Add ggml_roll (ggml/1274)

* ggml : add ggml_roll

* use set/get_op_params & std::min
This commit is contained in:
Acly
2025-06-18 13:34:50 +02:00
committed by Georgi Gerganov
parent 3e65f518dd
commit 471df139fa
5 changed files with 117 additions and 2 deletions

View File

@ -489,6 +489,7 @@ extern "C" {
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD,
GGML_OP_PAD_REFLECT_1D,
GGML_OP_ROLL,
GGML_OP_ARANGE,
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT,
@ -1801,6 +1802,17 @@ extern "C" {
int p0,
int p1);
// Move tensor elements by an offset given for each dimension. Elements that
// are shifted beyond the last position are wrapped around to the beginning.
GGML_API struct ggml_tensor * ggml_roll(
struct ggml_context * ctx,
struct ggml_tensor * a,
int shift0,
int shift1,
int shift2,
int shift3);
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
// timesteps: [N,]
// return: [N, dim]

View File

@ -1967,6 +1967,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_pad_reflect_1d(params, tensor);
} break;
case GGML_OP_ROLL:
{
ggml_compute_forward_roll(params, tensor);
} break;
case GGML_OP_ARANGE:
{
ggml_compute_forward_arange(params, tensor);
@ -2291,6 +2295,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_ROLL:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_ARGSORT:

View File

@ -6793,6 +6793,73 @@ void ggml_compute_forward_pad_reflect_1d(
}
}
// ggml_compute_forward_roll
static int64_t ggml_wrap_index(int64_t i, int64_t ne) {
if (i < 0) {
return i + ne;
} else if (i >= ne) {
return i - ne;
}
return i;
}
static void ggml_compute_forward_roll_f32(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src_data = (const float *) src0->data;
float * dst_data = (float *) dst->data;
GGML_TENSOR_UNARY_OP_LOCALS
const int s0 = ggml_get_op_params_i32(dst, 0);
const int s1 = ggml_get_op_params_i32(dst, 1);
const int s2 = ggml_get_op_params_i32(dst, 2);
const int s3 = ggml_get_op_params_i32(dst, 3);
const int64_t total = ne1 * ne2 * ne3;
const int64_t per_thread = (total + params->nth) / params->nth;
const int64_t start = params->ith * per_thread;
const int64_t end = std::min(start + per_thread, total);
for (int64_t i = start; i < end; ++i) {
const int64_t i1 = i % ne1;
const int64_t i2 = (i / ne1) % ne2;
const int64_t i3 = i / (ne2 * ne1);
float * dst_row = dst_data + (i3*nb3 + i2*nb2 + i1*nb1) / sizeof(float);
const int64_t i01 = ggml_wrap_index(i1 - s1, ne01);
const int64_t i02 = ggml_wrap_index(i2 - s2, ne02);
const int64_t i03 = ggml_wrap_index(i3 - s3, ne03);
const float * src_row = src_data + (i03*nb03 + i02*nb02 + i01*nb01) / sizeof(float);
const int64_t s = ggml_wrap_index(-s0, ne00);
const int64_t n = ne00 - s;
ggml_vec_cpy_f32(n, dst_row, src_row + s);
ggml_vec_cpy_f32(s, dst_row + n, src_row);
}
}
void ggml_compute_forward_roll(
const ggml_compute_params * params,
ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_roll_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
// ggml_compute_forward_arange
static void ggml_compute_forward_arange_f32(

View File

@ -72,6 +72,7 @@ void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params
void ggml_compute_forward_upscale(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pad_reflect_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_roll(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_arange(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);

View File

@ -955,6 +955,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"UPSCALE",
"PAD",
"PAD_REFLECT_1D",
"ROLL",
"ARANGE",
"TIMESTEP_EMBEDDING",
"ARGSORT",
@ -985,7 +986,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"OPT_STEP_ADAMW",
};
static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -1050,6 +1051,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"upscale(x)",
"pad(x)",
"pad_reflect_1d(x)",
"roll(x)",
"arange(start, stop, step)",
"timestep_embedding(timesteps, dim, max_period)",
"argsort(x)",
@ -1080,7 +1082,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"adamw(x)",
};
static_assert(GGML_OP_COUNT == 82, "GGML_OP_COUNT != 82");
static_assert(GGML_OP_COUNT == 83, "GGML_OP_COUNT != 83");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -4341,6 +4343,34 @@ struct ggml_tensor * ggml_pad_reflect_1d(
return result;
}
// ggml_roll
struct ggml_tensor * ggml_roll(
struct ggml_context * ctx,
struct ggml_tensor * a,
int shift0,
int shift1,
int shift2,
int shift3) {
GGML_ASSERT(a->nb[0] == ggml_type_size(a->type));
GGML_ASSERT(abs(shift0) < a->ne[0]);
GGML_ASSERT(abs(shift1) < a->ne[1]);
GGML_ASSERT(abs(shift2) < a->ne[2]);
GGML_ASSERT(abs(shift3) < a->ne[3]);
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, shift0);
ggml_set_op_params_i32(result, 1, shift1);
ggml_set_op_params_i32(result, 2, shift2);
ggml_set_op_params_i32(result, 3, shift3);
result->op = GGML_OP_ROLL;
result->src[0] = a;
return result;
}
// ggml_arange
struct ggml_tensor * ggml_arange(