
float arr[4];
|
||||
|
||||
_mm_storeu_ps(arr, y);
|
||||
|
||||
x[0] = GGML_FP32_TO_FP16(arr[0]);
|
||||
x[1] = GGML_FP32_TO_FP16(arr[1]);
|
||||
x[2] = GGML_FP32_TO_FP16(arr[2]);
|
||||
x[3] = GGML_FP32_TO_FP16(arr[3]);
|
||||
}
|
||||
|
||||
#define GGML_F32Cx4 __m128
|
||||
#define GGML_F32Cx4_ZERO _mm_setzero_ps()
|
||||
#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
|
||||
#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
|
||||
#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
|
||||
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
|
||||
#define GGML_F32Cx4_ADD _mm_add_ps
|
||||
#define GGML_F32Cx4_MUL _mm_mul_ps
|
||||
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
#define GGML_F16_VEC GGML_F32Cx4
|
||||
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
||||
|
||||
#elif defined(__loongarch_asx)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 LASX
|
||||
#define GGML_F32_STEP 32
|
||||
#define GGML_F32_EPR 8
|
||||
|
||||
#define GGML_F32x8 __m256
|
||||
#define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
|
||||
#define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
|
||||
#define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
|
||||
#define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
|
||||
#define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
|
||||
#define GGML_F32x8_ADD __lasx_xvfadd_s
|
||||
#define GGML_F32x8_MUL __lasx_xvfmul_s
|
||||
#define GGML_F32x8_REDUCE(res, x) \
|
||||
do { \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
|
||||
} \
|
||||
float *tmp_p = (float *)&x[0]; \
|
||||
res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
|
||||
} while (0)
|
||||
// TODO: is this optimal ?
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x8
|
||||
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
|
||||
|
||||
// F16 LASX
|
||||
|
||||
#define GGML_F16_STEP 32
|
||||
#define GGML_F16_EPR 8
|
||||
|
||||
// F16 arithmetic is not supported by LASX, so we use F32 instead
|
||||
|
||||
#define GGML_F32Cx8 __m256
|
||||
#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
|
||||
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
|
||||
|
||||
static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
|
||||
__m256i a;
|
||||
memcpy(&a, x, sizeof(ggml_fp16_t) * 8);
|
||||
a = __lasx_xvpermi_d(a, 0 | (1 << 4));
|
||||
return __lasx_xvfcvtl_s_h(a);
|
||||
}
|
||||
|
||||
static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
|
||||
__m256i a = __lasx_xvfcvt_h_s(y, y);
|
||||
a = __lasx_xvpermi_d(a, 0 | (2 << 2));
|
||||
memcpy(x, &a, sizeof(ggml_fp16_t) * 8);
|
||||
}
|
||||
#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
|
||||
#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
|
||||
|
||||
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
|
||||
#define GGML_F32Cx8_ADD __lasx_xvfadd_s
|
||||
#define GGML_F32Cx8_MUL __lasx_xvfmul_s
|
||||
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
|
||||
|
||||
#define GGML_F16_VEC GGML_F32Cx8
|
||||
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
|
||||
|
||||
#elif defined(__loongarch_sx)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 LSX
|
||||
|
||||
#define GGML_F32_STEP 32
|
||||
#define GGML_F32_EPR 4
|
||||
|
||||
#define GGML_F32x4 __m128
|
||||
#define GGML_F32x4_ZERO __lsx_vldi(0)
|
||||
#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
|
||||
#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
|
||||
#define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
|
||||
#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
|
||||
#define GGML_F32x4_ADD __lsx_vfadd_s
|
||||
#define GGML_F32x4_MUL __lsx_vfmul_s
|
||||
#define GGML_F32x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
|
||||
} \
|
||||
__m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
|
||||
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
|
||||
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||||
const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
|
||||
tmp = __lsx_vsrli_d((__m128i) t0, 32); \
|
||||
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
|
||||
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||||
res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
|
||||
}
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x4
|
||||
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
// F16 LSX
|
||||
|
||||
#define GGML_F16_STEP 32
|
||||
#define GGML_F16_EPR 4
|
||||
|
||||
static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
|
||||
float tmp[4];
|
||||
|
||||
tmp[0] = GGML_FP16_TO_FP32(x[0]);
|
||||
tmp[1] = GGML_FP16_TO_FP32(x[1]);
|
||||
tmp[2] = GGML_FP16_TO_FP32(x[2]);
|
||||
tmp[3] = GGML_FP16_TO_FP32(x[3]);
|
||||
|
||||
return __lsx_vld(tmp, 0);
|
||||
}
|
||||
|
||||
static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
||||
float arr[4];
|
||||
|
||||
__lsx_vst(y, arr, 0);
|
||||
|
||||
x[0] = GGML_FP32_TO_FP16(arr[0]);
|
||||
x[1] = GGML_FP32_TO_FP16(arr[1]);
|
||||
x[2] = GGML_FP32_TO_FP16(arr[2]);
|
||||
x[3] = GGML_FP32_TO_FP16(arr[3]);
|
||||
}
|
||||
|
||||
#define GGML_F32Cx4 __m128
|
||||
#define GGML_F32Cx4_ZERO __lsx_vldi(0)
|
||||
#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
|
||||
#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
|
||||
#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
|
||||
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
|
||||
#define GGML_F32Cx4_ADD __lsx_vfadd_s
|
||||
#define GGML_F32Cx4_MUL __lsx_vfmul_s
|
||||
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
#define GGML_F16_VEC GGML_F32Cx4
|
||||
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
|
||||
|
||||
#elif defined(__VXE__) || defined(__VXE2__)
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32 s390x
|
||||
|
||||
#define GGML_F32_STEP 32
|
||||
#define GGML_F32_EPR 4
|
||||
|
||||
#define GGML_F32x4 __vector float
|
||||
#define GGML_F32x4_ZERO vec_splats(0.0f)
|
||||
#define GGML_F32x4_SET1 vec_splats
|
||||
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
|
||||
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
|
||||
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
|
||||
#define GGML_F32x4_ADD vec_add
|
||||
#define GGML_F32x4_MUL vec_mul
|
||||
#define GGML_F32x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = vec_add(x[i], x[offset + i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = vec_add(x[i], x[offset + i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = vec_add(x[i], x[offset + i]); \
|
||||
} \
|
||||
res = vec_extract(x[0], 0) + \
|
||||
vec_extract(x[0], 1) + \
|
||||
vec_extract(x[0], 2) + \
|
||||
vec_extract(x[0], 3); \
|
||||
}
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x4
|
||||
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
// F16 s390x
|
||||
#define GGML_F16_STEP GGML_F32_STEP
|
||||
#define GGML_F16_EPR GGML_F32_EPR
|
||||
|
||||
static inline __vector float __lzs_f16cx4_load(const ggml_fp16_t * x) {
|
||||
float tmp[4];
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
tmp[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
|
||||
return vec_xl(0, tmp);
|
||||
}
|
||||
|
||||
static inline void __lzs_f16cx4_store(ggml_fp16_t * x, __vector float y) {
|
||||
float arr[4];
|
||||
|
||||
vec_xst(y, 0, arr);
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
x[i] = GGML_FP32_TO_FP16(arr[i]);
|
||||
}
|
||||
}
|
||||
|
||||
#define GGML_F16_VEC GGML_F32x4
|
||||
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
|
||||
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
|
||||
#define GGML_F16_VEC_LOAD(p, i) __lzs_f16cx4_load(p)
|
||||
#define GGML_F16_VEC_STORE(p, r, i) __lzs_f16cx4_store(p, r[i])
|
||||
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
|
||||
#define GGML_F16_VEC_ADD GGML_F32x4_ADD
|
||||
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
#endif
|
||||
|
||||
// GGML_F32_ARR / GGML_F16_ARR
|
||||
// number of registers to use per step
|
||||
#ifdef GGML_SIMD
|
||||
#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
|
||||
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
|
||||
#endif
|
@ -1,186 +0,0 @@
|
||||
#include "unary-ops.h"
|
||||
|
||||
static inline float op_abs(float x) {
|
||||
return fabsf(x);
|
||||
}
|
||||
|
||||
static inline float op_sgn(float x) {
|
||||
return (x > 0.f) ? 1.f : ((x < 0.f) ? -1.f : 0.f);
|
||||
}
|
||||
|
||||
static inline float op_neg(float x) {
|
||||
return -x;
|
||||
}
|
||||
|
||||
static inline float op_step(float x) {
|
||||
return (x > 0.f) ? 1.f : 0.f;
|
||||
}
|
||||
|
||||
static inline float op_tanh(float x) {
|
||||
return tanhf(x);
|
||||
}
|
||||
|
||||
static inline float op_elu(float x) {
|
||||
return (x > 0.f) ? x : expm1f(x);
|
||||
}
|
||||
|
||||
static inline float op_relu(float x) {
|
||||
return (x > 0.f) ? x : 0.f;
|
||||
}
|
||||
|
||||
static inline float op_sigmoid(float x) {
|
||||
return 1.f / (1.f + expf(-x));
|
||||
}
|
||||
|
||||
static inline float op_hardsigmoid(float x) {
|
||||
return fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f));
|
||||
}
|
||||
|
||||
static inline float op_exp(float x) {
|
||||
return expf(x);
|
||||
}
|
||||
|
||||
static inline float op_hardswish(float x) {
|
||||
return x * fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f));
|
||||
}
|
||||
|
||||
static inline float op_sqr(float x) {
|
||||
return x * x;
|
||||
}
|
||||
|
||||
static inline float op_sqrt(float x) {
|
||||
return sqrtf(x);
|
||||
}
|
||||
|
||||
static inline float op_sin(float x) {
|
||||
return sinf(x);
|
||||
}
|
||||
|
||||
static inline float op_cos(float x) {
|
||||
return cosf(x);
|
||||
}
|
||||
|
||||
static inline float op_log(float x) {
|
||||
return logf(x);
|
||||
}
|
||||
|
||||
template <float (*op)(float), typename src0_t, typename dst_t>
|
||||
static inline void vec_unary_op(int64_t n, dst_t * y, const src0_t * x) {
|
||||
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
|
||||
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
y[i] = f32_to_dst(op(src0_to_f32(x[i])));
|
||||
}
|
||||
}
|
||||
|
||||
template <float (*op)(float), typename src0_t, typename dst_t>
|
||||
static void apply_unary_op(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0) && ggml_is_contiguous_1(dst) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT( nb0 == sizeof(dst_t));
|
||||
GGML_ASSERT(nb00 == sizeof(src0_t));
|
||||
|
||||
const auto [ir0, ir1] = get_thread_range(params, src0);
|
||||
|
||||
for (int64_t ir = ir0; ir < ir1; ++ir) {
|
||||
const int64_t i03 = ir/(ne02*ne01);
|
||||
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||
|
||||
dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
|
||||
const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
|
||||
|
||||
vec_unary_op<op>(ne0, dst_ptr, src0_ptr);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Use the 'traits' lookup table (for type conversion fns), instead of a mass of 'if' conditions with long templates
|
||||
template <float (*op)(float)>
|
||||
static void unary_op(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
/* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
|
||||
apply_unary_op<op, float, float>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
|
||||
apply_unary_op<op, ggml_fp16_t, ggml_fp16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
|
||||
apply_unary_op<op, ggml_bf16_t, ggml_bf16_t>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
|
||||
apply_unary_op<op, ggml_bf16_t, float>(params, dst);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
apply_unary_op<op, ggml_fp16_t, float>(params, dst);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
|
||||
ggml_type_name(dst->type), ggml_type_name(src0->type));
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_abs(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_abs>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sgn(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_sgn>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_neg(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_neg>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_step(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_step>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_tanh(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_tanh>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_elu(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_elu>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_relu(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_relu>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sigmoid(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_sigmoid>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_hardsigmoid(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_hardsigmoid>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_exp(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_exp>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_hardswish(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_hardswish>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sqr(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_sqr>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sqrt(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_sqrt>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_sin(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_sin>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_cos(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_cos>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_log(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_log>(params, dst);
|
||||
}
|
@ -1,28 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void ggml_compute_forward_abs(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sgn(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_neg(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_step(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_tanh(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_elu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_relu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sigmoid(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_hardsigmoid(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_exp(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_hardswish(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sqr(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sqrt(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_sin(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_cos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_log(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,258 +0,0 @@
|
||||
#include "vec.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
// disable "possible loss of data" to avoid hundreds of casts
|
||||
// we should just be careful :)
|
||||
#pragma warning(disable: 4244 4267)
|
||||
#endif
|
||||
|
||||
// precomputed gelu table for f16 (128 KB)
|
||||
ggml_fp16_t ggml_table_gelu_f16[1 << 16];
|
||||
|
||||
// precomputed quick gelu table for f16 (128 KB)
|
||||
ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
|
||||
|
||||
void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
GGML_UNUSED(nrc);
|
||||
GGML_UNUSED(bx);
|
||||
GGML_UNUSED(by);
|
||||
GGML_UNUSED(bs);
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
float sumf = 0.0f;
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F32_VEC_REDUCE(sumf, sum);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += x[i]*y[i];
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
ggml_float sumf = 0.0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sumf += (ggml_float)(x[i]*y[i]);
|
||||
}
|
||||
#endif
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
|
||||
void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
GGML_UNUSED(nrc);
|
||||
GGML_UNUSED(bx);
|
||||
GGML_UNUSED(by);
|
||||
GGML_UNUSED(bs);
|
||||
int i = 0;
|
||||
ggml_float sumf = 0;
|
||||
|
||||
#if defined(__AVX512BF16__)
|
||||
__m512 c1 = _mm512_setzero_ps();
|
||||
__m512 c2 = _mm512_setzero_ps();
|
||||
for (; i + 64 <= n; i += 64) {
|
||||
c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
|
||||
m512bh(_mm512_loadu_si512((y + i))));
|
||||
c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
|
||||
m512bh(_mm512_loadu_si512((y + i + 32))));
|
||||
}
|
||||
sumf += (ggml_float)_mm512_reduce_add_ps(c1);
|
||||
sumf += (ggml_float)_mm512_reduce_add_ps(c2);
|
||||
|
||||
#elif defined(__AVX512F__)
|
||||
#define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
|
||||
__m512 c1 = _mm512_setzero_ps();
|
||||
__m512 c2 = _mm512_setzero_ps();
|
||||
for (; i + 32 <= n; i += 32) {
|
||||
c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
|
||||
c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
|
||||
}
|
||||
sumf += (ggml_float)_mm512_reduce_add_ps(c1);
|
||||
sumf += (ggml_float)_mm512_reduce_add_ps(c2);
|
||||
|
||||
#undef LOAD
|
||||
#elif defined(__AVX2__) || defined(__AVX__)
|
||||
#if defined(__AVX2__)
|
||||
#define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
|
||||
#else
|
||||
#define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1))
|
||||
#endif
|
||||
__m256 c1 = _mm256_setzero_ps();
|
||||
__m256 c2 = _mm256_setzero_ps();
|
||||
__m256 c3 = _mm256_setzero_ps();
|
||||
__m256 c4 = _mm256_setzero_ps();
|
||||
for (; i + 32 <= n; i += 32) {
|
||||
c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
|
||||
c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
|
||||
c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
|
||||
c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
|
||||
}
|
||||
__m128 g;
|
||||
c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
|
||||
_mm256_add_ps(c2, c4));
|
||||
g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
|
||||
_mm256_castps256_ps128(c1));
|
||||
g = _mm_add_ps(g, _mm_movehl_ps(g, g));
|
||||
g = _mm_add_ss(g, _mm_movehdup_ps(g));
|
||||
sumf += (ggml_float)_mm_cvtss_f32(g);
|
||||
|
||||
#undef LOAD
|
||||
#endif
|
||||
|
||||
for (; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
|
||||
GGML_BF16_TO_FP32(y[i]));
|
||||
}
|
||||
*s = sumf;
|
||||
}
|
||||
|
||||
void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc) {
|
||||
assert(nrc == 1);
|
||||
GGML_UNUSED(nrc);
|
||||
GGML_UNUSED(bx);
|
||||
GGML_UNUSED(by);
|
||||
GGML_UNUSED(bs);
|
||||
|
||||
ggml_float sumf = 0.0;
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
|
||||
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F16_VEC_REDUCE(sumf, sum);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
#else
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
#endif
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
|
||||
void ggml_vec_silu_f32(const int n, float * y, const float * x) {
|
||||
int i = 0;
|
||||
#if defined(__AVX512F__) && defined(__AVX512DQ__)
|
||||
for (; i + 15 < n; i += 16) {
|
||||
_mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
|
||||
}
|
||||
#elif defined(__AVX2__) && defined(__FMA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
_mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
|
||||
}
|
||||
#elif defined(__SSE2__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
_mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
|
||||
}
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
y[i] = ggml_silu_f32(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
|
||||
int i = 0;
|
||||
ggml_float sum = 0;
|
||||
#if defined(__AVX512F__) && defined(__AVX512DQ__)
|
||||
for (; i + 15 < n; i += 16) {
|
||||
__m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
|
||||
_mm512_set1_ps(max)));
|
||||
_mm512_storeu_ps(y + i, val);
|
||||
sum += (ggml_float)_mm512_reduce_add_ps(val);
|
||||
}
|
||||
#elif defined(__AVX2__) && defined(__FMA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
__m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
|
||||
_mm256_set1_ps(max)));
|
||||
_mm256_storeu_ps(y + i, val);
|
||||
__m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
|
||||
_mm256_castps256_ps128(val));
|
||||
val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
|
||||
val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
|
||||
sum += (ggml_float)_mm_cvtss_f32(val2);
|
||||
}
|
||||
#elif defined(__SSE2__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
__m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
|
||||
_mm_set1_ps(max)));
|
||||
_mm_storeu_ps(y + i, val);
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
val = _mm_add_ps(val, _mm_movehl_ps(val, val));
|
||||
val = _mm_add_ss(val, _mm_movehdup_ps(val));
|
||||
#else
|
||||
__m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
|
||||
val = _mm_add_ps(val, tmp);
|
||||
tmp = _mm_movehl_ps(tmp, val);
|
||||
val = _mm_add_ss(val, tmp);
|
||||
#endif
|
||||
sum += (ggml_float)_mm_cvtss_f32(val);
|
||||
}
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
|
||||
vdupq_n_f32(max)));
|
||||
vst1q_f32(y + i, val);
|
||||
sum += (ggml_float)vaddvq_f32(val);
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
float val = expf(x[i] - max);
|
||||
sum += (ggml_float)val;
|
||||
y[i] = val;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
|
||||
// log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
|
||||
|
||||
int i = 0;
|
||||
ggml_float sum = 0;
|
||||
for (; i < n; ++i) {
|
||||
float val = x[i] - max;
|
||||
y[i] = val;
|
||||
sum += (ggml_float)expf(val);
|
||||
}
|
||||
return sum = (ggml_float)logf(sum);
|
||||
}
|
@ -1,802 +0,0 @@
|
||||
// Vectorized functions for fundamental operations
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#endif
|
||||
|
||||
// floating point type used to accumulate sums
|
||||
typedef double ggml_float;
|
||||
|
||||
#define GGML_GELU_FP16
|
||||
#define GGML_GELU_QUICK_FP16
|
||||
|
||||
#define GGML_SOFT_MAX_UNROLL 4
|
||||
#define GGML_VEC_DOT_UNROLL 2
|
||||
#define GGML_VEC_MAD_UNROLL 32
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//
|
||||
// global data
|
||||
//
|
||||
|
||||
// precomputed gelu table for f16 (128 KB)
|
||||
extern ggml_fp16_t ggml_table_gelu_f16[1 << 16];
|
||||
|
||||
// precomputed quick gelu table for f16 (128 KB)
|
||||
extern ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
|
||||
|
||||
//
|
||||
// fundamental operations
|
||||
//
|
||||
|
||||
void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc);
|
||||
void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc);
|
||||
void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_silu_f32(const int n, float * y, const float * x);
|
||||
ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max);
|
||||
ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max);
|
||||
|
||||
inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
|
||||
inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
inline static void ggml_vec_cpy_i32(const int n, int32_t * y, const int32_t * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
|
||||
|
||||
inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const ggml_fp16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
|
||||
inline static void ggml_vec_add_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) + GGML_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
|
||||
inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
|
||||
inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
|
||||
inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
|
||||
inline static void ggml_vec_sub_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) - GGML_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
|
||||
inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
|
||||
inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
|
||||
inline static void ggml_vec_neg_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(-GGML_FP16_TO_FP32(x[i]));
|
||||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
|
||||
inline static void ggml_vec_mul_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) * GGML_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
|
||||
inline static void ggml_vec_div_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) / GGML_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
|
||||
// compute GGML_VEC_DOT_UNROLL dot products at once
|
||||
// xs - x row stride in bytes
|
||||
inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GGML_RESTRICT s, void * GGML_RESTRICT xv, ggml_fp16_t * GGML_RESTRICT y) {
|
||||
ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
|
||||
|
||||
ggml_fp16_t * GGML_RESTRICT x[GGML_VEC_DOT_UNROLL];
|
||||
|
||||
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
|
||||
x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
|
||||
}
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
|
||||
|
||||
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||||
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
#else
|
||||
for (int i = 0; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
|
||||
s[i] = (float)sumf[i];
|
||||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[i]*v;
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] += x[i]*v;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// xs and vs are byte strides of x and v
|
||||
inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * GGML_RESTRICT y, const float * GGML_RESTRICT xv, const float * GGML_RESTRICT vv) {
|
||||
|
||||
const float * GGML_RESTRICT x[GGML_VEC_MAD_UNROLL];
|
||||
const float * GGML_RESTRICT v[GGML_VEC_MAD_UNROLL];
|
||||
|
||||
for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
|
||||
x[i] = (const float *) ((const char *) xv + i*xs);
|
||||
v[i] = (const float *) ((const char *) vv + i*vs);
|
||||
}
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
|
||||
}
|
||||
|
||||
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
|
||||
}
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
}
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
|
||||
inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
|
||||
#if defined(GGML_USE_ACCELERATE)
|
||||
vDSP_vsmul(y, 1, &v, y, 1, n);
|
||||
#elif defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
|
||||
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] *= v;
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] *= v;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
|
||||
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
|
||||
inline static void ggml_vec_sqr_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16(v*v);
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
|
||||
inline static void ggml_vec_sqrt_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(sqrtf(GGML_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
|
||||
inline static void ggml_vec_log_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(logf(GGML_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
|
||||
inline static void ggml_vec_sin_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(sinf(GGML_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
|
||||
inline static void ggml_vec_cos_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(cosf(GGML_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
|
||||
inline static void ggml_vec_abs_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(fabsf(GGML_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
|
||||
inline static void ggml_vec_sgn_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16((v > 0.f) ? 1.f : ((v < 0.f) ? -1.f : 0.f));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
|
||||
inline static void ggml_vec_step_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16((GGML_FP16_TO_FP32(x[i]) > 0.f) ? 1.f : 0.f);
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
|
||||
inline static void ggml_vec_tanh_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(tanhf(GGML_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
|
||||
inline static void ggml_vec_elu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(expm1f(GGML_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
|
||||
inline static void ggml_vec_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16((v > 0.f) ? v : 0.f);
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
|
||||
inline static void ggml_vec_leaky_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const float ns) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16(((v > 0.f) ? v : 0.f) + ns * ((v < 0.0f) ? v : 0.f));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
|
||||
inline static void ggml_vec_sigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(1.f / (1.f + expf(-GGML_FP16_TO_FP32(x[i]))));
|
||||
}
|
||||
}
|
||||
// TODO: optimize performance
|
||||
inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
|
||||
inline static void ggml_vec_hardswish_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16(v * fminf(1.0f, fmaxf(0.0f, (v + 3.0f) / 6.0f)));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
|
||||
inline static void ggml_vec_hardsigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(fminf(1.0f, fmaxf(0.0f, (GGML_FP16_TO_FP32(x[i]) + 3.0f) / 6.0f)));
|
||||
}
|
||||
}
|
||||
inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
|
||||
inline static void ggml_vec_exp_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(expf(GGML_FP16_TO_FP32(x[i])));
|
||||
}
|
||||
}
|
||||
|
||||
static const float GELU_COEF_A = 0.044715f;
|
||||
static const float GELU_QUICK_COEF = -1.702f;
|
||||
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
|
||||
inline static float ggml_gelu_f32(float x) {
|
||||
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||||
}
|
||||
|
||||
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
const uint16_t * i16 = (const uint16_t *) x;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = ggml_table_gelu_f16[i16[i]];
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_GELU_FP16
|
||||
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||
uint16_t t;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
if (x[i] <= -10.0f) {
|
||||
y[i] = 0.0f;
|
||||
} else if (x[i] >= 10.0f) {
|
||||
y[i] = x[i];
|
||||
} else {
|
||||
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
||||
memcpy(&t, &fp16, sizeof(uint16_t));
|
||||
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = ggml_gelu_f32(x[i]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
inline static float ggml_gelu_quick_f32(float x) {
|
||||
return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
|
||||
}
|
||||
|
||||
//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
// const uint16_t * i16 = (const uint16_t *) x;
|
||||
// for (int i = 0; i < n; ++i) {
|
||||
// y[i] = ggml_table_gelu_quick_f16[i16[i]];
|
||||
// }
|
||||
//}
|
||||
|
||||
#ifdef GGML_GELU_QUICK_FP16
|
||||
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
|
||||
uint16_t t;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
|
||||
memcpy(&t, &fp16, sizeof(uint16_t));
|
||||
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
|
||||
}
|
||||
}
|
||||
#else
|
||||
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = ggml_gelu_quick_f32(x[i]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
float v = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_FP32_TO_FP16(v*(1.0f/(1.0f+expf(GELU_QUICK_COEF*v))));
|
||||
}
|
||||
}
|
||||
|
||||
// Sigmoid Linear Unit (SiLU) function
|
||||
inline static float ggml_silu_f32(float x) {
|
||||
return x/(1.0f + expf(-x));
|
||||
}
|
||||
inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) {
|
||||
float v = GGML_FP16_TO_FP32(x);
|
||||
return GGML_FP32_TO_FP16(v/(1.0f + expf(-v)));
|
||||
}
|
||||
|
||||
#if __FINITE_MATH_ONLY__
|
||||
#error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
|
||||
#error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461"
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__aarch64__)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
// numbers above 88.38 will flush to infinity
|
||||
// numbers beneath -103.97 will flush to zero
|
||||
inline static float32x4_t ggml_v_expf(float32x4_t x) {
|
||||
const float32x4_t r = vdupq_n_f32(0x1.8p23f);
|
||||
const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
|
||||
const float32x4_t n = vsubq_f32(z, r);
|
||||
const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
|
||||
vdupq_n_f32(0x1.7f7d1cp-20f));
|
||||
const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
|
||||
const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
|
||||
const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
|
||||
const float32x4_t u = vmulq_f32(b, b);
|
||||
const float32x4_t j = vfmaq_f32(
|
||||
vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
|
||||
vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
|
||||
vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
|
||||
if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
|
||||
return vfmaq_f32(k, j, k);
|
||||
const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
|
||||
const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
|
||||
const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
|
||||
return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
|
||||
vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static float32x4_t ggml_v_silu(float32x4_t x) {
|
||||
const float32x4_t one = vdupq_n_f32(1.0f);
|
||||
const float32x4_t zero = vdupq_n_f32(0.0f);
|
||||
const float32x4_t neg_x = vsubq_f32(zero, x);
|
||||
const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
|
||||
const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
|
||||
return vdivq_f32(x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#elif defined(__AVX512F__) && defined(__AVX512DQ__)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
// numbers above 88.38 will flush to infinity
|
||||
// numbers beneath -103.97 will flush to zero
|
||||
inline static __m512 ggml_v_expf(__m512 x) {
|
||||
const __m512 r = _mm512_set1_ps(0x1.8p23f);
|
||||
const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
|
||||
const __m512 n = _mm512_sub_ps(z, r);
|
||||
const __m512 b =
|
||||
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
|
||||
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
|
||||
const __mmask16 d =
|
||||
_mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
|
||||
const __m512 u = _mm512_mul_ps(b, b);
|
||||
const __m512 j = _mm512_fmadd_ps(
|
||||
_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
|
||||
_mm512_set1_ps(0x1.573e2ep-5f)),
|
||||
u,
|
||||
_mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
|
||||
_mm512_set1_ps(0x1.fffdb6p-2f))),
|
||||
u,
|
||||
_mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
|
||||
const __m512 res = _mm512_scalef_ps(j, n);
|
||||
if (_mm512_kortestz(d, d))
|
||||
return res;
|
||||
const __m512 zero = _mm512_setzero_ps();
|
||||
const __m512 alt = _mm512_mask_blend_ps(
|
||||
_mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
|
||||
return _mm512_mask_blend_ps(d, res, alt);
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static __m512 ggml_v_silu(__m512 x) {
|
||||
const __m512 one = _mm512_set1_ps(1);
|
||||
const __m512 zero = _mm512_setzero_ps();
|
||||
const __m512 neg_x = _mm512_sub_ps(zero, x);
|
||||
const __m512 exp_neg_x = ggml_v_expf(neg_x);
|
||||
const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
|
||||
return _mm512_div_ps(x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#elif defined(__AVX2__) && defined(__FMA__)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
// numbers above 88.38 will flush to infinity
|
||||
// numbers beneath -103.97 will flush to zero
|
||||
inline static __m256 ggml_v_expf(__m256 x) {
|
||||
const __m256 r = _mm256_set1_ps(0x1.8p23f);
|
||||
const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
|
||||
const __m256 n = _mm256_sub_ps(z, r);
|
||||
const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
|
||||
_mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
|
||||
const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
|
||||
const __m256 k = _mm256_castsi256_ps(
|
||||
_mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
|
||||
const __m256i c = _mm256_castps_si256(
|
||||
_mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
|
||||
_mm256_set1_ps(126), _CMP_GT_OQ));
|
||||
const __m256 u = _mm256_mul_ps(b, b);
|
||||
const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
|
||||
_mm256_set1_ps(0x1.573e2ep-5f)), u,
|
||||
_mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
|
||||
_mm256_set1_ps(0x1.fffdb6p-2f))),
|
||||
u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
|
||||
if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
|
||||
return _mm256_fmadd_ps(j, k, k);
|
||||
const __m256i g = _mm256_and_si256(
|
||||
_mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
|
||||
_mm256_set1_epi32(0x82000000u));
|
||||
const __m256 s1 =
|
||||
_mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
|
||||
const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
|
||||
const __m256i d = _mm256_castps_si256(
|
||||
_mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
|
||||
_mm256_set1_ps(192), _CMP_GT_OQ));
|
||||
return _mm256_or_ps(
|
||||
_mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
|
||||
_mm256_andnot_ps(
|
||||
_mm256_castsi256_ps(d),
|
||||
_mm256_or_ps(
|
||||
_mm256_and_ps(_mm256_castsi256_ps(c),
|
||||
_mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
|
||||
_mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static __m256 ggml_v_silu(__m256 x) {
|
||||
const __m256 one = _mm256_set1_ps(1);
|
||||
const __m256 zero = _mm256_setzero_ps();
|
||||
const __m256 neg_x = _mm256_sub_ps(zero, x);
|
||||
const __m256 exp_neg_x = ggml_v_expf(neg_x);
|
||||
const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
|
||||
return _mm256_div_ps(x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
|
||||
|
||||
#if defined(__FMA__)
|
||||
#define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
|
||||
#define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
|
||||
#else
|
||||
#define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
|
||||
#define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
|
||||
#endif
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
// numbers above 88.38 will flush to infinity
|
||||
// numbers beneath -103.97 will flush to zero
|
||||
inline static __m128 ggml_v_expf(__m128 x) {
|
||||
const __m128 r = _mm_set1_ps(0x1.8p23f);
|
||||
const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
|
||||
const __m128 n = _mm_sub_ps(z, r);
|
||||
const __m128 b =
|
||||
NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
|
||||
const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
|
||||
const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
|
||||
const __m128i c =
|
||||
_mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
|
||||
const __m128 u = _mm_mul_ps(b, b);
|
||||
const __m128 j =
|
||||
MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
|
||||
MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
|
||||
u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
|
||||
if (!_mm_movemask_epi8(c))
|
||||
return MADD128(j, k, k);
|
||||
const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
|
||||
_mm_set1_epi32(0x82000000u));
|
||||
const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
|
||||
const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
|
||||
const __m128i d =
|
||||
_mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
|
||||
return _mm_or_ps(
|
||||
_mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
|
||||
_mm_andnot_ps(_mm_castsi128_ps(d),
|
||||
_mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
|
||||
_mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static __m128 ggml_v_silu(__m128 x) {
|
||||
const __m128 one = _mm_set1_ps(1);
|
||||
const __m128 zero = _mm_setzero_ps();
|
||||
const __m128 neg_x = _mm_sub_ps(zero, x);
|
||||
const __m128 exp_neg_x = ggml_v_expf(neg_x);
|
||||
const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
|
||||
return _mm_div_ps(x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#endif // __ARM_NEON / __AVX2__ / __SSE2__
|
||||
|
||||
inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = ggml_silu_f16(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline static float ggml_silu_backward_f32(float x, float dy) {
|
||||
const float s = 1.0f/(1.0f + expf(-x));
|
||||
return dy*s*(1.0f + x*(1.0f - s));
|
||||
}
|
||||
|
||||
inline static ggml_fp16_t ggml_silu_backward_f16(ggml_fp16_t x, ggml_fp16_t dy) {
|
||||
const float v = GGML_FP16_TO_FP32(x);
|
||||
const float s = 1.0f/(1.0f + expf(-v));
|
||||
return GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(dy)*s*(1.0f + v*(1.0f - s)));
|
||||
}
|
||||
|
||||
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_silu_backward_f16(const int n, ggml_fp16_t * dx, const ggml_fp16_t * x, const ggml_fp16_t * dy) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
dx[i] = ggml_silu_backward_f16(x[i], dy[i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
|
||||
#ifndef GGML_USE_ACCELERATE
|
||||
ggml_float sum = 0.0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sum += (ggml_float)x[i];
|
||||
}
|
||||
*s = (float)sum;
|
||||
#else
|
||||
vDSP_sve(x, 1, s, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
|
||||
ggml_float sum = 0.0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sum += (ggml_float)x[i];
|
||||
}
|
||||
*s = sum;
|
||||
}
|
||||
|
||||
inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
|
||||
float sum = 0.0f;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sum += GGML_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
*s = sum;
|
||||
}
|
||||
|
||||
inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
|
||||
float sum = 0.0f;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sum += GGML_BF16_TO_FP32(x[i]);
|
||||
}
|
||||
*s = sum;
|
||||
}
|
||||
|
||||
inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
|
||||
#ifndef GGML_USE_ACCELERATE
|
||||
float max = -INFINITY;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
max = MAX(max, x[i]);
|
||||
}
|
||||
*s = max;
|
||||
#else
|
||||
vDSP_maxv(x, 1, s, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
|
||||
ggml_vec_norm_f32(n, s, x);
|
||||
*s = 1.f/(*s);
|
||||
}
|
||||
|
||||
inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
|
||||
float max = -INFINITY;
|
||||
int idx = 0;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
max = MAX(max, x[i]);
|
||||
if (max == x[i]) { idx = i; }
|
||||
}
|
||||
*s = idx;
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -1,165 +0,0 @@
|
||||
cmake_minimum_required(VERSION 3.18) # for CMAKE_CUDA_ARCHITECTURES
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
|
||||
if (CUDAToolkit_FOUND)
|
||||
message(STATUS "CUDA Toolkit found")
|
||||
|
||||
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
# native == GPUs available at build time
|
||||
# 50 == Maxwell, lowest CUDA 12 standard
|
||||
# 60 == P100, FP16 CUDA intrinsics
|
||||
# 61 == Pascal, __dp4a instruction (per-byte integer dot product)
|
||||
# 70 == V100, FP16 tensor cores
|
||||
# 75 == Turing, int8 tensor cores
|
||||
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "native")
|
||||
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70;75;80")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50;61;70;75;80")
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
file(GLOB GGML_HEADERS_CUDA "*.cuh")
|
||||
list(APPEND GGML_HEADERS_CUDA "../../include/ggml-cuda.h")
|
||||
|
||||
file(GLOB GGML_SOURCES_CUDA "*.cu")
|
||||
file(GLOB SRCS "template-instances/fattn-mma*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "template-instances/fattn-vec*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
|
||||
else()
|
||||
file(GLOB SRCS "template-instances/fattn-vec*q4_0-q4_0.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/fattn-vec*q8_0-q8_0.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/fattn-vec*f16-f16.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
endif()
|
||||
|
||||
ggml_add_backend_library(ggml-cuda
|
||||
${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_CUDA}
|
||||
)
|
||||
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
|
||||
if (GGML_CUDA_GRAPHS)
|
||||
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_MMQ)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_FORCE_CUBLAS)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_CUBLAS)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
add_compile_definitions(GGML_CUDA_NO_VMM)
|
||||
endif()
|
||||
|
||||
if (NOT GGML_CUDA_FA)
|
||||
add_compile_definitions(GGML_CUDA_NO_FA)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_F16)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
if (GGML_STATIC)
|
||||
if (WIN32)
|
||||
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas CUDA::cublasLt)
|
||||
else ()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
endif()
|
||||
else()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_VMM)
|
||||
# No VMM requested, no need to link directly with the cuda driver lib (libcuda.so)
|
||||
else()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cuda_driver)
|
||||
endif()
|
||||
|
||||
set(CUDA_CXX_FLAGS "")
|
||||
|
||||
set(CUDA_FLAGS -use_fast_math)
|
||||
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.8")
|
||||
# Options are:
|
||||
# - none (not recommended)
|
||||
# - speed (nvcc's default)
|
||||
# - balance
|
||||
# - size
|
||||
list(APPEND CUDA_FLAGS -compress-mode=${GGML_CUDA_COMPRESSION_MODE})
|
||||
endif()
|
||||
|
||||
if (GGML_FATAL_WARNINGS)
|
||||
list(APPEND CUDA_FLAGS -Werror all-warnings)
|
||||
endif()
|
||||
|
||||
if (GGML_ALL_WARNINGS AND NOT MSVC)
|
||||
set(NVCC_CMD ${CMAKE_CUDA_COMPILER} .c)
|
||||
if (NOT CMAKE_CUDA_HOST_COMPILER STREQUAL "")
|
||||
list(APPEND NVCC_CMD -ccbin ${CMAKE_CUDA_HOST_COMPILER})
|
||||
endif()
|
||||
|
||||
execute_process(
|
||||
COMMAND ${NVCC_CMD} -Xcompiler --version
|
||||
OUTPUT_VARIABLE CUDA_CCFULLVER
|
||||
ERROR_QUIET
|
||||
)
|
||||
|
||||
if (NOT CUDA_CCFULLVER MATCHES clang)
|
||||
set(CUDA_CCID "GNU")
|
||||
execute_process(
|
||||
COMMAND ${NVCC_CMD} -Xcompiler "-dumpfullversion -dumpversion"
|
||||
OUTPUT_VARIABLE CUDA_CCVER
|
||||
ERROR_QUIET
|
||||
)
|
||||
else()
|
||||
if (CUDA_CCFULLVER MATCHES Apple)
|
||||
set(CUDA_CCID "AppleClang")
|
||||
else()
|
||||
set(CUDA_CCID "Clang")
|
||||
endif()
|
||||
string(REGEX REPLACE "^.* version ([0-9.]*).*$" "\\1" CUDA_CCVER ${CUDA_CCFULLVER})
|
||||
endif()
|
||||
|
||||
message("-- CUDA host compiler is ${CUDA_CCID} ${CUDA_CCVER}")
|
||||
|
||||
ggml_get_flags(${CUDA_CCID} ${CUDA_CCVER})
|
||||
list(APPEND CUDA_CXX_FLAGS ${CXX_FLAGS} ${GF_CXX_FLAGS}) # This is passed to -Xcompiler later
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
list(APPEND CUDA_CXX_FLAGS -Wno-pedantic)
|
||||
endif()
|
||||
|
||||
list(JOIN CUDA_CXX_FLAGS " " CUDA_CXX_FLAGS_JOINED) # pass host compiler flags as a single argument
|
||||
|
||||
if (NOT CUDA_CXX_FLAGS_JOINED STREQUAL "")
|
||||
list(APPEND CUDA_FLAGS -Xcompiler ${CUDA_CXX_FLAGS_JOINED})
|
||||
endif()
|
||||
|
||||
target_compile_options(ggml-cuda PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:${CUDA_FLAGS}>")
|
||||
else()
|
||||
message(FATAL_ERROR "CUDA Toolkit not found")
|
||||
endif()
|
@ -1,47 +0,0 @@
|
||||
#include "acc.cuh"
|
||||
|
||||
static __global__ void acc_f32(const float * x, const float * y, float * dst, const int ne,
|
||||
const int ne10, const int ne11, const int ne12,
|
||||
const int nb1, const int nb2, int offset) {
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
int src1_idx = i - offset;
|
||||
int oz = src1_idx / nb2;
|
||||
int oy = (src1_idx - (oz * nb2)) / nb1;
|
||||
int ox = src1_idx % nb1;
|
||||
if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
|
||||
dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
|
||||
} else {
|
||||
dst[i] = x[i];
|
||||
}
|
||||
}
|
||||
|
||||
static void acc_f32_cuda(const float * x, const float * y, float * dst, const int n_elements,
|
||||
const int ne10, const int ne11, const int ne12,
|
||||
const int nb1, const int nb2, const int offset, cudaStream_t stream) {
|
||||
int num_blocks = (n_elements + CUDA_ACC_BLOCK_SIZE - 1) / CUDA_ACC_BLOCK_SIZE;
|
||||
acc_f32<<<num_blocks, CUDA_ACC_BLOCK_SIZE, 0, stream>>>(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
|
||||
|
||||
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
||||
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
||||
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
||||
int offset = dst->op_params[3] / 4; // offset in bytes
|
||||
|
||||
acc_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, stream);
|
||||
}
|
@ -1,5 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_ACC_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_acc(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
@ -1,34 +0,0 @@
|
||||
#include "arange.cuh"
|
||||
|
||||
static __global__ void arange_f32(float * dst, const int ne0, const float start, const float step) {
|
||||
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
return;
|
||||
}
|
||||
dst[nidx] = start + step * nidx;
|
||||
}
|
||||
|
||||
static void arange_f32_cuda(float * dst, const int ne0, const float start, const float step, cudaStream_t stream) {
|
||||
int num_blocks = (ne0 + CUDA_ARANGE_BLOCK_SIZE - 1) / CUDA_ARANGE_BLOCK_SIZE;
|
||||
arange_f32<<<num_blocks, CUDA_ARANGE_BLOCK_SIZE, 0, stream>>>(dst, ne0, start, step);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
float start;
|
||||
float stop;
|
||||
float step;
|
||||
memcpy(&start, (float *)dst->op_params + 0, sizeof(float));
|
||||
memcpy(&stop, (float *)dst->op_params + 1, sizeof(float));
|
||||
memcpy(&step, (float *)dst->op_params + 2, sizeof(float));
|
||||
|
||||
int64_t steps = (int64_t)ceil((stop - start) / step);
|
||||
GGML_ASSERT(ggml_nelements(dst) == steps);
|
||||
|
||||
arange_f32_cuda(dst_d, dst->ne[0], start, step, stream);
|
||||
}
|
@ -1,5 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_ARANGE_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_arange(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
@ -1,91 +0,0 @@
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
|
||||
#include "argmax.cuh"
|
||||
#include "common.cuh"
|
||||
#include "sum.cuh"
|
||||
|
||||
static __global__ void argmax_f32(const float * __restrict__ x, int32_t * __restrict__ dst, const int64_t ncols) {
|
||||
const int64_t row = blockIdx.x;
|
||||
|
||||
float maxval = -FLT_MAX;
|
||||
int argmax = -1;
|
||||
const float * rowx = x + row * ncols;
|
||||
|
||||
for (int32_t col = threadIdx.x; col < ncols; col += blockDim.x) {
|
||||
const float val = rowx[col];
|
||||
if (val > maxval) {
|
||||
maxval = val;
|
||||
argmax = col;
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE);
|
||||
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE);
|
||||
if (val > maxval) {
|
||||
maxval = val;
|
||||
argmax = col;
|
||||
}
|
||||
}
|
||||
|
||||
const int n_warps = blockDim.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
if (n_warps > 1) {
|
||||
constexpr int max_warps = 1024 / WARP_SIZE;
|
||||
__shared__ float shared_maxval[max_warps];
|
||||
__shared__ int shared_argmax[max_warps];
|
||||
if (lane_id == 0) {
|
||||
shared_maxval[warp_id] = maxval;
|
||||
shared_argmax[warp_id] = argmax;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (warp_id == 0) {
|
||||
if (lane_id < n_warps) {
|
||||
maxval = shared_maxval[lane_id];
|
||||
argmax = shared_argmax[lane_id];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int offset = 16; offset > 0; offset >>= 1) {
|
||||
const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, offset, WARP_SIZE);
|
||||
const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, offset, WARP_SIZE);
|
||||
if (val > maxval) {
|
||||
maxval = val;
|
||||
argmax = col;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (warp_id == 0 && lane_id == 0) {
|
||||
dst[row] = argmax;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
int32_t * dst_d = (int32_t *) dst->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t num_blocks = nrows;
|
||||
const int64_t num_threads = std::min<int64_t>(1024, (ne00 + WARP_SIZE - 1) / WARP_SIZE * WARP_SIZE);
|
||||
const dim3 blocks_dim(num_threads, 1, 1);
|
||||
const dim3 blocks_num(num_blocks, 1, 1);
|
||||
|
||||
argmax_f32<<<blocks_num, blocks_dim, 0, stream>>>(src0_d, dst_d, ne00);
|
||||
}
|
@ -1,3 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
@ -1,104 +0,0 @@
|
||||
#include "argsort.cuh"
|
||||
|
||||
template<typename T>
|
||||
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
|
||||
T tmp = a;
|
||||
a = b;
|
||||
b = tmp;
|
||||
}
|
||||
|
||||
template<ggml_sort_order order>
|
||||
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) {
|
||||
// bitonic sort
|
||||
int col = threadIdx.x;
|
||||
int row = blockIdx.y;
|
||||
|
||||
if (col >= ncols_pad) {
|
||||
return;
|
||||
}
|
||||
|
||||
const float * x_row = x + row * ncols;
|
||||
extern __shared__ int dst_row[];
|
||||
|
||||
// initialize indices
|
||||
dst_row[col] = col;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int k = 2; k <= ncols_pad; k *= 2) {
|
||||
for (int j = k / 2; j > 0; j /= 2) {
|
||||
int ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (dst_row[col] >= ncols ||
|
||||
(dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
|
||||
) {
|
||||
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
} else {
|
||||
if (dst_row[ixj] >= ncols ||
|
||||
(dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
||||
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
|
||||
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
|
||||
) {
|
||||
ggml_cuda_swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
// copy the result to dst without the padding
|
||||
if (col < ncols) {
|
||||
dst[row * ncols + col] = dst_row[col];
|
||||
}
|
||||
}
|
||||
|
||||
static int next_power_of_2(int x) {
|
||||
int n = 1;
|
||||
while (n < x) {
|
||||
n *= 2;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
||||
// bitonic sort requires ncols to be power of 2
|
||||
const int ncols_pad = next_power_of_2(ncols);
|
||||
|
||||
const dim3 block_dims(ncols_pad, 1, 1);
|
||||
const dim3 block_nums(1, nrows, 1);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
|
||||
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
||||
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
|
||||
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const int64_t ncols = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||
|
||||
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
}
|
@ -1,3 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
@ -1,363 +0,0 @@
|
||||
#include "binbcast.cuh"
|
||||
#include <cstdint>
|
||||
|
||||
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
|
||||
return b;
|
||||
GGML_UNUSED(a);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_add(const float a, const float b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_sub(const float a, const float b) {
|
||||
return a - b;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_mul(const float a, const float b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_div(const float a, const float b) {
|
||||
return a / b;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||
int ne0, int ne1, int ne2, int ne3,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
/*int s0, */ int s1, int s2, int s3,
|
||||
/*int s00,*/ int s01, int s02, int s03,
|
||||
/*int s10,*/ int s11, int s12, int s13) {
|
||||
const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
|
||||
const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
|
||||
const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
|
||||
|
||||
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i11 = i1 % ne11;
|
||||
const int i12 = i2 % ne12;
|
||||
const int i13 = i3 % ne13;
|
||||
|
||||
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
|
||||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
||||
|
||||
const src0_t * src0_row = src0 + i_src0;
|
||||
const src1_t * src1_row = src1 + i_src1;
|
||||
dst_t * dst_row = dst + i_dst;
|
||||
|
||||
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
|
||||
const int i10 = i0 % ne10;
|
||||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||
}
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||
int ne0, int ne1, int ne2, int ne3,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
/*int s0, */ int s1, int s2, int s3,
|
||||
/*int s00,*/ int s01, int s02, int s03,
|
||||
/*int s10,*/ int s11, int s12, int s13) {
|
||||
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
const int i3 = i/(ne2*ne1*ne0);
|
||||
const int i2 = (i/(ne1*ne0)) % ne2;
|
||||
const int i1 = (i/ne0) % ne1;
|
||||
const int i0 = i % ne0;
|
||||
|
||||
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i11 = i1 % ne11;
|
||||
const int i12 = i2 % ne12;
|
||||
const int i13 = i3 % ne13;
|
||||
|
||||
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
|
||||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
||||
|
||||
const src0_t * src0_row = src0 + i_src0;
|
||||
const src1_t * src1_row = src1 + i_src1;
|
||||
dst_t * dst_row = dst + i_dst;
|
||||
|
||||
const int i10 = i0 % ne10;
|
||||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __global__ void k_repeat_back(
|
||||
const T * __restrict__ src, T * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const size_t s00, const size_t s01, const size_t s02, const size_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3) {
|
||||
|
||||
const int64_t tid0 = int64_t(blockIdx.x)*blockDim.x + threadIdx.x;
|
||||
const int64_t tid1 = int64_t(blockIdx.y)*blockDim.y + threadIdx.y;
|
||||
const int64_t tid23 = int64_t(blockIdx.z)*blockDim.z + threadIdx.z;
|
||||
const int64_t tid2 = tid23 % ne2;
|
||||
const int64_t tid3 = tid23 / ne2;
|
||||
|
||||
if (tid0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
T sum = 0;
|
||||
for (int64_t i3 = tid3; i3 < ne03; i3 += ne3) {
|
||||
for (int64_t i2 = tid2; i2 < ne02; i2 += ne2) {
|
||||
for (int64_t i1 = tid1; i1 < ne01; i1 += ne1) {
|
||||
for (int64_t i0 = tid0; i0 < ne00; i0 += ne0) {
|
||||
sum += src[i3*s03 + i2*s02 + i1*s01 + i0*s00];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
dst[tid3*ne2*ne1*ne0 + tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float)>
|
||||
struct bin_bcast_cuda {
|
||||
template<typename src0_t, typename src1_t, typename dst_t>
|
||||
void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
|
||||
cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
int nr0 = ne10/ne0;
|
||||
int nr1 = ne11/ne1;
|
||||
int nr2 = ne12/ne2;
|
||||
int nr3 = ne13/ne3;
|
||||
|
||||
int nr[4] = { nr0, nr1, nr2, nr3 };
|
||||
|
||||
// collapse dimensions until first broadcast dimension
|
||||
int64_t cne[] = {ne0, ne1, ne2, ne3};
|
||||
int64_t cne0[] = {ne00, ne01, ne02, ne03};
|
||||
int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
||||
|
||||
size_t cnb[] = {nb0, nb1, nb2, nb3};
|
||||
size_t cnb0[] = {nb00, nb01, nb02, nb03};
|
||||
size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
||||
|
||||
auto collapse = [](int64_t cne[]) {
|
||||
cne[0] *= cne[1];
|
||||
cne[1] = cne[2];
|
||||
cne[2] = cne[3];
|
||||
cne[3] = 1;
|
||||
};
|
||||
|
||||
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
|
||||
cnb[1] *= cne[1];
|
||||
cnb[2] *= cne[2];
|
||||
cnb[3] *= cne[3];
|
||||
};
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if (nr[i] != 1) {
|
||||
break;
|
||||
}
|
||||
if (i > 0) {
|
||||
collapse_nb(cnb, cne);
|
||||
collapse_nb(cnb0, cne0);
|
||||
collapse_nb(cnb1, cne1);
|
||||
collapse(cne);
|
||||
collapse(cne0);
|
||||
collapse(cne1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int64_t ne0 = cne[0];
|
||||
int64_t ne1 = cne[1];
|
||||
int64_t ne2 = cne[2];
|
||||
int64_t ne3 = cne[3];
|
||||
|
||||
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
|
||||
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
|
||||
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
|
||||
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
|
||||
|
||||
int64_t ne10 = cne1[0];
|
||||
int64_t ne11 = cne1[1];
|
||||
int64_t ne12 = cne1[2];
|
||||
int64_t ne13 = cne1[3];
|
||||
|
||||
size_t nb0 = cnb[0];
|
||||
size_t nb1 = cnb[1];
|
||||
size_t nb2 = cnb[2];
|
||||
size_t nb3 = cnb[3];
|
||||
|
||||
size_t nb00 = cnb0[0];
|
||||
size_t nb01 = cnb0[1];
|
||||
size_t nb02 = cnb0[2];
|
||||
size_t nb03 = cnb0[3];
|
||||
|
||||
size_t nb10 = cnb1[0];
|
||||
size_t nb11 = cnb1[1];
|
||||
size_t nb12 = cnb1[2];
|
||||
size_t nb13 = cnb1[3];
|
||||
|
||||
size_t s0 = nb0 / sizeof(dst_t);
|
||||
size_t s1 = nb1 / sizeof(dst_t);
|
||||
size_t s2 = nb2 / sizeof(dst_t);
|
||||
size_t s3 = nb3 / sizeof(dst_t);
|
||||
|
||||
size_t s10 = nb10 / sizeof(src1_t);
|
||||
size_t s11 = nb11 / sizeof(src1_t);
|
||||
size_t s12 = nb12 / sizeof(src1_t);
|
||||
size_t s13 = nb13 / sizeof(src1_t);
|
||||
|
||||
size_t s00 = nb00 / sizeof(src0_t);
|
||||
size_t s01 = nb01 / sizeof(src0_t);
|
||||
size_t s02 = nb02 / sizeof(src0_t);
|
||||
size_t s03 = nb03 / sizeof(src0_t);
|
||||
|
||||
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
|
||||
|
||||
GGML_ASSERT(s0 == 1);
|
||||
GGML_ASSERT(s00 == 1);
|
||||
GGML_ASSERT(s10 == 1);
|
||||
|
||||
const int block_size = 128;
|
||||
|
||||
int64_t hne0 = std::max(ne0/2LL, 1LL);
|
||||
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min<unsigned int>(hne0, block_size);
|
||||
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
|
||||
block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
|
||||
|
||||
dim3 block_nums(
|
||||
(hne0 + block_dims.x - 1) / block_dims.x,
|
||||
(ne1 + block_dims.y - 1) / block_dims.y,
|
||||
(ne2*ne3 + block_dims.z - 1) / block_dims.z
|
||||
);
|
||||
|
||||
if (block_nums.z > 65535) {
|
||||
// this is the maximum number of blocks in z dimension, fallback to 1D grid kernel
|
||||
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
||||
k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00, */ s01, s02, s03,
|
||||
/* s10, */ s11, s12, s13);
|
||||
} else {
|
||||
k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00, */ s01, s02, s03,
|
||||
/* s10, */ s11, s12, s13);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
static void repeat_back_cuda(
|
||||
const T * src, T * dst, const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const size_t s00, const size_t s01, const size_t s02, const size_t s03,
|
||||
const int64_t ne0, const int64_t ne1, const int64_t ne2, const int64_t ne3, cudaStream_t stream) {
|
||||
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dim3 block_nums((ne0 + WARP_SIZE - 1) / WARP_SIZE, ne1, ne2*ne3);
|
||||
k_repeat_back<T><<<block_nums, block_dims, 0, stream>>>
|
||||
(src, dst, ne00, ne01, ne02, ne03, s00, s01, s02, s03, ne0, ne1, ne2, ne3);
|
||||
}
|
||||
|
||||
template<class op>
|
||||
static void ggml_cuda_op_bin_bcast(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||
op()(src0, src1, dst, (const half *) src0_dd, (const half *)src1_dd, (half *) dst_dd, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
||||
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
|
||||
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_sub>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_mul>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_can_repeat(dst, src0));
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
|
||||
GGML_ASSERT(ne2*ne3 <= (1 << 15));
|
||||
|
||||
const size_t ts = ggml_type_size(src0->type);
|
||||
const size_t s00 = nb00 / ts;
|
||||
const size_t s01 = nb01 / ts;
|
||||
const size_t s02 = nb02 / ts;
|
||||
const size_t s03 = nb03 / ts;
|
||||
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
float * dst_d = (float *) dst->data;
|
||||
repeat_back_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s00, s01, s02, s03, ne0, ne1, ne2, ne3, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
}
|
@ -1,9 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
@ -1,45 +0,0 @@
|
||||
#include "clamp.cuh"
|
||||
|
||||
static __device__ __forceinline__ float op_clamp(float x, float min, float max) {
|
||||
return fminf(fmaxf(x, min), max);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static __global__ void op_clamp_kernel(const T * x, T * dst, const T min, const T max, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[i] = (T)op_clamp((float)x[i], (float)min, (float)max);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
static void clamp_cuda(const T * x, T * dst, const T min, const T max, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
|
||||
op_clamp_kernel<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_clamp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const void * src0_d = src0->data;
|
||||
void * dst_d = dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
|
||||
float min;
|
||||
float max;
|
||||
memcpy(&min, dst->op_params, sizeof(float));
|
||||
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
|
||||
|
||||
if (src0->type == GGML_TYPE_F16) {
|
||||
clamp_cuda((const half *)src0_d, (half *)dst_d, (half)min, (half)max, ggml_nelements(src0), stream);
|
||||
} else {
|
||||
clamp_cuda((const float *)src0_d, (float *)dst_d, (float)min, (float)max, ggml_nelements(src0), stream);
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user