mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-06-23 08:55:27 +00:00
sycl : implementation of reordered Q4_0 MMVQ for Intel GPUs (llama/12858)
* sycl : Implemented reorder Q4_0 mmvq Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com> * sycl : Fixed mmvq being called when reorder is disabled * sycl : Improved comments in the quants header Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com> * Use static_assert * safe_div -> ceil_div * Clarify qi comment * change the reorder tensor from init to execute OP * dbg * Undo changes to test-backend-ops * Refactor changes on top of q4_0 reorder fix * Missing Reverts * Refactored opt_for_reorder logic to simplify code path * Explicit inlining and unroll * Renamed mul_mat_algo enum for consistency --------- Signed-off-by: Alberto Cabrera <alberto.cabrera@codeplay.com> Co-authored-by: romain.biessy <romain.biessy@codeplay.com>
This commit is contained in:
committed by
Georgi Gerganov
parent
2d436bfbfb
commit
45d8b2352e
@ -1,6 +1,60 @@
|
||||
#include "mmvq.hpp"
|
||||
|
||||
#include "ggml.h"
|
||||
#include "common.hpp"
|
||||
#include "quants.hpp"
|
||||
#include "vecdotq.hpp"
|
||||
#include <cassert>
|
||||
|
||||
template <typename reorder_vec_dot_q_sycl>
|
||||
static void mul_mat_vec_q_reorder(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
||||
const int ncols, const int nrows, const sycl::nd_item<3> & nd_item) {
|
||||
using block_type = ggml_sycl_reordered::block_q_t<reorder_vec_dot_q_sycl::gtype>;
|
||||
using block_traits = typename block_type::traits;
|
||||
|
||||
const auto sg = nd_item.get_sub_group();
|
||||
const int sg_range = sg.get_group_linear_range();
|
||||
const int workgroup_id = nd_item.get_group_linear_id();
|
||||
const int sg_id = sg.get_group_linear_id();
|
||||
const int row = workgroup_id * sg_range + sg_id;
|
||||
|
||||
if (row >= nrows) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int blocks_per_row = ncols / block_traits::qk;
|
||||
constexpr int blocks_per_subgroup = ceil_div(block_traits::vdr_mmvq * WARP_SIZE, block_traits::qi);
|
||||
constexpr int block_elements_per_subgroup = block_traits::qi / block_traits::vdr_mmvq;
|
||||
|
||||
static_assert(blocks_per_subgroup > 0);
|
||||
static_assert(block_elements_per_subgroup > 0);
|
||||
|
||||
const block_q8_1 * y = (const block_q8_1 *) vy;
|
||||
|
||||
float partial_sum = 0.0f;
|
||||
for (int i = sg.get_local_linear_id() / block_elements_per_subgroup; i < blocks_per_row; i += blocks_per_subgroup) {
|
||||
const int ibx = row * blocks_per_row + i; // x block index
|
||||
// TODO: Generalize offsets, right now only works for quantizations that don't split high and low bits
|
||||
const int bx_offset = block_type::get_block_offset(ibx);
|
||||
const int d_offset = block_type::get_d_offset(nrows, ncols, ibx);
|
||||
|
||||
// Y block index that aligns with ibx
|
||||
const int iby = i * block_type::block_to_q8_1_ratio();
|
||||
|
||||
#pragma unroll
|
||||
for (int elem = 0; elem < block_elements_per_subgroup; elem += WARP_SIZE) {
|
||||
// x block quant index when casting the quants to int
|
||||
const int iqs = elem + block_traits::vdr_mmvq * (sg.get_local_linear_id() % block_elements_per_subgroup);
|
||||
|
||||
partial_sum += reorder_vec_dot_q_sycl()(vx, bx_offset, d_offset, &y[iby], iqs);
|
||||
}
|
||||
}
|
||||
|
||||
auto sum = sycl::reduce_over_group(nd_item.get_sub_group(), partial_sum, std::plus<>());
|
||||
|
||||
if (sg.leader()) {
|
||||
dst[row] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_sycl_t vec_dot_q_sycl>
|
||||
static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
||||
@ -480,26 +534,39 @@ static void mul_mat_vec_q_iq4_xs_q8_1(const void *__restrict__ vx,
|
||||
}
|
||||
}
|
||||
|
||||
static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy,
|
||||
float *dst, const int ncols,
|
||||
const int nrows,
|
||||
static void reorder_mul_mat_vec_q4_0_q8_1_sycl(const void * vx, const void * vy, float * dst, const int ncols,
|
||||
const int nrows, dpct::queue_ptr stream) {
|
||||
GGML_ASSERT(ncols % QK4_0 == 0);
|
||||
const int block_num_y = ceil_div(nrows, GGML_SYCL_MMV_Y);
|
||||
constexpr size_t num_subgroups = 16;
|
||||
GGML_ASSERT(block_num_y % num_subgroups == 0);
|
||||
|
||||
const sycl::range<3> global_size(1, GGML_SYCL_MMV_Y, (block_num_y * WARP_SIZE));
|
||||
const sycl::range<3> workgroup_size(1, GGML_SYCL_MMV_Y, num_subgroups * WARP_SIZE);
|
||||
|
||||
stream->submit([&](sycl::handler & cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(global_size, workgroup_size),
|
||||
[=](sycl::nd_item<3> nd_item) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q_reorder<reorder_vec_dot_q_sycl<GGML_TYPE_Q4_0>>(vx, vy, dst, ncols, nrows,
|
||||
nd_item);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
static void mul_mat_vec_q4_0_q8_1_sycl(const void * vx, const void * vy, float * dst, const int ncols, const int nrows,
|
||||
dpct::queue_ptr stream) {
|
||||
GGML_ASSERT(ncols % QK4_0 == 0);
|
||||
const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
|
||||
const sycl::range<3> block_nums(1, 1, block_num_y);
|
||||
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
|
||||
|
||||
{
|
||||
|
||||
stream->submit([&](sycl::handler &cgh) {
|
||||
|
||||
cgh.parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1)
|
||||
[[sycl::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0,
|
||||
VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
stream->submit([&](sycl::handler & cgh) {
|
||||
cgh.parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
|
||||
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
|
||||
vx, vy, dst, ncols, nrows, item_ct1);
|
||||
});
|
||||
});
|
||||
}
|
||||
}
|
||||
@ -916,93 +983,95 @@ static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy,
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_sycl_op_mul_mat_vec_q(
|
||||
ggml_backend_sycl_context & ctx,
|
||||
const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
|
||||
const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
|
||||
float *dst_dd_i, const int64_t row_low, const int64_t row_high,
|
||||
const int64_t src1_ncols, const int64_t src1_padded_col_size,
|
||||
const dpct::queue_ptr &stream) {
|
||||
|
||||
void ggml_sycl_op_mul_mat_vec_q(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low,
|
||||
const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_col_size,
|
||||
const dpct::queue_ptr & stream) {
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
GGML_ASSERT(ne10 % QK8_1 == 0);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t row_diff = row_high - row_low;
|
||||
|
||||
int id;
|
||||
SYCL_CHECK(
|
||||
CHECK_TRY_ERROR(id = get_current_device_id()));
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(id = get_current_device_id()));
|
||||
const size_t q8_1_ts = sizeof(block_q8_1);
|
||||
const size_t q8_1_bs = QK8_1;
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||
|
||||
for (int i = 0; i < src1_ncols; i++)
|
||||
{
|
||||
for (int i = 0; i < src1_ncols; i++) {
|
||||
const size_t src1_ddq_i_offset = i * src1_padded_col_size * q8_1_ts / q8_1_bs;
|
||||
const char* src1_ddq_i_bs = src1_ddq_i + src1_ddq_i_offset;
|
||||
float* dst_dd_i_bs = dst_dd_i + i * dst->ne[0];
|
||||
const char * src1_ddq_i_bs = src1_ddq_i + src1_ddq_i_offset;
|
||||
float * dst_dd_i_bs = dst_dd_i + i * dst->ne[0];
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
case GGML_TYPE_Q4_0:
|
||||
if ((ggml_tensor_extra_gpu *) dst->src[0]->extra &&
|
||||
((ggml_tensor_extra_gpu *) dst->src[0]->extra)->optimized_feature.reorder) {
|
||||
GGML_SYCL_DEBUG("Calling reorder_mul_mat_vec_q4_0_q8_1_sycl\n");
|
||||
reorder_mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
} else {
|
||||
GGML_SYCL_DEBUG("Calling mul_mat_vec_q4_0_q8_1_sycl\n");
|
||||
mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
}
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i_bs, dst_dd_i_bs, ne00, row_diff, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
GGML_UNUSED(src1);
|
||||
|
Reference in New Issue
Block a user