mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-24 22:56:42 +00:00
Fix conversion of unnormalized BF16->BF16 weights (llama/7843)
* add truncate_bf16 * truncate intermediate fp32 if converting bf16 to bf16 * fix masking in __compute_fp32_to_bf16 * np.int16 no longer used * missing cast and additional numpy 2.x fix * ggml-impl : do not flush bf16 subnormals to zero * ggml : add reference fp32 to bf16 conversion The fast version is no longer equivalent for all platforms because of the handling of subnormal values. * gguf-py : remove flush to zero for bf16 subnormals * gguf-py : remove float32 truncation to bf16 Rounding achieves the same thing in the cases where this was used. * missed prototype update in merge * merge cleanup --------- Co-authored-by: Francis Couture-Harpin <git@compilade.net>
This commit is contained in:
parent
9cf14ebcbc
commit
6cb38c3673
@ -349,6 +349,7 @@ extern "C" {
|
||||
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
|
||||
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
|
||||
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
|
||||
GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
|
||||
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
|
||||
|
||||
struct ggml_object;
|
||||
|
@ -80,8 +80,9 @@ static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
||||
/**
|
||||
* Converts float32 to brain16.
|
||||
*
|
||||
* This function is binary identical to AMD Zen4 VCVTNEPS2BF16.
|
||||
* Subnormals shall be flushed to zero, and NANs will be quiet.
|
||||
* This is binary identical with Google Brain float conversion.
|
||||
* Floats shall round to nearest even, and NANs shall be quiet.
|
||||
* Subnormals aren't flushed to zero, except perhaps when used.
|
||||
* This code should vectorize nicely if using modern compilers.
|
||||
*/
|
||||
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
||||
@ -95,10 +96,6 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
||||
h.bits = (u.i >> 16) | 64; /* force to quiet */
|
||||
return h;
|
||||
}
|
||||
if (!(u.i & 0x7f800000)) { /* subnormal */
|
||||
h.bits = (u.i & 0x80000000) >> 16; /* flush to zero */
|
||||
return h;
|
||||
}
|
||||
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
|
||||
return h;
|
||||
}
|
||||
|
@ -483,9 +483,16 @@ void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
y[i] = ggml_compute_fp32_to_bf16(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
|
||||
int i = 0;
|
||||
#if defined(__AVX512BF16__)
|
||||
// subnormals are flushed to zero on this platform
|
||||
for (; i + 32 <= n; i += 32) {
|
||||
_mm512_storeu_si512(
|
||||
(__m512i *)(y + i),
|
||||
@ -965,7 +972,7 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.is_quantized = false,
|
||||
.to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
|
||||
.from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
|
||||
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row,
|
||||
.from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
|
||||
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
|
||||
.vec_dot_type = GGML_TYPE_BF16,
|
||||
.nrows = 1,
|
||||
@ -20653,7 +20660,7 @@ size_t ggml_quantize_chunk(
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
size_t elemsize = sizeof(ggml_bf16_t);
|
||||
ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
|
||||
ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
|
||||
result = n * elemsize;
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
|
Loading…
Reference in New Issue
Block a user