whisper.cpp/models/README.md

113 lines
5.6 KiB
Markdown
Raw Normal View History

## Whisper model files in custom `ggml` format
2022-10-08 11:16:37 +03:00
The [original Whisper PyTorch models provided by OpenAI](https://github.com/openai/whisper/blob/main/whisper/__init__.py#L17-L30)
are converted to custom `ggml` format in order to be able to load them in C/C++.
Conversion is performed using the [convert-pt-to-ggml.py](convert-pt-to-ggml.py) script.
There are three ways to obtain `ggml` models:
### 1. Use [download-ggml-model.sh](download-ggml-model.sh) to download pre-converted models
2022-10-08 11:16:37 +03:00
Example download:
2022-10-08 11:16:37 +03:00
```text
2022-10-08 11:16:37 +03:00
$ ./download-ggml-model.sh base.en
Downloading ggml model base.en ...
2022-10-10 22:06:03 +03:00
models/ggml-base.en.bin 100%[=============================================>] 141.11M 5.41MB/s in 22s
2022-10-08 11:16:37 +03:00
Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
You can now use it like this:
$ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
```
### 2. Manually download pre-converted models
`ggml` models are available from the following locations:
- https://huggingface.co/ggerganov/whisper.cpp/tree/main
- https://ggml.ggerganov.com
### 3. Convert with [convert-pt-to-ggml.py](convert-pt-to-ggml.py)
Download one of the [models provided by OpenAI](https://github.com/openai/whisper/blob/main/whisper/__init__.py#L17-L30) and generate the `ggml` files using the [convert-pt-to-ggml.py](convert-pt-to-ggml.py) script.
Example conversion, assuming the original PyTorch files have been downloaded into `~/.cache/whisper`. Change `~/path/to/repo/whisper/` to the location for your copy of the Whisper source:
```bash
mkdir models/whisper-medium
python models/convert-pt-to-ggml.py ~/.cache/whisper/medium.pt ~/path/to/repo/whisper/ ./models/whisper-medium
mv ./models/whisper-medium/ggml-model.bin models/ggml-medium.bin
rmdir models/whisper-medium
```
## Available models
2024-10-01 15:57:06 +03:00
| Model | Disk | SHA |
| ------------------- | ------- | ------------------------------------------ |
| tiny | 75 MiB | `bd577a113a864445d4c299885e0cb97d4ba92b5f` |
| tiny.en | 75 MiB | `c78c86eb1a8faa21b369bcd33207cc90d64ae9df` |
| base | 142 MiB | `465707469ff3a37a2b9b8d8f89f2f99de7299dac` |
| base.en | 142 MiB | `137c40403d78fd54d454da0f9bd998f78703390c` |
| small | 466 MiB | `55356645c2b361a969dfd0ef2c5a50d530afd8d5` |
| small.en | 466 MiB | `db8a495a91d927739e50b3fc1cc4c6b8f6c2d022` |
| small.en-tdrz | 465 MiB | `b6c6e7e89af1a35c08e6de56b66ca6a02a2fdfa1` |
| medium | 1.5 GiB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
| medium.en | 1.5 GiB | `8c30f0e44ce9560643ebd10bbe50cd20eafd3723` |
| large-v1 | 2.9 GiB | `b1caaf735c4cc1429223d5a74f0f4d0b9b59a299` |
| large-v2 | 2.9 GiB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
| large-v2-q5_0 | 1.1 GiB | `00e39f2196344e901b3a2bd5814807a769bd1630` |
| large-v3 | 2.9 GiB | `ad82bf6a9043ceed055076d0fd39f5f186ff8062` |
| large-v3-q5_0 | 1.1 GiB | `e6e2ed78495d403bef4b7cff42ef4aaadcfea8de` |
| large-v3-turbo | 1.5 GiB | `4af2b29d7ec73d781377bfd1758ca957a807e941` |
| large-v3-turbo-q5_0 | 547 MiB | `e050f7970618a659205450ad97eb95a18d69c9ee` |
Models are multilingual unless the model name includes `.en`. Models ending in `-q5_0` are [quantized](../README.md#quantization). Models ending in `-tdrz` support local diarization (marking of speaker turns) using [tinydiarize](https://github.com/akashmjn/tinydiarize). More information about models is available [upstream (openai/whisper)](https://github.com/openai/whisper#available-models-and-languages). The list above is a subset of the models supported by the [download-ggml-model.sh](download-ggml-model.sh) script, but many more are available at https://huggingface.co/ggerganov/whisper.cpp/tree/main and elsewhere.
2022-10-08 11:16:37 +03:00
## Model files for testing purposes
The model files prefixed with `for-tests-` are empty (i.e. do not contain any weights) and are used by the CI for
testing purposes. They are directly included in this repository for convenience and the Github Actions CI uses them to
run various sanitizer tests.
## Fine-tuned models
There are community efforts for creating fine-tuned Whisper models using extra training data. For example, this
[blog post](https://huggingface.co/blog/fine-tune-whisper) describes a method for fine-tuning using Hugging Face (HF)
Transformer implementation of Whisper. The produced models are in slightly different format compared to the original
OpenAI format. To read the HF models you can use the [convert-h5-to-ggml.py](convert-h5-to-ggml.py) script like this:
```bash
git clone https://github.com/openai/whisper
git clone https://github.com/ggerganov/whisper.cpp
# clone HF fine-tuned model (this is just an example)
git clone https://huggingface.co/openai/whisper-medium
# convert the model to ggml
python3 ./whisper.cpp/models/convert-h5-to-ggml.py ./whisper-medium/ ./whisper .
```
## Distilled models
Initial support for https://huggingface.co/distil-whisper is available.
Currently, the chunk-based transcription strategy is not implemented, so there can be sub-optimal quality when using the distilled models with `whisper.cpp`.
```bash
# clone OpenAI whisper and whisper.cpp
git clone https://github.com/openai/whisper
git clone https://github.com/ggerganov/whisper.cpp
# get the models
cd whisper.cpp/models
git clone https://huggingface.co/distil-whisper/distil-medium.en
git clone https://huggingface.co/distil-whisper/distil-large-v2
# convert to ggml
python3 ./convert-h5-to-ggml.py ./distil-medium.en/ ../../whisper .
mv ggml-model.bin ggml-medium.en-distil.bin
python3 ./convert-h5-to-ggml.py ./distil-large-v2/ ../../whisper .
mv ggml-model.bin ggml-large-v2-distil.bin
```