mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-24 06:46:37 +00:00
ggml : add Vulkan backend (llama/2059)
* Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
75ab2d06f5
commit
23c648e98d
106
ggml-alloc.c
106
ggml-alloc.c
@ -778,38 +778,26 @@ size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph)
|
|||||||
}
|
}
|
||||||
|
|
||||||
// utils
|
// utils
|
||||||
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
|
|
||||||
GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
|
|
||||||
|
|
||||||
size_t alignment = ggml_backend_buft_get_alignment(buft);
|
static bool alloc_tensor_range(struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * first, struct ggml_tensor * last,
|
||||||
size_t nbytes = 0;
|
ggml_backend_buffer_type_t buft, size_t size,
|
||||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
|
||||||
if (t->data == NULL && t->view_src == NULL) {
|
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
|
||||||
nbytes += GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (nbytes == 0) {
|
|
||||||
// all the tensors in the context are already allocated
|
|
||||||
#ifndef NDEBUG
|
|
||||||
fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
|
|
||||||
#endif
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes);
|
|
||||||
if (buffer == NULL) {
|
if (buffer == NULL) {
|
||||||
// failed to allocate buffer
|
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
fprintf(stderr, "%s: failed to allocate buffer\n", __func__);
|
fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
|
||||||
#endif
|
#endif
|
||||||
return NULL;
|
for (size_t i = 0; i < *n_buffers; i++) {
|
||||||
|
ggml_backend_buffer_free(*buffers[i]);
|
||||||
|
}
|
||||||
|
free(buffers);
|
||||||
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
|
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
|
||||||
|
|
||||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
|
||||||
if (t->data == NULL) {
|
if (t->data == NULL) {
|
||||||
if (t->view_src == NULL) {
|
if (t->view_src == NULL) {
|
||||||
ggml_tallocr_alloc(tallocr, t);
|
ggml_tallocr_alloc(tallocr, t);
|
||||||
@ -826,6 +814,76 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
|
|||||||
|
|
||||||
ggml_tallocr_free(tallocr);
|
ggml_tallocr_free(tallocr);
|
||||||
|
|
||||||
|
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
|
||||||
|
(*buffers)[(*n_buffers)++] = buffer;
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
|
||||||
|
GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
|
||||||
|
|
||||||
|
size_t alignment = ggml_backend_buft_get_alignment(buft);
|
||||||
|
size_t max_size = ggml_backend_buft_get_max_size(buft);
|
||||||
|
|
||||||
|
ggml_backend_buffer_t * buffers = NULL;
|
||||||
|
size_t n_buffers = 0;
|
||||||
|
|
||||||
|
size_t cur_buf_size = 0;
|
||||||
|
struct ggml_tensor * first = ggml_get_first_tensor(ctx);
|
||||||
|
for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||||
|
size_t this_size = 0;
|
||||||
|
if (t->data == NULL && t->view_src == NULL) {
|
||||||
|
this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (this_size > max_size) {
|
||||||
|
// tensor is too large to fit in a single buffer
|
||||||
|
fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
|
||||||
|
__func__, t->name,
|
||||||
|
ggml_backend_buft_name(buft),
|
||||||
|
this_size, max_size);
|
||||||
|
for (size_t i = 0; i < n_buffers; i++) {
|
||||||
|
ggml_backend_buffer_free(buffers[i]);
|
||||||
|
}
|
||||||
|
free(buffers);
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((cur_buf_size + this_size) > max_size) {
|
||||||
|
// allocate tensors in the current buffer
|
||||||
|
if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
first = t;
|
||||||
|
cur_buf_size = this_size;
|
||||||
|
} else {
|
||||||
|
cur_buf_size += this_size;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// allocate remaining tensors
|
||||||
|
if (cur_buf_size > 0) {
|
||||||
|
if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_buffers == 0) {
|
||||||
|
// all the tensors in the context are already allocated
|
||||||
|
#ifndef NDEBUG
|
||||||
|
fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
|
||||||
|
#endif
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_backend_buffer_t buffer;
|
||||||
|
if (n_buffers == 1) {
|
||||||
|
buffer = buffers[0];
|
||||||
|
} else {
|
||||||
|
buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
|
||||||
|
}
|
||||||
|
free(buffers);
|
||||||
return buffer;
|
return buffer;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -19,6 +19,7 @@ extern "C" {
|
|||||||
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
|
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
|
||||||
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
||||||
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
|
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment
|
||||||
|
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size
|
||||||
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding
|
||||||
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
|
bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend
|
||||||
// check if tensor data is in host memory
|
// check if tensor data is in host memory
|
||||||
@ -63,6 +64,11 @@ extern "C" {
|
|||||||
// do not use directly, use ggml_backend_tensor_copy instead
|
// do not use directly, use ggml_backend_tensor_copy instead
|
||||||
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||||
|
|
||||||
|
// buffer that contains a collection of buffers
|
||||||
|
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
|
||||||
|
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
|
||||||
|
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Backend
|
// Backend
|
||||||
//
|
//
|
||||||
|
104
ggml-backend.c
104
ggml-backend.c
@ -27,6 +27,14 @@ size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
|
|||||||
return buft->iface.get_alignment(buft);
|
return buft->iface.get_alignment(buft);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||||
|
// get_max_size is optional, defaults to SIZE_MAX
|
||||||
|
if (buft->iface.get_max_size) {
|
||||||
|
return buft->iface.get_max_size(buft);
|
||||||
|
}
|
||||||
|
return SIZE_MAX;
|
||||||
|
}
|
||||||
|
|
||||||
GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
|
GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
|
||||||
// get_alloc_size is optional, defaults to ggml_nbytes
|
// get_alloc_size is optional, defaults to ggml_nbytes
|
||||||
if (buft->iface.get_alloc_size) {
|
if (buft->iface.get_alloc_size) {
|
||||||
@ -57,8 +65,6 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
|
|||||||
size_t size) {
|
size_t size) {
|
||||||
ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
|
ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
|
||||||
|
|
||||||
GGML_ASSERT(iface.get_base != NULL);
|
|
||||||
|
|
||||||
(*buffer) = (struct ggml_backend_buffer) {
|
(*buffer) = (struct ggml_backend_buffer) {
|
||||||
/* .interface = */ iface,
|
/* .interface = */ iface,
|
||||||
/* .buft = */ buft,
|
/* .buft = */ buft,
|
||||||
@ -108,6 +114,10 @@ size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
|
|||||||
return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
|
return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
|
||||||
|
return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
|
||||||
|
}
|
||||||
|
|
||||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||||
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
|
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
|
||||||
}
|
}
|
||||||
@ -122,6 +132,11 @@ bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
|
|||||||
|
|
||||||
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
|
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
|
||||||
buffer->usage = usage;
|
buffer->usage = usage;
|
||||||
|
|
||||||
|
// FIXME: add a generic callback to the buffer interface
|
||||||
|
if (ggml_backend_buffer_is_multi_buffer(buffer)) {
|
||||||
|
ggml_backend_multi_buffer_set_usage(buffer, usage);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
|
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
|
||||||
@ -171,6 +186,10 @@ size_t ggml_backend_get_alignment(ggml_backend_t backend) {
|
|||||||
return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
|
return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
size_t ggml_backend_get_max_size(ggml_backend_t backend) {
|
||||||
|
return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
|
||||||
|
}
|
||||||
|
|
||||||
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||||
@ -349,6 +368,11 @@ GGML_CALL static void ggml_backend_registry_init(void) {
|
|||||||
extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||||
ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
|
ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#ifdef GGML_USE_VULKAN
|
||||||
|
extern GGML_CALL int ggml_backend_vk_reg_devices(void);
|
||||||
|
ggml_backend_vk_reg_devices();
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
|
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
|
||||||
@ -552,6 +576,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
|
|||||||
/* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
|
/* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
|
||||||
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
|
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
|
||||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||||
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
||||||
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
||||||
@ -607,6 +632,7 @@ ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
|
|||||||
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
|
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
|
||||||
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
|
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
|
||||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
||||||
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
||||||
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
|
||||||
@ -763,6 +789,80 @@ GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, v
|
|||||||
GGML_UNUSED(user_data);
|
GGML_UNUSED(user_data);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// multi-buffer buffer
|
||||||
|
|
||||||
|
struct ggml_backend_multi_buffer_context {
|
||||||
|
ggml_backend_buffer_t * buffers;
|
||||||
|
size_t n_buffers;
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
|
||||||
|
|
||||||
|
GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||||
|
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
|
||||||
|
|
||||||
|
return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||||
|
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
|
||||||
|
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
||||||
|
ggml_backend_buffer_free(ctx->buffers[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
free(ctx->buffers);
|
||||||
|
free(ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||||
|
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
|
||||||
|
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
||||||
|
ggml_backend_buffer_clear(ctx->buffers[i], value);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
|
||||||
|
static struct ggml_backend_buffer_i multi_backend_buffer_i = {
|
||||||
|
/* .get_name = */ ggml_backend_multi_buffer_get_name,
|
||||||
|
/* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
|
||||||
|
/* .get_base = */ NULL,
|
||||||
|
/* .init_tensor = */ NULL,
|
||||||
|
/* .set_tensor = */ NULL,
|
||||||
|
/* .get_tensor = */ NULL,
|
||||||
|
/* .cpy_tensor = */ NULL,
|
||||||
|
/* .clear = */ ggml_backend_multi_buffer_clear,
|
||||||
|
/* .reset = */ NULL,
|
||||||
|
};
|
||||||
|
|
||||||
|
return multi_backend_buffer_i;
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
|
||||||
|
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
|
||||||
|
ctx->n_buffers = n_buffers;
|
||||||
|
ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
|
||||||
|
|
||||||
|
size_t total_size = 0;
|
||||||
|
for (size_t i = 0; i < n_buffers; i++) {
|
||||||
|
ctx->buffers[i] = buffers[i];
|
||||||
|
total_size += ggml_backend_buffer_get_size(buffers[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
|
||||||
|
return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
|
||||||
|
GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
|
||||||
|
ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
|
||||||
|
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
||||||
|
ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
// scheduler
|
// scheduler
|
||||||
|
|
||||||
|
@ -20,6 +20,7 @@ extern "C" {
|
|||||||
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
|
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
|
||||||
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
||||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||||
|
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
||||||
GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||||
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
|
GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend);
|
||||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||||
@ -36,6 +37,7 @@ extern "C" {
|
|||||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||||
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||||
|
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||||
@ -54,6 +56,7 @@ extern "C" {
|
|||||||
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
|
GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend);
|
||||||
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size);
|
||||||
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
|
||||||
|
GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend);
|
||||||
|
|
||||||
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||||
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||||
|
@ -10440,6 +10440,7 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
|
|||||||
/* .get_name = */ ggml_backend_cuda_buffer_type_name,
|
/* .get_name = */ ggml_backend_cuda_buffer_type_name,
|
||||||
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
|
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
|
||||||
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
|
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
|
||||||
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||||
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
|
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
|
||||||
/* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
|
/* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
|
||||||
/* .is_host = */ NULL,
|
/* .is_host = */ NULL,
|
||||||
@ -10715,6 +10716,7 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface
|
|||||||
/* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
|
/* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
|
||||||
/* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
|
/* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
|
||||||
/* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
|
/* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
|
||||||
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||||
/* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
|
/* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
|
||||||
/* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
|
/* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
|
||||||
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
|
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
|
||||||
@ -10794,6 +10796,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
|
|||||||
/* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
|
/* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
|
||||||
/* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
|
/* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
|
||||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
||||||
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
||||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||||
|
@ -2400,6 +2400,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
|||||||
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
|
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
|
||||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
|
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
|
||||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
|
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
|
||||||
|
/* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
|
||||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||||
/* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
|
/* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
|
||||||
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
|
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
|
||||||
|
@ -2136,6 +2136,7 @@ static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
|
|||||||
/* .get_name = */ ggml_backend_opencl_buffer_type_name,
|
/* .get_name = */ ggml_backend_opencl_buffer_type_name,
|
||||||
/* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
|
/* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
|
||||||
/* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
|
/* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
|
||||||
|
/* .get_max_size = */ NULL, // TODO: return from device info
|
||||||
/* .get_alloc_size = */ NULL,
|
/* .get_alloc_size = */ NULL,
|
||||||
/* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend,
|
/* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend,
|
||||||
/* .is_host = */ NULL,
|
/* .is_host = */ NULL,
|
||||||
@ -2192,6 +2193,7 @@ ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type() {
|
|||||||
/* .get_name = */ ggml_backend_opencl_host_buffer_type_name,
|
/* .get_name = */ ggml_backend_opencl_host_buffer_type_name,
|
||||||
/* .alloc_buffer = */ ggml_backend_opencl_host_buffer_type_alloc_buffer,
|
/* .alloc_buffer = */ ggml_backend_opencl_host_buffer_type_alloc_buffer,
|
||||||
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
||||||
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||||
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
||||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||||
|
45
ggml.c
45
ggml.c
@ -248,6 +248,8 @@ inline static void * ggml_aligned_malloc(size_t size) {
|
|||||||
#include "ggml-cuda.h"
|
#include "ggml-cuda.h"
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
#include "ggml-opencl.h"
|
#include "ggml-opencl.h"
|
||||||
|
#elif defined(GGML_USE_VULKAN)
|
||||||
|
#include "ggml-vulkan.h"
|
||||||
#elif defined(GGML_USE_SYCL)
|
#elif defined(GGML_USE_SYCL)
|
||||||
#include "ggml-sycl.h"
|
#include "ggml-sycl.h"
|
||||||
#endif
|
#endif
|
||||||
@ -2295,6 +2297,8 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
|
|||||||
ggml_init_cublas();
|
ggml_init_cublas();
|
||||||
#elif defined(GGML_USE_CLBLAST)
|
#elif defined(GGML_USE_CLBLAST)
|
||||||
ggml_cl_init();
|
ggml_cl_init();
|
||||||
|
#elif defined(GGML_USE_VULKAN)
|
||||||
|
ggml_vk_init();
|
||||||
#elif defined(GGML_USE_SYCL)
|
#elif defined(GGML_USE_SYCL)
|
||||||
ggml_init_sycl();
|
ggml_init_sycl();
|
||||||
#endif
|
#endif
|
||||||
@ -8019,7 +8023,7 @@ static void ggml_compute_forward_mul_f32(
|
|||||||
const int ith = params->ith;
|
const int ith = params->ith;
|
||||||
const int nth = params->nth;
|
const int nth = params->nth;
|
||||||
|
|
||||||
#ifdef GGML_USE_CLBLAST
|
#if defined(GGML_USE_CLBLAST)
|
||||||
if (src1->backend == GGML_BACKEND_GPU) {
|
if (src1->backend == GGML_BACKEND_GPU) {
|
||||||
// TODO: OpenCL kernel support full broadcast
|
// TODO: OpenCL kernel support full broadcast
|
||||||
GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
|
GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
|
||||||
@ -14703,6 +14707,18 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||||||
}
|
}
|
||||||
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
|
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
|
||||||
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
|
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
|
||||||
|
#elif defined(GGML_USE_VULKAN)
|
||||||
|
const bool skip_cpu = ggml_vk_compute_forward(params, tensor);
|
||||||
|
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||||
|
if (skip_cpu) {
|
||||||
|
ggml_vk_check_results_1(params, tensor);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
if (skip_cpu) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
|
||||||
|
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
|
||||||
#endif // GGML_USE_CUBLAS
|
#endif // GGML_USE_CUBLAS
|
||||||
|
|
||||||
#ifdef GGML_USE_SYCL
|
#ifdef GGML_USE_SYCL
|
||||||
@ -17105,6 +17121,17 @@ int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef GGML_USE_VULKAN
|
||||||
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
|
ggml_vk_preallocate_buffers_graph(cgraph->nodes[i]);
|
||||||
|
}
|
||||||
|
ggml_vk_preallocate_buffers();
|
||||||
|
|
||||||
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
|
ggml_vk_build_graph(cgraph->nodes[i], i == cgraph->n_nodes - 1);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
const int n_threads = cplan->n_threads;
|
const int n_threads = cplan->n_threads;
|
||||||
|
|
||||||
struct ggml_compute_state_shared state_shared = {
|
struct ggml_compute_state_shared state_shared = {
|
||||||
@ -17156,6 +17183,10 @@ int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef GGML_USE_VULKAN
|
||||||
|
ggml_vk_graph_cleanup();
|
||||||
|
#endif
|
||||||
|
|
||||||
// performance stats (graph)
|
// performance stats (graph)
|
||||||
{
|
{
|
||||||
int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
|
int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
|
||||||
@ -20290,7 +20321,7 @@ int ggml_cpu_has_wasm_simd(void) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_blas(void) {
|
int ggml_cpu_has_blas(void) {
|
||||||
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
|
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
|
||||||
return 1;
|
return 1;
|
||||||
#else
|
#else
|
||||||
return 0;
|
return 0;
|
||||||
@ -20313,6 +20344,14 @@ int ggml_cpu_has_clblast(void) {
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int ggml_cpu_has_vulkan(void) {
|
||||||
|
#if defined(GGML_USE_VULKAN)
|
||||||
|
return 1;
|
||||||
|
#else
|
||||||
|
return 0;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_sycl(void) {
|
int ggml_cpu_has_sycl(void) {
|
||||||
#if defined(GGML_USE_SYCL)
|
#if defined(GGML_USE_SYCL)
|
||||||
return 1;
|
return 1;
|
||||||
@ -20322,7 +20361,7 @@ int ggml_cpu_has_sycl(void) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_gpublas(void) {
|
int ggml_cpu_has_gpublas(void) {
|
||||||
return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_sycl();
|
return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_sycl();
|
||||||
}
|
}
|
||||||
|
|
||||||
int ggml_cpu_has_sse3(void) {
|
int ggml_cpu_has_sse3(void) {
|
||||||
|
1
ggml.h
1
ggml.h
@ -2263,6 +2263,7 @@ extern "C" {
|
|||||||
GGML_API int ggml_cpu_has_blas (void);
|
GGML_API int ggml_cpu_has_blas (void);
|
||||||
GGML_API int ggml_cpu_has_cublas (void);
|
GGML_API int ggml_cpu_has_cublas (void);
|
||||||
GGML_API int ggml_cpu_has_clblast (void);
|
GGML_API int ggml_cpu_has_clblast (void);
|
||||||
|
GGML_API int ggml_cpu_has_vulkan (void);
|
||||||
GGML_API int ggml_cpu_has_gpublas (void);
|
GGML_API int ggml_cpu_has_gpublas (void);
|
||||||
GGML_API int ggml_cpu_has_sse3 (void);
|
GGML_API int ggml_cpu_has_sse3 (void);
|
||||||
GGML_API int ggml_cpu_has_ssse3 (void);
|
GGML_API int ggml_cpu_has_ssse3 (void);
|
||||||
|
Loading…
Reference in New Issue
Block a user