Align GEMM dispatch (llama/7566)

* align GEMM dispatch
This commit is contained in:
Meng, Hengyu 2024-05-29 07:00:24 +08:00 committed by Georgi Gerganov
parent 046834198d
commit 3563473d2c

View File

@ -3022,20 +3022,19 @@ static int g_work_group_size = 0;
// typedef sycl::half ggml_fp16_t; // typedef sycl::half ggml_fp16_t;
#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP #define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
#define VER_4VEC 610 //todo for hardward optimize. #define VER_4VEC 130 //todo for hardward optimize.
#define VER_GEN9 700 //todo for hardward optimize. #define VER_GEN9 700 //todo for hardward optimize.
#define VER_GEN12 1000000 //todo for hardward optimize. #define VER_GEN12 1000000 //todo for hardward optimize.
#define VER_GEN13 (VER_GEN12 + 1030) //todo for hardward optimize. #define VER_GEN13 (VER_GEN12 + 1030) //todo for hardward optimize.
#define GGML_SYCL_MAX_NODES 8192 //TODO: adapt to hardwares #define GGML_SYCL_MAX_NODES 8192 //TODO: adapt to hardwares
#if !defined(GGML_SYCL_FORCE_MMQ)
//define for XMX in Intel GPU
//TODO: currently, it's not used for XMX really.
#define SYCL_USE_XMX #define SYCL_USE_XMX
#endif
// max batch size to use MMQ kernels when tensor cores are available // max batch size to use MMQ kernels when tensor cores are available
#define XMX_MAX_BATCH_SIZE 32 #define MMQ_MAX_BATCH_SIZE 32
#if defined(_MSC_VER) #if defined(_MSC_VER)
@ -15249,6 +15248,29 @@ catch (sycl::exception const &exc) {
std::exit(1); std::exit(1);
} }
inline bool ggml_sycl_supports_mmq(enum ggml_type type) {
// TODO: accuracy issues in MMQ
return false;
}
bool ggml_sycl_supports_dmmv(enum ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_F16:
return true;
default:
return false;
}
}
static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool all_on_device = const bool all_on_device =
@ -15265,78 +15287,44 @@ static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
} }
} }
#ifdef SYCL_USE_XMX // check data types and tensor shapes for custom matrix multiplication kernels:
const bool use_xmx = true; bool use_dequantize_mul_mat_vec = ggml_sycl_supports_dmmv(src0->type)
#else && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
const bool use_xmx = false; && src0->ne[0] % GGML_SYCL_DMMV_X == 0 && src1->ne[1] == 1;
#endif
// debug helpers bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
//printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
//printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
//printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
//printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { bool use_mul_mat_q = ggml_sycl_supports_mmq(src0->type)
// KQ single-batch && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_p021\n");
ggml_sycl_mul_mat_vec_p021(src0, src1, dst);
} else if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_nc\n");
ggml_sycl_mul_mat_vec_nc(src0, src1, dst);
} else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
// KQ + KQV multi-batch
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat_batched_sycl\n");
ggml_sycl_mul_mat_batched_sycl(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) {
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat\n");
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
} else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
// GGML_SYCL_DEBUG("ggml_is_quantized or GGML_TYPE_F16\n");
if (src1->ne[1] == 1 && src0->ne[0] % GGML_SYCL_DMMV_X == 0) {
#ifdef GGML_SYCL_FORCE_DMMV
const bool use_mul_mat_vec_q = false;
#else
bool use_mul_mat_vec_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
use_mul_mat_vec_q = use_mul_mat_vec_q ||
(src0->type == GGML_TYPE_IQ2_XXS) || (src0->type == GGML_TYPE_IQ2_XS) || (src0->type == GGML_TYPE_IQ2_S) ||
(src0->type == GGML_TYPE_IQ3_XXS) || (src0->type == GGML_TYPE_IQ3_S) ||
(src0->type == GGML_TYPE_IQ4_NL) || (src0->type == GGML_TYPE_IQ4_XS) ||
(src0->type == GGML_TYPE_IQ1_S) || (src0->type == GGML_TYPE_IQ1_M);
// mmvq and mmq need the __dp4a instruction which is available for gen12+
#endif // GGML_SYCL_FORCE_DMMV // Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
if (use_mul_mat_vec_q) {
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_vec_q path\n");
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
} else {
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_dequantize_mul_mat_vec path\n");
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
}
} else {
bool use_mul_mat_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS); use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
#ifdef SYCL_USE_XMX
use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
#endif // SYCL_USE_XMX
if (use_xmx && min_compute_capability >= VER_GEN9 && src1->ne[1] > XMX_MAX_BATCH_SIZE) { if (!split && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
use_mul_mat_q = false; // KQ single-batch
} ggml_sycl_mul_mat_vec_p021(src0, src1, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
if (use_mul_mat_q) { // KQV single-batch
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_q path\n"); ggml_sycl_mul_mat_vec_nc(src0, src1, dst);
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
// KQ + KQV multi-batch
ggml_sycl_mul_mat_batched_sycl(src0, src1, dst);
} else if (use_dequantize_mul_mat_vec) {
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
} else if (use_mul_mat_vec_q) {
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
} else if (use_mul_mat_q) {
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true); ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
} else { } else {
// GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_sycl path\n");
ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false); ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
} }
} }
} else {
GGML_ASSERT(false);
}
}
#if 0 #if 0
template<typename ... Srcs> template<typename ... Srcs>