mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-22 14:02:21 +00:00
files : remove old sources
This commit is contained in:
parent
8ac5db0169
commit
6576af00d7
examples/whisper.android/lib/src/main/jni/whisper
ggml/src
@ -21,7 +21,6 @@ if (NOT GGML_HOME)
|
||||
SOURCE_FILES
|
||||
${SOURCE_FILES}
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml.c
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml-aarch64.c
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml-alloc.c
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml-backend.cpp
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml-backend-reg.cpp
|
||||
@ -29,7 +28,7 @@ if (NOT GGML_HOME)
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml-threading.cpp
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu.cpp
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu-aarch64.c
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp
|
||||
${WHISPER_LIB_DIR}/ggml/src/ggml-cpu/ggml-cpu-quants.c
|
||||
)
|
||||
endif()
|
||||
|
@ -1,129 +0,0 @@
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include "ggml-aarch64.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-quants.h"
|
||||
#include <assert.h>
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) {
|
||||
block_q4_0x4 out;
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
out.d[i] = in[i].d;
|
||||
}
|
||||
|
||||
const int end = QK4_0 * 2 / blck_size_interleave;
|
||||
|
||||
if (blck_size_interleave == 8) {
|
||||
const uint64_t xor_mask = 0x8888888888888888ULL;
|
||||
for (int i = 0; i < end; ++i) {
|
||||
int src_id = i % 4;
|
||||
int src_offset = (i / 4) * blck_size_interleave;
|
||||
int dst_offset = i * blck_size_interleave;
|
||||
|
||||
uint64_t elems;
|
||||
// Using memcpy to avoid unaligned memory accesses
|
||||
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
|
||||
elems ^= xor_mask;
|
||||
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
|
||||
}
|
||||
} else if (blck_size_interleave == 4) {
|
||||
const uint32_t xor_mask = 0x88888888;
|
||||
for (int i = 0; i < end; ++i) {
|
||||
int src_id = i % 4;
|
||||
int src_offset = (i / 4) * blck_size_interleave;
|
||||
int dst_offset = i * blck_size_interleave;
|
||||
|
||||
uint32_t elems;
|
||||
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint32_t));
|
||||
elems ^= xor_mask;
|
||||
memcpy(&out.qs[dst_offset], &elems, sizeof(uint32_t));
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
// interleave 8 block_q4_0s in blocks of blck_size_interleave
|
||||
// returns an interleaved block_q4_0x8
|
||||
// in the interleaved block_q4_0x8, place deltas for 8 block_q4_0 blocks
|
||||
// first, then interleave quants from 8 block_q4_0s in blocks of blck_size_interleave
|
||||
static block_q4_0x8 make_block_q4_0x8(block_q4_0 * in, unsigned int blck_size_interleave) {
|
||||
block_q4_0x8 out;
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
out.d[i] = in[i].d;
|
||||
}
|
||||
|
||||
const int end = QK4_0 * 4 / blck_size_interleave;
|
||||
const uint64_t xor_mask = 0x8888888888888888ULL;
|
||||
|
||||
for (int i = 0; i < end; ++i) {
|
||||
int src_id = i % 8;
|
||||
int src_offset = (i / 8) * blck_size_interleave;
|
||||
int dst_offset = i * blck_size_interleave;
|
||||
|
||||
uint64_t elems;
|
||||
memcpy(&elems, &in[src_id].qs[src_offset], sizeof(uint64_t));
|
||||
elems ^= xor_mask;
|
||||
memcpy(&out.qs[dst_offset], &elems, sizeof(uint64_t));
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
static size_t quantize_q4_0_nr_bl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, int nrows_interleaved, int blck_size_interleave) {
|
||||
assert(n_per_row % QK4_0 == 0);
|
||||
const int nb = n_per_row / QK4_0;
|
||||
|
||||
void * out_ptr = NULL;
|
||||
if (nrows_interleaved == 8) {
|
||||
out_ptr = (block_q4_0x8 *) dst;
|
||||
}
|
||||
else if (nrows_interleaved == 4) {
|
||||
out_ptr = (block_q4_0x4 *) dst;
|
||||
}
|
||||
assert(nrows_interleaved <= 8);
|
||||
block_q4_0 dst_tmp[8];
|
||||
|
||||
for (int b = 0; b < (nrow * n_per_row); b += nrows_interleaved * n_per_row) {
|
||||
|
||||
for (int64_t x = 0; x < nb; x++) {
|
||||
|
||||
for (int i = 0; i < nrows_interleaved; i++ ) {
|
||||
quantize_row_q4_0_ref(src + b + i * n_per_row + x * QK4_0, (block_q4_0 *) dst_tmp + i, QK4_0);
|
||||
}
|
||||
|
||||
if (nrows_interleaved == 8) {
|
||||
*(block_q4_0x8 *) out_ptr = make_block_q4_0x8(dst_tmp, blck_size_interleave);
|
||||
out_ptr = (block_q4_0x8 *) out_ptr + 1;
|
||||
}
|
||||
else if (nrows_interleaved == 4) {
|
||||
*(block_q4_0x4 *) out_ptr = make_block_q4_0x4(dst_tmp, blck_size_interleave);
|
||||
out_ptr = (block_q4_0x4 *) out_ptr + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ((nrow * n_per_row) / QK4_0 * sizeof(block_q4_0));
|
||||
}
|
||||
|
||||
size_t quantize_q4_0_4x4(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
||||
UNUSED(quant_weights);
|
||||
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 4);
|
||||
}
|
||||
|
||||
size_t quantize_q4_0_4x8(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
||||
UNUSED(quant_weights);
|
||||
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 8);
|
||||
}
|
||||
|
||||
size_t quantize_q4_0_8x8(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
||||
UNUSED(quant_weights);
|
||||
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 8, 8);
|
||||
}
|
@ -1,19 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
// GGML internal header
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
size_t quantize_q4_0_4x4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_0_4x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_0_8x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,699 +0,0 @@
|
||||
#include "dmmv.cuh"
|
||||
#include "dequantize.cuh"
|
||||
#include "convert.cuh"
|
||||
|
||||
#ifndef K_QUANTS_PER_ITERATION
|
||||
#define K_QUANTS_PER_ITERATION 2
|
||||
#else
|
||||
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
||||
#endif
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
|
||||
const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||
|
||||
const int step = 16/K_QUANTS_PER_ITERATION;
|
||||
|
||||
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||
const int in = tid - step*im; // 0...15 or 0...7
|
||||
|
||||
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
||||
const int q_offset = 32*im + l0;
|
||||
const int s_offset = 8*im;
|
||||
const int y_offset = 128*im + l0;
|
||||
|
||||
uint32_t aux[4];
|
||||
const uint8_t * d = (const uint8_t *)aux;
|
||||
const uint8_t * m = (const uint8_t *)(aux + 2);
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + y_offset;
|
||||
const uint8_t * q = x[i].qs + q_offset;
|
||||
|
||||
const float dall = __low2half(x[i].dm);
|
||||
const float dmin = __high2half(x[i].dm);
|
||||
|
||||
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
||||
aux[0] = a[0] & 0x0f0f0f0f;
|
||||
aux[1] = a[1] & 0x0f0f0f0f;
|
||||
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
||||
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
||||
|
||||
float sum1 = 0, sum2 = 0;
|
||||
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
||||
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
||||
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
||||
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
||||
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
||||
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
||||
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
||||
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
||||
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
||||
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
||||
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
||||
|
||||
}
|
||||
tmp += dall * sum1 - dmin * sum2;
|
||||
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[row] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
|
||||
const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
const uint16_t kmask1 = 0x0303;
|
||||
const uint16_t kmask2 = 0x0f0f;
|
||||
|
||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||
|
||||
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
||||
const int step = 16/K_QUANTS_PER_ITERATION;
|
||||
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||
const int in = tid - step*im; // 0....15 or 0...7
|
||||
|
||||
const uint8_t m = 1 << (4*im);
|
||||
|
||||
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
||||
const int q_offset = 32*im + l0;
|
||||
const int y_offset = 128*im + l0;
|
||||
|
||||
uint16_t utmp[4];
|
||||
const int8_t * s = (const int8_t *)utmp;
|
||||
|
||||
const uint16_t s_shift = 4*im;
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + y_offset;
|
||||
const uint8_t * q = x[i].qs + q_offset;
|
||||
const uint8_t * h = x[i].hmask + l0;
|
||||
|
||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
||||
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
||||
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
||||
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
float sum = 0;
|
||||
for (int l = 0; l < n; ++l) {
|
||||
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
||||
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
||||
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
||||
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
||||
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
||||
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
||||
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
||||
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
||||
}
|
||||
tmp += d * sum;
|
||||
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[row] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
|
||||
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
||||
|
||||
const uint16_t kmask1 = 0x3f3f;
|
||||
const uint16_t kmask2 = 0x0f0f;
|
||||
const uint16_t kmask3 = 0xc0c0;
|
||||
|
||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
||||
|
||||
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
||||
|
||||
const int il = tid/step; // 0...3
|
||||
const int ir = tid - step*il; // 0...7 or 0...3
|
||||
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
||||
|
||||
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
||||
const int in = il%2;
|
||||
|
||||
const int l0 = n*(2*ir + in);
|
||||
const int q_offset = 32*im + l0;
|
||||
const int y_offset = 64*im + l0;
|
||||
|
||||
uint16_t aux[4];
|
||||
const uint8_t * sc = (const uint8_t *)aux;
|
||||
|
||||
#if K_QUANTS_PER_ITERATION == 2
|
||||
uint32_t q32[4];
|
||||
const uint8_t * q4 = (const uint8_t *)q32;
|
||||
#else
|
||||
uint16_t q16[4];
|
||||
const uint8_t * q4 = (const uint8_t *)q16;
|
||||
#endif
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y1 = yy + i*QK_K + y_offset;
|
||||
const float * y2 = y1 + 128;
|
||||
|
||||
const float dall = __low2half(x[i].dm);
|
||||
const float dmin = __high2half(x[i].dm);
|
||||
|
||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||
aux[0] = a[im+0] & kmask1;
|
||||
aux[1] = a[im+2] & kmask1;
|
||||
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
||||
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
||||
|
||||
#if K_QUANTS_PER_ITERATION == 2
|
||||
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
||||
const uint32_t * q2 = q1 + 16;
|
||||
|
||||
q32[0] = q1[0] & 0x0f0f0f0f;
|
||||
q32[1] = q1[0] & 0xf0f0f0f0;
|
||||
q32[2] = q2[0] & 0x0f0f0f0f;
|
||||
q32[3] = q2[0] & 0xf0f0f0f0;
|
||||
|
||||
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||
float smin = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
|
||||
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
|
||||
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
||||
}
|
||||
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
||||
#else
|
||||
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
||||
const uint16_t * q2 = q1 + 32;
|
||||
|
||||
q16[0] = q1[0] & 0x0f0f;
|
||||
q16[1] = q1[0] & 0xf0f0;
|
||||
q16[2] = q2[0] & 0x0f0f;
|
||||
q16[3] = q2[0] & 0xf0f0;
|
||||
|
||||
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||
float smin = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
|
||||
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
|
||||
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
||||
}
|
||||
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (tid == 0) {
|
||||
dst[row] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
|
||||
|
||||
const int row = blockIdx.x;
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
|
||||
const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
const uint16_t kmask1 = 0x3f3f;
|
||||
const uint16_t kmask2 = 0x0f0f;
|
||||
const uint16_t kmask3 = 0xc0c0;
|
||||
|
||||
const int tid = threadIdx.x/2; // 0...15
|
||||
const int ix = threadIdx.x%2;
|
||||
|
||||
const int il = tid/4; // 0...3
|
||||
const int ir = tid - 4*il;// 0...3
|
||||
const int n = 2;
|
||||
|
||||
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
||||
const int in = il%2;
|
||||
|
||||
const int l0 = n*(2*ir + in);
|
||||
const int q_offset = 32*im + l0;
|
||||
const int y_offset = 64*im + l0;
|
||||
|
||||
const uint8_t hm1 = 1 << (2*im);
|
||||
const uint8_t hm2 = hm1 << 4;
|
||||
|
||||
uint16_t aux[4];
|
||||
const uint8_t * sc = (const uint8_t *)aux;
|
||||
|
||||
uint16_t q16[8];
|
||||
const uint8_t * q4 = (const uint8_t *)q16;
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
||||
|
||||
const uint8_t * ql1 = x[i].qs + q_offset;
|
||||
const uint8_t * qh = x[i].qh + l0;
|
||||
const float * y1 = yy + i*QK_K + y_offset;
|
||||
const float * y2 = y1 + 128;
|
||||
|
||||
const float dall = __low2half(x[i].dm);
|
||||
const float dmin = __high2half(x[i].dm);
|
||||
|
||||
const uint16_t * a = (const uint16_t *)x[i].scales;
|
||||
aux[0] = a[im+0] & kmask1;
|
||||
aux[1] = a[im+2] & kmask1;
|
||||
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
||||
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
||||
|
||||
float4 sum = {0.f, 0.f, 0.f, 0.f};
|
||||
float smin = 0;
|
||||
const uint16_t * q1 = (const uint16_t *)ql1;
|
||||
const uint16_t * q2 = q1 + 32;
|
||||
q16[0] = q1[0] & 0x0f0f;
|
||||
q16[1] = q1[8] & 0x0f0f;
|
||||
q16[2] = (q1[0] >> 4) & 0x0f0f;
|
||||
q16[3] = (q1[8] >> 4) & 0x0f0f;
|
||||
q16[4] = q2[0] & 0x0f0f;
|
||||
q16[5] = q2[8] & 0x0f0f;
|
||||
q16[6] = (q2[0] >> 4) & 0x0f0f;
|
||||
q16[7] = (q2[8] >> 4) & 0x0f0f;
|
||||
for (int l = 0; l < n; ++l) {
|
||||
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
||||
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
||||
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
||||
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
||||
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
||||
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
||||
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
||||
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
||||
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
||||
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
||||
}
|
||||
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
dst[row] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
if (row > nrows) return;
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
|
||||
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
||||
|
||||
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
||||
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
||||
|
||||
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
||||
|
||||
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
||||
const int in = tid - step*im; // 0...15 or 0...7
|
||||
|
||||
#if K_QUANTS_PER_ITERATION == 1
|
||||
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
||||
const int is = 0;
|
||||
#else
|
||||
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
||||
const int is = in / 4;
|
||||
#endif
|
||||
const int ql_offset = 64*im + l0;
|
||||
const int qh_offset = 32*im + l0;
|
||||
const int s_offset = 8*im + is;
|
||||
const int y_offset = 128*im + l0;
|
||||
|
||||
float tmp = 0; // partial sum for thread in warp
|
||||
|
||||
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
||||
|
||||
const float * y = yy + i * QK_K + y_offset;
|
||||
const uint8_t * ql = x[i].ql + ql_offset;
|
||||
const uint8_t * qh = x[i].qh + qh_offset;
|
||||
const int8_t * s = x[i].scales + s_offset;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
#if K_QUANTS_PER_ITERATION == 1
|
||||
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
||||
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
||||
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
||||
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
||||
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
||||
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
||||
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
||||
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
||||
tmp += sum;
|
||||
#else
|
||||
float sum = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
||||
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
||||
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
||||
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
||||
}
|
||||
tmp += sum;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (tid == 0) {
|
||||
dst[row] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
const half * x = (const half *) vx;
|
||||
// load 2 halfs into register in a single instruction
|
||||
const half2 x_reg = *((half2 *) &(x[ib + iqs]));
|
||||
// automatic half -> float type cast if dfloat == float
|
||||
v.x = __low2float(x_reg);
|
||||
v.y = __high2float(x_reg);
|
||||
}
|
||||
|
||||
static constexpr __device__ dequantize_kernel_t get_dequantize_kernel(ggml_type type) {
|
||||
return type == GGML_TYPE_Q4_0 ? dequantize_q4_0 :
|
||||
type == GGML_TYPE_Q4_1 ? dequantize_q4_1 :
|
||||
type == GGML_TYPE_Q5_0 ? dequantize_q5_0 :
|
||||
type == GGML_TYPE_Q5_1 ? dequantize_q5_1 :
|
||||
type == GGML_TYPE_Q8_0 ? dequantize_q8_0 :
|
||||
type == GGML_TYPE_F16 ? convert_f16 :
|
||||
nullptr;
|
||||
}
|
||||
|
||||
template <ggml_type type>
|
||||
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk; // quantized weights per x block
|
||||
constexpr int qr = ggml_cuda_type_traits<type>::qr; // number of quantized weights per data value in x block
|
||||
constexpr dequantize_kernel_t dequantize_kernel = get_dequantize_kernel(type);
|
||||
|
||||
const int64_t row = (int64_t)blockIdx.x*blockDim.y + threadIdx.y;
|
||||
|
||||
if (row >= nrows) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
const int iter_stride = 2*GGML_CUDA_DMMV_X;
|
||||
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// partial sum for each thread
|
||||
#ifdef GGML_CUDA_F16
|
||||
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
|
||||
#else
|
||||
float tmp = 0.0f;
|
||||
#endif // GGML_CUDA_F16
|
||||
|
||||
for (int i = 0; i < ncols; i += iter_stride) {
|
||||
const int col = i + vals_per_iter*tid;
|
||||
const int64_t ib = ((int64_t)row*ncols + col)/qk; // x block index
|
||||
const int iqs = (col%qk)/qr; // x quant index
|
||||
const int iybs = col - col%qk; // y block start index
|
||||
|
||||
// processing >2 values per i iter is faster for fast GPUs
|
||||
#pragma unroll
|
||||
for (int j = 0; j < vals_per_iter; j += 2) {
|
||||
// process 2 vals per j iter
|
||||
|
||||
// dequantize
|
||||
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
||||
dfloat2 v;
|
||||
dequantize_kernel(vx, ib, iqs + j/qr, v);
|
||||
|
||||
// matrix multiplication
|
||||
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
||||
#ifdef GGML_CUDA_F16
|
||||
if ( y_offset == 1 ) {
|
||||
// load 2 dfloats into register in a single instruction
|
||||
const dfloat2 y_reg = *((dfloat2 *) &(y[iybs + iqs + j/qr]));
|
||||
tmp += __hmul2(v, y_reg);
|
||||
}
|
||||
else {
|
||||
tmp += __hmul2(v, {
|
||||
y[iybs + iqs + j/qr + 0],
|
||||
y[iybs + iqs + j/qr + y_offset]
|
||||
});
|
||||
}
|
||||
#else
|
||||
if ( y_offset == 1 ) {
|
||||
// load 2 dfloats into register in a single instruction
|
||||
const dfloat2 y_reg = *((dfloat2 *) &(y[iybs + iqs + j/qr]));
|
||||
tmp += v.x * y_reg.x;
|
||||
tmp += v.y * y_reg.y;
|
||||
}
|
||||
else {
|
||||
tmp += v.x * y[iybs + iqs + j/qr + 0];
|
||||
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
|
||||
}
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
if (tid == 0) {
|
||||
#ifdef GGML_CUDA_F16
|
||||
dst[row] = tmp.x + tmp.y;
|
||||
#else
|
||||
dst[row] = tmp;
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<GGML_TYPE_Q4_0>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<GGML_TYPE_Q4_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<GGML_TYPE_Q5_0>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<GGML_TYPE_Q5_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<GGML_TYPE_Q8_0>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const dim3 block_dims(32, 1, 1);
|
||||
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
||||
}
|
||||
|
||||
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
||||
const int block_num_y = (nrows + ny - 1) / ny;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(32, ny, 1);
|
||||
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
dequantize_mul_mat_vec<GGML_TYPE_F16>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
||||
GGML_UNUSED(ctx);
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t row_diff = row_high - row_low;
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
||||
#ifdef GGML_CUDA_F16
|
||||
ggml_cuda_pool_alloc<half> src1_dfloat_a(ctx.pool());
|
||||
half * src1_dfloat = nullptr; // dfloat == half
|
||||
|
||||
bool src1_convert_f16 =
|
||||
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
||||
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
||||
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
||||
|
||||
if (src1_convert_f16) {
|
||||
src1_dfloat = src1_dfloat_a.alloc(ne00);
|
||||
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
||||
GGML_ASSERT(to_fp16_cuda != nullptr);
|
||||
to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
|
||||
}
|
||||
#else
|
||||
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
|
||||
#endif // GGML_CUDA_F16
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_F16:
|
||||
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(dst);
|
||||
GGML_UNUSED(src1_ddq_i);
|
||||
GGML_UNUSED(src1_ncols);
|
||||
GGML_UNUSED(src1_padded_row_size);
|
||||
}
|
||||
|
||||
bool ggml_cuda_dmmv_type_supported(ggml_type src0_type) {
|
||||
return src0_type == GGML_TYPE_Q4_0 || src0_type == GGML_TYPE_Q4_1 ||
|
||||
src0_type == GGML_TYPE_Q5_0 || src0_type == GGML_TYPE_Q5_1 ||
|
||||
src0_type == GGML_TYPE_Q8_0 || src0_type == GGML_TYPE_Q2_K ||
|
||||
src0_type == GGML_TYPE_Q3_K || src0_type == GGML_TYPE_Q4_K ||
|
||||
src0_type == GGML_TYPE_Q5_K || src0_type == GGML_TYPE_Q6_K ||
|
||||
src0_type == GGML_TYPE_F16;
|
||||
}
|
@ -1,20 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
// dmmv = dequantize_mul_mat_vec
|
||||
|
||||
// TODO: remove this?
|
||||
#ifndef GGML_CUDA_DMMV_X
|
||||
#define GGML_CUDA_DMMV_X 32
|
||||
#endif
|
||||
|
||||
#ifndef GGML_CUDA_MMV_Y
|
||||
#define GGML_CUDA_MMV_Y 1
|
||||
#endif
|
||||
|
||||
void ggml_cuda_op_dequantize_mul_mat_vec(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream);
|
||||
|
||||
bool ggml_cuda_dmmv_type_supported(ggml_type src0_type);
|
Loading…
Reference in New Issue
Block a user