mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-04-27 14:29:43 +00:00
vulkan: Implement grouped query attention in the coopmat2 FA shader (llama/12559)
When adjacent batches of Q share the same batches of K/V, batch them into the same workgroup. For example, when: dst(128,32,1,1) = FA(q(128,1,32,1), k(128,16640,8,1), v(128,16640,8,1)) previously we would run 32 workgroups computing 1 result each, now we will run 8 workgroups computing 4 results each. This doesn't directly translate to better performance (at least when you have >=32 SMs), but in a subsequent change I'll enable split_k which will scale much better with 4x fewer workgroups.
This commit is contained in:
parent
f82622180f
commit
2105b110d3
@ -31,6 +31,7 @@
|
||||
|
||||
#define ROUNDUP_POW2(M, N) (((M) + (N) - 1) & ~((N) - 1))
|
||||
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
|
||||
static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
|
||||
|
||||
#define VK_VENDOR_ID_AMD 0x1002
|
||||
#define VK_VENDOR_ID_APPLE 0x106b
|
||||
@ -501,6 +502,8 @@ struct vk_flash_attn_push_constants {
|
||||
uint32_t n_head_log2;
|
||||
float m0;
|
||||
float m1;
|
||||
|
||||
uint32_t gqa_ratio;
|
||||
};
|
||||
|
||||
struct vk_op_push_constants {
|
||||
@ -5402,7 +5405,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
||||
const uint32_t nbm1 = mask ? mask->nb[1] : 0;
|
||||
|
||||
const uint32_t D = neq0;
|
||||
const uint32_t N = neq1;
|
||||
uint32_t N = neq1;
|
||||
const uint32_t KV = nek1;
|
||||
|
||||
GGML_ASSERT(ne0 == D);
|
||||
@ -5460,6 +5463,22 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
||||
vk_pipeline pipeline = pipelines[aligned];
|
||||
assert(pipeline);
|
||||
|
||||
uint32_t gqa_ratio = 1;
|
||||
uint32_t qk_ratio = neq2 / nek2;
|
||||
uint32_t workgroups_x = (uint32_t)neq1;
|
||||
uint32_t workgroups_y = (uint32_t)neq2;
|
||||
uint32_t workgroups_z = (uint32_t)neq3;
|
||||
|
||||
if (N == 1 && qk_ratio > 1 && is_pow2(qk_ratio) && gqa_ratio <= flash_attention_num_small_rows &&
|
||||
qk_ratio * nek2 == neq2 && nek2 == nev2 && neq3 == 1 && nek3 == 1 && nev3 == 1) {
|
||||
// grouped query attention - make the N dimension equal to gqa_ratio, reduce
|
||||
// workgroups proportionally in y dimension. The shader will detect gqa_ratio > 1
|
||||
// and change addressing calculations to index Q's dimension 2.
|
||||
gqa_ratio = qk_ratio;
|
||||
N = gqa_ratio;
|
||||
workgroups_y /= N;
|
||||
}
|
||||
|
||||
if (dryrun) {
|
||||
// Request descriptor sets
|
||||
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
|
||||
@ -5549,7 +5568,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
||||
v_stride, (uint32_t)nbv2, (uint32_t)nbv3,
|
||||
nbm1,
|
||||
scale, max_bias, logit_softcap,
|
||||
mask != nullptr, n_head_log2, m0, m1 };
|
||||
mask != nullptr, n_head_log2, m0, m1, gqa_ratio };
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
|
||||
{
|
||||
vk_subbuffer{d_Q, q_buf_offset, VK_WHOLE_SIZE},
|
||||
@ -5558,7 +5577,7 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
|
||||
vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE},
|
||||
vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE},
|
||||
},
|
||||
sizeof(vk_flash_attn_push_constants), &pc, { (uint32_t)neq1, (uint32_t)neq2, (uint32_t)neq3 });
|
||||
sizeof(vk_flash_attn_push_constants), &pc, { workgroups_x, workgroups_y, workgroups_z });
|
||||
}
|
||||
|
||||
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) {
|
||||
|
@ -61,6 +61,8 @@ layout (push_constant) uniform parameter {
|
||||
uint32_t n_head_log2;
|
||||
float m0;
|
||||
float m1;
|
||||
|
||||
uint32_t gqa_ratio;
|
||||
} p;
|
||||
|
||||
layout (binding = 0) readonly buffer Q {uint8_t data_q[];};
|
||||
@ -103,6 +105,28 @@ ACC_TYPE Max(const in uint32_t row, const in uint32_t col, const in ACC_TYPE ele
|
||||
#define DECODEFUNC
|
||||
#endif
|
||||
|
||||
// Store the output when doing grouped query attention.
|
||||
// Rows index by Q's dimension 2, and the first N rows are valid.
|
||||
D_TYPE perElemOpGqaStore(const in uint32_t r, const in uint32_t c, const in D_TYPE elem, const in uint32_t o_offset, const in uint32_t iq2, const in uint32_t N)
|
||||
{
|
||||
if (r < N && c < D) {
|
||||
uint32_t offset = (iq2 + r) * D + c;
|
||||
data_o[o_offset + offset] = D_TYPE(elem);
|
||||
}
|
||||
return elem;
|
||||
}
|
||||
|
||||
// Load the slope matrix, indexed by Q's dimension 2.
|
||||
ACC_TYPE perElemOpComputeSlope(const in uint32_t r, const in uint32_t c, const in ACC_TYPE elem, const in uint32_t iq2)
|
||||
{
|
||||
const uint32_t h = iq2 + (r & (p.gqa_ratio - 1));
|
||||
|
||||
const ACC_TYPE base = ACC_TYPE(h < p.n_head_log2 ? p.m0 : p.m1);
|
||||
const int exph = int(h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1);
|
||||
|
||||
return ACC_TYPE(pow(base, ACC_TYPE(exph)));
|
||||
}
|
||||
|
||||
void main() {
|
||||
#ifdef NEEDS_INIT_IQ_SHMEM
|
||||
init_iq_shmem(gl_WorkGroupSize);
|
||||
@ -116,7 +140,9 @@ void main() {
|
||||
|
||||
const uint32_t i = gl_WorkGroupID.x;
|
||||
|
||||
const uint32_t iq2 = gl_WorkGroupID.y;
|
||||
// When not using grouped query attention, all rows share the same iq2, equal to gl_WorkGroupID.y.
|
||||
// When using grouped query attention, each workgroup does gqa_ratio consecutive values of iq2.
|
||||
const uint32_t iq2 = gl_WorkGroupID.y * p.gqa_ratio;
|
||||
const uint32_t iq3 = gl_WorkGroupID.z;
|
||||
|
||||
// broadcast factors
|
||||
@ -149,8 +175,10 @@ void main() {
|
||||
tensorLayoutK = setTensorLayoutDimensionNV(tensorLayoutK, KV, D);
|
||||
tensorLayoutV = setTensorLayoutDimensionNV(tensorLayoutV, KV, D);
|
||||
|
||||
// nb?1 are already divided by the type size and are in units of elements
|
||||
uint32_t q_stride = p.nb01;
|
||||
// nb?1 are already divided by the type size and are in units of elements.
|
||||
// When using grouped query attention, Q is indexed by iq2, so the stride
|
||||
// should be nb02 (which is in bytes).
|
||||
uint32_t q_stride = p.gqa_ratio > 1 ? (p.nb02 / 4) : p.nb01;
|
||||
uint32_t k_stride = p.nb11;
|
||||
uint32_t v_stride = p.nb21;
|
||||
// hint to the compiler that strides are aligned for the aligned variant of the shader
|
||||
@ -182,16 +210,11 @@ void main() {
|
||||
L = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(0);
|
||||
M = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(-1.0/0.0);
|
||||
|
||||
ACC_TYPE slope = ACC_TYPE(1.0);
|
||||
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> slopeMat = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(1.0);
|
||||
|
||||
// ALiBi
|
||||
if (p.max_bias > 0.0f) {
|
||||
const uint32_t h = iq2;
|
||||
|
||||
const ACC_TYPE base = ACC_TYPE(h < p.n_head_log2 ? p.m0 : p.m1);
|
||||
const int exph = int(h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1);
|
||||
|
||||
slope = pow(base, ACC_TYPE(exph));
|
||||
coopMatPerElementNV(slopeMat, slopeMat, perElemOpComputeSlope, iq2);
|
||||
}
|
||||
|
||||
[[dont_unroll]]
|
||||
@ -215,12 +238,16 @@ void main() {
|
||||
if (p.mask != 0) {
|
||||
tensorLayoutNV<2, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutM = createTensorLayoutNV(2, gl_CooperativeMatrixClampModeConstantNV);
|
||||
tensorLayoutM = setTensorLayoutDimensionNV(tensorLayoutM, p.nem1, KV);
|
||||
// When using grouped query attention, all rows use the same mask.
|
||||
if (p.gqa_ratio > 1) {
|
||||
tensorLayoutM = setTensorLayoutStrideNV(tensorLayoutM, 0, 1);
|
||||
}
|
||||
|
||||
coopmat<float16_t, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> mv;
|
||||
|
||||
coopMatLoadTensorNV(mv, data_m, 0, sliceTensorLayoutNV(tensorLayoutM, i * Br, Br, j * Bc, Bc));
|
||||
|
||||
S += slope*coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(mv);
|
||||
S += slopeMat*coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(mv);
|
||||
}
|
||||
|
||||
// Clear padding elements to -inf, so they don't contribute to rowmax
|
||||
@ -297,13 +324,18 @@ void main() {
|
||||
|
||||
O = Ldiag*O;
|
||||
|
||||
tensorLayoutNV<3, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutD = createTensorLayoutNV(3, gl_CooperativeMatrixClampModeConstantNV);
|
||||
tensorLayoutD = setTensorLayoutDimensionNV(tensorLayoutD, p.ne2, p.ne1, D);
|
||||
|
||||
// permute dimensions
|
||||
tensorViewNV<3, false, 1, 0, 2> tensorViewPermute = createTensorViewNV(3, false, 1, 0, 2);
|
||||
uint32_t o_offset = iq3*p.ne2*p.ne1;
|
||||
|
||||
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator>(O);
|
||||
coopMatStoreTensorNV(O_D, data_o, o_offset, sliceTensorLayoutNV(tensorLayoutD, i * Br, Br, iq2, 1, 0, D), tensorViewPermute);
|
||||
if (p.gqa_ratio > 1) {
|
||||
coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N);
|
||||
} else {
|
||||
tensorLayoutNV<3, gl_CooperativeMatrixClampModeConstantNV> tensorLayoutD = createTensorLayoutNV(3, gl_CooperativeMatrixClampModeConstantNV);
|
||||
tensorLayoutD = setTensorLayoutDimensionNV(tensorLayoutD, p.ne2, p.ne1, D);
|
||||
|
||||
// permute dimensions
|
||||
tensorViewNV<3, false, 1, 0, 2> tensorViewPermute = createTensorViewNV(3, false, 1, 0, 2);
|
||||
|
||||
coopMatStoreTensorNV(O_D, data_o, o_offset, sliceTensorLayoutNV(tensorLayoutD, i * Br, Br, iq2, N, 0, D), tensorViewPermute);
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user