mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2024-12-19 20:57:52 +00:00
readme : add OpenVINO support details (#1112)
This commit is contained in:
parent
41bf19f613
commit
1fa360fc6e
80
README.md
80
README.md
@ -22,6 +22,7 @@ High-performance inference of [OpenAI's Whisper](https://github.com/openai/whisp
|
||||
- [Partial GPU support for NVIDIA via cuBLAS](https://github.com/ggerganov/whisper.cpp#nvidia-gpu-support-via-cublas)
|
||||
- [Partial OpenCL GPU support via CLBlast](https://github.com/ggerganov/whisper.cpp#opencl-gpu-support-via-clblast)
|
||||
- [BLAS CPU support via OpenBLAS](https://github.com/ggerganov/whisper.cpp#blas-cpu-support-via-openblas)
|
||||
- [OpenVINO Support](https://github.com/ggerganov/whisper.cpp#openvino-support)
|
||||
- [C-style API](https://github.com/ggerganov/whisper.cpp/blob/master/whisper.h)
|
||||
|
||||
Supported platforms:
|
||||
@ -311,6 +312,85 @@ speed-up - more than x3 faster compared with CPU-only execution. Here are the in
|
||||
|
||||
For more information about the Core ML implementation please refer to PR [#566](https://github.com/ggerganov/whisper.cpp/pull/566).
|
||||
|
||||
## OpenVINO support
|
||||
|
||||
On platforms that support [OpenVINO](https://github.com/openvinotoolkit/openvino), the Encoder inference can be executed
|
||||
on OpenVINO-supported devices including x86 CPUs and Intel GPUs (integrated & discrete).
|
||||
|
||||
This can result in significant speedup in encoder performance. Here are the instructions for generating the OpenVINO model and using it with `whisper.cpp`:
|
||||
|
||||
- First, setup python virtual env. and install python dependencies. Python 3.10 is recommended.
|
||||
|
||||
Windows:
|
||||
```
|
||||
cd models
|
||||
python -m venv openvino_conv_env
|
||||
openvino_conv_env\Scripts\activate
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r openvino-conversion-requirements.txt
|
||||
```
|
||||
|
||||
Linux and macOS:
|
||||
```
|
||||
cd models
|
||||
python3 -m venv openvino_conv_env
|
||||
source openvino_conv_env/bin/activate
|
||||
python -m pip install --upgrade pip
|
||||
pip install -r openvino-conversion-requirements.txt
|
||||
```
|
||||
|
||||
- Generate an OpenVINO encoder model. For example, to generate a `base.en` model, use:
|
||||
|
||||
```
|
||||
python convert-whisper-to-openvino.py --model base.en
|
||||
```
|
||||
|
||||
This will produce ggml-base.en-encoder-openvino.xml/.bin IR model files. It's recommended to relocate these to the same folder as ggml models, as that
|
||||
is the default location that the OpenVINO extension will search at runtime.
|
||||
|
||||
- Build `whisper.cpp` with OpenVINO support:
|
||||
|
||||
Download OpenVINO package from [release page](https://github.com/openvinotoolkit/openvino/releases). The recommended version to use is [2023.0.0](https://github.com/openvinotoolkit/openvino/releases/tag/2023.0.0).
|
||||
|
||||
After downloading & extracting package onto your development system, set up required environment by sourcing setupvars script. For example:
|
||||
|
||||
Linux:
|
||||
```bash
|
||||
source /path/to/l_openvino_toolkit_ubuntu22_2023.0.0.10926.b4452d56304_x86_64/setupvars.sh
|
||||
```
|
||||
|
||||
Windows (cmd):
|
||||
```
|
||||
C:\Path\To\w_openvino_toolkit_windows_2023.0.0.10926.b4452d56304_x86_64\setupvars.bat
|
||||
```
|
||||
|
||||
And then build the project using cmake:
|
||||
```bash
|
||||
cd build
|
||||
cmake -DWHISPER_OPENVINO=1 ..
|
||||
```
|
||||
|
||||
- Run the examples as usual. For example:
|
||||
```bash
|
||||
./main -m models/ggml-base.en.bin -f samples/jfk.wav
|
||||
|
||||
...
|
||||
|
||||
whisper_ctx_init_openvino_encoder: loading OpenVINO model from 'models/ggml-base.en-encoder-openvino.xml'
|
||||
whisper_ctx_init_openvino_encoder: first run on a device may take a while ...
|
||||
whisper_openvino_init: path_model = models/ggml-base.en-encoder-openvino.xml, device = GPU, cache_dir = models/ggml-base.en-encoder-openvino-cache
|
||||
whisper_ctx_init_openvino_encoder: OpenVINO model loaded
|
||||
|
||||
system_info: n_threads = 4 / 8 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 | COREML = 0 | OPENVINO = 1 |
|
||||
|
||||
...
|
||||
```
|
||||
|
||||
The first time run on an OpenVINO device is slow, since the OpenVINO framework will compile the IR (Intermediate Representation) model to a device-specific 'blob'. This device-specific blob will get
|
||||
cached for the next run.
|
||||
|
||||
For more information about the Core ML implementation please refer to PR [#1037](https://github.com/ggerganov/whisper.cpp/pull/1037).
|
||||
|
||||
## NVIDIA GPU support via cuBLAS
|
||||
|
||||
With NVIDIA cards the Encoder processing can to a large extent be offloaded to the GPU through cuBLAS.
|
||||
|
Loading…
Reference in New Issue
Block a user