AVX BF16 and single scale quant optimizations (llama/10212)

* use 128 bit loads (i've tried 256->128 to death and its slower)

* double accumulator

* avx bf16 vec dot

* +3% q4_0 inference

* +7% tg +5% pp compared to master

* slower f16c version, kep for reference

* 256b version, also slow. i tried :)

* revert f16

* faster with madd

* split to functions

* Q8_0 and IQ4_NL, 5-7% faster

* fix potential overflow (performance reduced)

* 16 bit add for q4_0 only

* merge
This commit is contained in:
Eve 2024-11-15 11:47:58 +00:00 committed by Georgi Gerganov
parent 2c0484ebf7
commit 3216efef2e
2 changed files with 82 additions and 52 deletions

View File

@ -150,6 +150,28 @@ static inline __m128i packNibbles( __m256i bytes )
#endif
}
#elif defined(__AVX__)
static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
{
// Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
const __m128i lowByte = _mm_set1_epi16( 0xFF );
__m128i high = _mm_andnot_si128( lowByte, bytes1 );
__m128i low = _mm_and_si128( lowByte, bytes1 );
high = _mm_srli_epi16( high, 4 );
bytes1 = _mm_or_si128( low, high );
high = _mm_andnot_si128( lowByte, bytes2 );
low = _mm_and_si128( lowByte, bytes2 );
high = _mm_srli_epi16( high, 4 );
bytes2 = _mm_or_si128( low, high );
return _mm_packus_epi16( bytes1, bytes2);
}
static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
const __m128i ax = _mm_sign_epi8(x, x);
const __m128i sy = _mm_sign_epi8(y, x);
return _mm_maddubs_epi16(ax, sy);
}
// spread 32 bits to 32 bytes { 0x00, 0xFF }
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
uint32_t x32;
@ -217,26 +239,29 @@ static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
return sum_i16_pairs_float(doth, dotl);
}
static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
{
// Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
const __m128i lowByte = _mm_set1_epi16( 0xFF );
__m128i high = _mm_andnot_si128( lowByte, bytes1 );
__m128i low = _mm_and_si128( lowByte, bytes1 );
high = _mm_srli_epi16( high, 4 );
bytes1 = _mm_or_si128( low, high );
high = _mm_andnot_si128( lowByte, bytes2 );
low = _mm_and_si128( lowByte, bytes2 );
high = _mm_srli_epi16( high, 4 );
bytes2 = _mm_or_si128( low, high );
// larger version of mul_sum_i8_pairs_float where x and y are each represented by four 128-bit vectors
static inline __m256 mul_sum_i8_quad_float(const __m128i x_1_0, const __m128i x_1_1, const __m128i x_2_0, const __m128i x_2_1,
const __m128i y_1_0, const __m128i y_1_1, const __m128i y_2_0, const __m128i y_2_1) {
const __m128i mone = _mm_set1_epi16(1);
return _mm_packus_epi16( bytes1, bytes2);
const __m128i p16_1_0 = mul_add_epi8_sse(x_1_0, y_1_0);
const __m128i p16_1_1 = mul_add_epi8_sse(x_1_1, y_1_1);
const __m128i p16_2_0 = mul_add_epi8_sse(x_2_0, y_2_0);
const __m128i p16_2_1 = mul_add_epi8_sse(x_2_1, y_2_1);
const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
const __m128i p_1 = _mm_add_epi32(p_1_0, p_1_1);
const __m128i p_2 = _mm_add_epi32(p_2_0, p_2_1);
return _mm256_cvtepi32_ps(MM256_SET_M128I(p_2, p_1));
}
static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
const __m128i ax = _mm_sign_epi8(x, x);
const __m128i sy = _mm_sign_epi8(y, x);
return _mm_maddubs_epi16(ax, sy);
// quad fp16 delta calculation
static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const float x1, const float y1) {
// GGML_FP16_TO_FP32 is faster than Intel F16C
return _mm256_set_m128(_mm_set1_ps(GGML_FP16_TO_FP32(x1) * GGML_FP16_TO_FP32(y1)),
_mm_set1_ps(GGML_FP16_TO_FP32(x0) * GGML_FP16_TO_FP32(y0)));
}
#endif
#elif defined(__SSSE3__)
@ -2004,10 +2029,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r
sumf = hsum_float_8(acc);
#elif defined(__AVX__)
const __m128i mone = _mm_set1_epi16(1);
__m256 accum1 = _mm256_setzero_ps();
__m256 accum2 = _mm256_setzero_ps();
__m256 accum = _mm256_setzero_ps();
for (; ib + 1 < nb; ib += 2) {
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
@ -2020,21 +2042,20 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r
const __m128i q4b_1_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_1, 4)), _mm_set1_epi8(8));
const __m128i q4b_2_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_2), _mm_set1_epi8(8));
const __m128i q4b_2_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_2, 4)), _mm_set1_epi8(8));
const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
accum1 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
_mm256_cvtepi32_ps(MM256_SET_M128I(p_1_1, p_1_0))), accum1);
accum2 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
_mm256_cvtepi32_ps(MM256_SET_M128I(p_2_1, p_2_0))), accum2);
const __m128i p_1 = _mm_add_epi16(p16_1_0, p16_1_1);
const __m128i p_2 = _mm_add_epi16(p16_2_0, p16_2_1);
const __m256 p = sum_i16_pairs_float(p_2, p_1);
const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
}
sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
sumf = hsum_float_8(accum);
#elif defined(__SSSE3__)
// set constants
const __m128i lowMask = _mm_set1_epi8(0xF);
@ -3535,7 +3556,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r
}
sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
#elif defined(__AVX2__) || defined(__AVX__)
#elif defined(__AVX2__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
@ -3549,14 +3570,29 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r
const __m256 q = mul_sum_i8_pairs_float(qx, qy);
// Multiply q with scale and accumulate
#if defined(__AVX2__)
acc = _mm256_fmadd_ps( d, q, acc );
#else
acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
#endif
}
sumf = hsum_float_8(acc);
#elif defined(__AVX__)
__m256 accum = _mm256_setzero_ps();
for (; ib + 1 < nb; ib += 2) {
const __m128i qx_1_0 = _mm_loadu_si128((const __m128i *)x[ib].qs);
const __m128i qx_1_1 = _mm_loadu_si128((const __m128i *)x[ib].qs + 1);
const __m128i qx_2_0 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
const __m128i qx_2_1 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs + 1);
const __m128i qy_1_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
const __m128i qy_1_1 = _mm_loadu_si128((const __m128i *)y[ib].qs + 1);
const __m128i qy_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
const __m128i qy_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
const __m256 p = mul_sum_i8_quad_float(qx_1_0, qx_1_1, qx_2_0, qx_2_1, qy_1_0, qy_1_1, qy_2_0, qy_2_1);
const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
}
sumf = hsum_float_8(accum);
#elif defined(__riscv_v_intrinsic)
size_t vl = __riscv_vsetvl_e8m1(qk);
@ -10322,10 +10358,8 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void *
#elif defined __AVX__
const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
const __m128i m4b = _mm_set1_epi8(0x0f);
const __m128i mone = _mm_set1_epi16(1);
__m256 accum1 = _mm256_setzero_ps();
__m256 accum2 = _mm256_setzero_ps();
__m256 accum = _mm256_setzero_ps();
for (; ib + 1 < nb; ib += 2) {
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
@ -10338,21 +10372,13 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void *
const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
accum1 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
_mm256_cvtepi32_ps(MM256_SET_M128I(p_1_1, p_1_0))), accum1);
accum2 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
_mm256_cvtepi32_ps(MM256_SET_M128I(p_2_1, p_2_0))), accum2);
const __m256 p = mul_sum_i8_quad_float(q4b_1_0, q4b_1_1, q4b_2_0, q4b_2_1, q8b_1_0, q8b_1_1, q8b_2_0, q8b_2_1);
const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
}
sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
sumf = hsum_float_8(accum);
#elif defined(__POWER9_VECTOR__)
const vector signed char lowMask = vec_splats((signed char)0xF);

View File

@ -1469,8 +1469,12 @@ static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t
sumf += (ggml_float)_mm512_reduce_add_ps(c2);
#undef LOAD
#elif defined(__AVX2__)
#elif defined(__AVX2__) || defined(__AVX__)
#if defined(__AVX2__)
#define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
#else
#define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1))
#endif
__m256 c1 = _mm256_setzero_ps();
__m256 c2 = _mm256_setzero_ps();
__m256 c3 = _mm256_setzero_ps();