whisper : add GPU support via cuBLAS (#834)

* make : add WHISPER_CUBLAS

* make : fix CUBLAS build

* whisper : disable Flash Attention + adjust memory buffers

* whisper : remove old commented code

* readme : add cuBLAS instructions

* cmake : add WHISPER_CUBLAS option

* gitignore : ignore build-cublas
This commit is contained in:
Georgi Gerganov 2023-04-30 12:14:33 +03:00 committed by GitHub
parent 0ccd6746c9
commit 5fd1bdd7fc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 97 additions and 46 deletions

1
.gitignore vendored
View File

@ -12,6 +12,7 @@ build-em/
build-debug/
build-release/
build-static/
build-cublas/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/

View File

@ -51,7 +51,7 @@ option(WHISPER_SANITIZE_UNDEFINED "whisper: enable undefined sanitizer" OFF)
option(WHISPER_BUILD_TESTS "whisper: build tests" ${WHISPER_STANDALONE})
option(WHISPER_BUILD_EXAMPLES "whisper: build examples" ${WHISPER_STANDALONE})
option(WHISPER_SUPPORT_SDL2 "whisper: support for libSDL2" OFF)
option(WHISPER_SDL2 "whisper: support for libSDL2" OFF)
if (APPLE)
option(WHISPER_NO_ACCELERATE "whisper: disable Accelerate framework" OFF)
@ -62,7 +62,8 @@ if (APPLE)
option(WHISPER_COREML "whisper: enable Core ML framework" OFF)
option(WHISPER_COREML_ALLOW_FALLBACK "whisper: allow non-CoreML fallback" OFF)
else()
option(WHISPER_SUPPORT_OPENBLAS "whisper: support for OpenBLAS" OFF)
option(WHISPER_OPENBLAS "whisper: support for OpenBLAS" OFF)
option(WHISPER_CUBLAS "whisper: support for cuBLAS" OFF)
endif()
option(WHISPER_PERF "whisper: enable perf timings" OFF)
@ -127,7 +128,7 @@ if (APPLE)
endif()
endif()
if (WHISPER_SUPPORT_OPENBLAS)
if (WHISPER_OPENBLAS)
find_library(OPENBLAS_LIB
NAMES openblas libopenblas
)
@ -141,6 +142,31 @@ if (WHISPER_SUPPORT_OPENBLAS)
endif()
endif()
if (WHISPER_CUBLAS)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
if (CUDAToolkit_FOUND)
message(STATUS "cuBLAS found")
enable_language(CUDA)
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
add_compile_definitions(GGML_USE_CUBLAS)
if (WHISPER_STATIC)
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
else()
set(WHISPER_EXTRA_LIBS ${WHISPER_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
else()
message(WARNING "cuBLAS not found")
endif()
endif()
# compiler flags
if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
@ -247,6 +273,7 @@ set(TARGET whisper)
add_library(${TARGET}
ggml.h
ggml.c
${GGML_CUDA_SOURCES}
whisper.h
whisper.cpp
)
@ -279,6 +306,12 @@ if (BUILD_SHARED_LIBS)
)
endif()
if (GGML_CUDA_SOURCES)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
set_property(TARGET whisper PROPERTY CUDA_ARCHITECTURES OFF)
set_property(TARGET whisper PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
endif()
if (EMSCRIPTEN)
set_target_properties(${TARGET} PROPERTIES COMPILE_FLAGS "-msimd128")
endif()

View File

@ -1,3 +1,5 @@
default: main bench
ifndef UNAME_S
UNAME_S := $(shell uname -s)
endif
@ -157,6 +159,18 @@ ifdef WHISPER_OPENBLAS
LDFLAGS += -lopenblas
endif
ifdef WHISPER_CUBLAS
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
WHISPER_OBJ += ggml-cuda.o
NVCC = nvcc
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
endif
ifdef WHISPER_GPROF
CFLAGS += -pg
CXXFLAGS += -pg
@ -200,20 +214,18 @@ $(info I CC: $(CCV))
$(info I CXX: $(CXXV))
$(info )
default: main bench
#
# Build library
#
ggml.o: ggml.c ggml.h
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@
whisper.o: whisper.cpp whisper.h ggml.h
$(CXX) $(CXXFLAGS) -c whisper.cpp -o whisper.o
whisper.o: whisper.cpp whisper.h ggml.h ggml-cuda.h
$(CXX) $(CXXFLAGS) -c $< -o $@
ifndef WHISPER_COREML
WHISPER_OBJ = whisper.o
WHISPER_OBJ += whisper.o
else
whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
$(CXX) -O3 -I . -c coreml/whisper-encoder.mm -o whisper-encoder.o
@ -221,7 +233,7 @@ whisper-encoder.o: coreml/whisper-encoder.mm coreml/whisper-encoder.h
whisper-encoder-impl.o: coreml/whisper-encoder-impl.m coreml/whisper-encoder-impl.h
$(CXX) -O3 -I . -fobjc-arc -c coreml/whisper-encoder-impl.m -o whisper-encoder-impl.o
WHISPER_OBJ = whisper.o whisper-encoder.o whisper-encoder-impl.o
WHISPER_OBJ += whisper.o whisper-encoder.o whisper-encoder-impl.o
endif
libwhisper.a: ggml.o $(WHISPER_OBJ)

View File

@ -18,6 +18,7 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
- Low memory usage (Flash Attention)
- Zero memory allocations at runtime
- Runs on the CPU
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
Supported platforms:
@ -281,10 +282,23 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
## NVIDIA GPU support via cuBLAS
With NVIDIA cards, the Encoder processing can be offloaded to the GPU to a large extend through cuBLAS.
First, make sure you have installed `cuda`: https://developer.nvidia.com/cuda-downloads
Now build `whisper.cpp` with cuBLAS support:
```
make clean
WHISPER_CUBLAS=1 make -j
```
Run all the examples as usual.
## Limitations
- Inference only
- No GPU support (yet)
## Another example

View File

@ -4,7 +4,7 @@ find_package(Threads REQUIRED)
# third-party
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# SDL2
find_package(SDL2 REQUIRED)
@ -27,7 +27,7 @@ include(DefaultTargetOptions)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# common-sdl
set(TARGET common-sdl)

View File

@ -1,4 +1,4 @@
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# command
set(TARGET command)
add_executable(${TARGET} command.cpp)

View File

@ -1,4 +1,4 @@
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# stream
set(TARGET stream)
add_executable(${TARGET} stream.cpp)

View File

@ -1,4 +1,4 @@
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# talk-llama
set(TARGET talk-llama)
#add_executable(${TARGET} talk-llama.cpp llama.cpp)

View File

@ -1,4 +1,4 @@
if (WHISPER_SUPPORT_SDL2)
if (WHISPER_SDL2)
# talk
set(TARGET talk)
#add_executable(${TARGET} talk.cpp gpt-2.cpp)

View File

@ -102,7 +102,7 @@ static void byteswap_tensor(ggml_tensor * tensor) {
#define WHISPER_PRINT_DEBUG(...)
#endif
#define WHISPER_USE_FLASH_ATTN
//#define WHISPER_USE_FLASH_ATTN
//#define WHISPER_USE_FLASH_FF
#define WHISPER_MAX_DECODERS 16
@ -224,11 +224,11 @@ static const std::map<std::string, std::pair<int, std::string>> g_lang = {
static const size_t MB = 1ull*1024*1024;
static const std::map<e_model, size_t> MEM_REQ_SCRATCH0 = {
{ MODEL_TINY, 14ull*MB },
{ MODEL_BASE, 18ull*MB },
{ MODEL_SMALL, 28ull*MB },
{ MODEL_MEDIUM, 36ull*MB },
{ MODEL_LARGE, 44ull*MB },
{ MODEL_TINY, 62ull*MB },
{ MODEL_BASE, 80ull*MB },
{ MODEL_SMALL, 120ull*MB },
{ MODEL_MEDIUM, 158ull*MB },
{ MODEL_LARGE, 198ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_SCRATCH1 = {
@ -280,11 +280,11 @@ static const std::map<e_model, size_t> MEM_REQ_KV_CROSS = {
};
static const std::map<e_model, size_t> MEM_REQ_ENCODE = {
{ MODEL_TINY, 6ull*MB },
{ MODEL_BASE, 8ull*MB },
{ MODEL_SMALL, 13ull*MB },
{ MODEL_MEDIUM, 22ull*MB },
{ MODEL_LARGE, 33ull*MB },
{ MODEL_TINY, 30ull*MB },
{ MODEL_BASE, 38ull*MB },
{ MODEL_SMALL, 56ull*MB },
{ MODEL_MEDIUM, 74ull*MB },
{ MODEL_LARGE, 94ull*MB },
};
static const std::map<e_model, size_t> MEM_REQ_DECODE = {
@ -1554,26 +1554,17 @@ static bool whisper_encode_internal(
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_scaled);
//struct ggml_tensor * V_trans =
// ggml_permute(ctx0,
// ggml_cpy(ctx0,
// Vcur,
// ggml_new_tensor_3d(ctx0, wctx.wtype, n_state/n_head, n_head, n_ctx)),
// 1, 2, 0, 3);
//struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
struct ggml_tensor * V =
ggml_cpy(ctx0,
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
Vcur,
n_state/n_head, n_head, n_ctx),
0, 2, 1, 3),
ggml_new_tensor_3d(ctx0, wctx.wtype, n_state/n_head, n_ctx, n_head)
1, 2, 0, 3),
ggml_new_tensor_3d(ctx0, wctx.wtype, n_ctx, n_state/n_head, n_head)
);
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, ggml_transpose(ctx0, V), KQ_soft_max);
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
#endif
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);