diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 2db50437..bd3814c7 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -523,6 +523,8 @@ static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16 #define CUDA_ACC_BLOCK_SIZE 256 #define CUDA_IM2COL_BLOCK_SIZE 256 +#define CUDA_Q8_0_NE_ALIGN 2048 + // dmmv = dequantize_mul_mat_vec #ifndef GGML_CUDA_DMMV_X #define GGML_CUDA_DMMV_X 32 @@ -2327,6 +2329,45 @@ static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __res y[i] = x[i]; } +template +static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int k) { +#if __CUDA_ARCH__ >= CC_PASCAL + constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE; + + const int i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x; + const int * x0 = ((int *) vx) + blockIdx.x * nint; + half2 * y2 = (half2 *) (y + i0); + + __shared__ int vals[nint]; + +#pragma unroll + for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) { + if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) { + break; + } + + const int ix = ix0 + threadIdx.x; + vals[ix] = x0[ix]; + } + +#pragma unroll + for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) { + if (need_check && i0 + iy + 2*threadIdx.x >= k) { + return; + } + + const half * b0 = ((const half *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0); + const half d = *b0; + const char2 qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)]; + + y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d)); + } +#else + (void) vx; (void) y; (void) k; + bad_arch(); +#endif // __CUDA_ARCH__ >= CC_PASCAL +} + // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q @@ -6181,6 +6222,17 @@ static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restri dequantize_block<<>>(vx, y, k); } +static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int k, cudaStream_t stream) { + const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN; + if (k % CUDA_Q8_0_NE_ALIGN == 0) { + const bool need_check = false; + dequantize_block_q8_0_f16<<>>(vx, y, k); + } else { + const bool need_check = true; + dequantize_block_q8_0_f16<<>>(vx, y, k); + } +} + template static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; @@ -6246,6 +6298,7 @@ static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict_ } static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { + int id; switch (type) { case GGML_TYPE_Q4_0: return dequantize_block_cuda; @@ -6256,6 +6309,10 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { case GGML_TYPE_Q5_1: return dequantize_block_cuda; case GGML_TYPE_Q8_0: + CUDA_CHECK(cudaGetDevice(&id)); + if (g_device_caps[id].cc >= CC_PASCAL) { + return dequantize_block_q8_0_f16_cuda; + } return dequantize_block_cuda; case GGML_TYPE_Q2_K: return dequantize_row_q2_K_cuda;