whisper.cpp/examples/command/command.cpp

867 lines
30 KiB
C++
Raw Normal View History

2022-11-25 17:06:56 +00:00
// Voice assistant example
//
// Speak short text commands to the microphone.
// This program will detect your voice command and convert them to text.
//
// ref: https://github.com/ggerganov/whisper.cpp/issues/171
//
#include "whisper.h"
#include <SDL.h>
#include <SDL_audio.h>
#include <cassert>
#include <cstdio>
#include <fstream>
#include <mutex>
#include <regex>
2022-11-25 17:06:56 +00:00
#include <string>
#include <thread>
#include <vector>
2022-12-13 17:21:32 +00:00
#include <map>
2022-11-25 17:06:56 +00:00
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t prompt_ms = 5000;
int32_t command_ms = 4000;
int32_t capture_id = -1;
int32_t max_tokens = 32;
int32_t audio_ctx = 0;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool no_timestamps = true;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
std::string fname_out = "";
2022-12-13 17:21:32 +00:00
std::string commands = "";
2022-11-25 17:06:56 +00:00
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-h" || arg == "--help") {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-pms" || arg == "--prompt-ms") { params.prompt_ms = std::stoi(argv[++i]); }
else if (arg == "-cms" || arg == "--command-ms") { params.command_ms = std::stoi(argv[++i]); }
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
2022-12-13 17:21:32 +00:00
else if (arg == "-cmd" || arg == "--commands") { params.commands = argv[++i]; }
2022-11-25 17:06:56 +00:00
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
2022-12-13 17:21:32 +00:00
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -pms N, --prompt-ms N [%-7d] prompt duration in milliseconds\n", params.prompt_ms);
fprintf(stderr, " -cms N, --command-ms N [%-7d] command duration in milliseconds\n", params.command_ms);
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, " -cmd FNAME, --commands FNAME [%-7s] text file with allowed commands\n", params.commands.c_str());
2022-11-25 17:06:56 +00:00
fprintf(stderr, "\n");
}
//
// SDL Audio capture
//
class audio_async {
public:
audio_async(int len_ms);
~audio_async();
2022-11-25 17:06:56 +00:00
bool init(int capture_id, int sample_rate);
// start capturing audio via the provided SDL callback
// keep last len_ms seconds of audio in a circular buffer
bool resume();
bool pause();
bool clear();
// callback to be called by SDL
void callback(uint8_t * stream, int len);
// get audio data from the circular buffer
void get(int ms, std::vector<float> & audio);
private:
SDL_AudioDeviceID m_dev_id_in = 0;
int m_len_ms = 0;
int m_sample_rate = 0;
bool m_running = false;
std::mutex m_mutex;
std::vector<float> m_audio;
std::vector<float> m_audio_new;
size_t m_audio_pos = 0;
size_t m_audio_len = 0;
};
audio_async::audio_async(int len_ms) {
m_len_ms = len_ms;
}
audio_async::~audio_async() {
if (m_dev_id_in) {
SDL_CloseAudioDevice(m_dev_id_in);
}
}
2022-11-25 17:06:56 +00:00
bool audio_async::init(int capture_id, int sample_rate) {
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
return false;
}
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
{
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
for (int i = 0; i < nDevices; i++) {
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
}
}
SDL_AudioSpec capture_spec_requested;
SDL_AudioSpec capture_spec_obtained;
SDL_zero(capture_spec_requested);
SDL_zero(capture_spec_obtained);
capture_spec_requested.freq = sample_rate;
capture_spec_requested.format = AUDIO_F32;
capture_spec_requested.channels = 1;
capture_spec_requested.samples = 1024;
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
audio_async * audio = (audio_async *) userdata;
audio->callback(stream, len);
};
capture_spec_requested.userdata = this;
if (capture_id >= 0) {
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
} else {
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
}
if (!m_dev_id_in) {
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
m_dev_id_in = 0;
return false;
} else {
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
capture_spec_requested.format);
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
capture_spec_requested.channels);
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
}
m_sample_rate = capture_spec_obtained.freq;
m_audio.resize((m_sample_rate*m_len_ms)/1000);
return true;
}
bool audio_async::resume() {
if (!m_dev_id_in) {
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
return false;
}
if (m_running) {
fprintf(stderr, "%s: already running!\n", __func__);
return false;
}
SDL_PauseAudioDevice(m_dev_id_in, 0);
m_running = true;
return true;
}
bool audio_async::pause() {
if (!m_dev_id_in) {
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
return false;
}
if (!m_running) {
fprintf(stderr, "%s: already paused!\n", __func__);
return false;
}
SDL_PauseAudioDevice(m_dev_id_in, 1);
m_running = false;
return true;
}
bool audio_async::clear() {
if (!m_dev_id_in) {
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
return false;
}
if (!m_running) {
fprintf(stderr, "%s: not running!\n", __func__);
return false;
}
{
std::lock_guard<std::mutex> lock(m_mutex);
m_audio_pos = 0;
m_audio_len = 0;
}
return true;
}
// callback to be called by SDL
void audio_async::callback(uint8_t * stream, int len) {
if (!m_running) {
return;
}
const size_t n_samples = len / sizeof(float);
m_audio_new.resize(n_samples);
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
{
std::lock_guard<std::mutex> lock(m_mutex);
if (m_audio_pos + n_samples > m_audio.size()) {
const size_t n0 = m_audio.size() - m_audio_pos;
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
m_audio_len = m_audio.size();
} else {
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
}
}
}
void audio_async::get(int ms, std::vector<float> & result) {
if (!m_dev_id_in) {
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
return;
}
if (!m_running) {
fprintf(stderr, "%s: not running!\n", __func__);
return;
}
result.clear();
{
std::lock_guard<std::mutex> lock(m_mutex);
if (ms <= 0) {
ms = m_len_ms;
}
size_t n_samples = (m_sample_rate * ms) / 1000;
if (n_samples > m_audio_len) {
n_samples = m_audio_len;
}
result.resize(n_samples);
int s0 = m_audio_pos - n_samples;
if (s0 < 0) {
s0 += m_audio.size();
}
if (s0 + n_samples > m_audio.size()) {
const size_t n0 = m_audio.size() - s0;
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
} else {
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
}
}
}
///////////////////////////
std::string trim(const std::string & s) {
std::regex e("^\\s+|\\s+$");
return std::regex_replace(s, e, "");
}
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
const float rc = 1.0f / (2.0f * M_PI * cutoff);
const float dt = 1.0f / sample_rate;
const float alpha = dt / (rc + dt);
float y = data[0];
for (size_t i = 1; i < data.size(); i++) {
y = alpha * (y + data[i] - data[i - 1]);
data[i] = y;
}
}
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
const int n_samples = pcmf32.size();
const int n_samples_last = (sample_rate * last_ms) / 1000;
if (n_samples_last >= n_samples) {
// not enough samples - assume no speech
return false;
}
if (freq_thold > 0.0f) {
high_pass_filter(pcmf32, freq_thold, sample_rate);
}
float energy_all = 0.0f;
float energy_last = 0.0f;
for (size_t i = 0; i < n_samples; i++) {
energy_all += fabsf(pcmf32[i]);
if (i >= n_samples - n_samples_last) {
energy_last += fabsf(pcmf32[i]);
}
}
energy_all /= n_samples;
energy_last /= n_samples_last;
if (verbose) {
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
}
if (energy_last > vad_thold*energy_all) {
return false;
}
return true;
}
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
const auto t_start = std::chrono::high_resolution_clock::now();
prob = 0.0f;
t_ms = 0;
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.print_progress = false;
wparams.print_special = params.print_special;
wparams.print_realtime = false;
wparams.print_timestamps = !params.no_timestamps;
wparams.translate = params.translate;
wparams.no_context = true;
wparams.single_segment = true;
wparams.max_tokens = params.max_tokens;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
return "";
}
int prob_n = 0;
std::string result;
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
result += text;
const int n_tokens = whisper_full_n_tokens(ctx, i);
for (int j = 0; j < n_tokens; ++j) {
const auto token = whisper_full_get_token_data(ctx, i, j);
prob += token.p;
++prob_n;
}
}
if (prob_n > 0) {
prob /= prob_n;
}
const auto t_end = std::chrono::high_resolution_clock::now();
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
return result;
}
// compute similarity between two strings using Levenshtein distance
float similarity(const std::string & s0, const std::string & s1) {
const size_t len0 = s0.size() + 1;
const size_t len1 = s1.size() + 1;
std::vector<int> col(len1, 0);
std::vector<int> prevCol(len1, 0);
for (size_t i = 0; i < len1; i++) {
prevCol[i] = i;
}
for (size_t i = 0; i < len0; i++) {
col[0] = i;
for (size_t j = 1; j < len1; j++) {
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
}
col.swap(prevCol);
}
const float dist = prevCol[len1 - 1];
return 1.0f - (dist / std::max(s0.size(), s1.size()));
}
2022-12-13 17:21:32 +00:00
std::vector<std::string> read_allowed_commands(const std::string & fname) {
std::vector<std::string> allowed_commands;
std::ifstream ifs(fname);
if (!ifs.is_open()) {
return allowed_commands;
}
std::string line;
while (std::getline(ifs, line)) {
line = trim(line);
if (line.empty()) {
continue;
}
std::transform(line.begin(), line.end(),line.begin(), ::tolower);
allowed_commands.push_back(std::move(line));
}
return allowed_commands;
}
2022-11-25 17:06:56 +00:00
int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
return 1;
}
if (whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
// whisper init
struct whisper_context * ctx = whisper_init(params.model.c_str());
// print some info about the processing
{
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
__func__,
params.n_threads,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1);
fprintf(stderr, "\n");
}
// init audio
audio_async audio(30*1000);
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
return 1;
}
audio.resume();
// wait for 1 second to avoid any buffered noise
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
audio.clear();
2022-12-13 17:21:32 +00:00
int max_len = 0;
2022-11-25 17:06:56 +00:00
bool is_running = true;
bool have_prompt = false;
bool ask_prompt = true;
2022-11-25 17:06:56 +00:00
float prob0 = 0.0f;
float prob = 0.0f;
std::vector<float> pcmf32_cur;
std::vector<float> pcmf32_prompt;
2022-12-13 17:21:32 +00:00
std::vector<std::string> allowed_commands;
std::vector<std::vector<whisper_token>> allowed_tokens;
std::string k_prompt = "";
std::vector<whisper_token> k_tokens;
if (params.commands != "") {
fprintf(stderr, "\n");
fprintf(stderr, "%s: guided mode\n", __func__);
allowed_commands = read_allowed_commands(params.commands);
if (allowed_commands.empty()) {
fprintf(stderr, "%s: error: failed to read allowed commands from '%s'\n", __func__, params.commands.c_str());
return 2;
}
for (const auto & cmd : allowed_commands) {
whisper_token tokens[1024];
allowed_tokens.emplace_back();
for (int l = 0; l < cmd.size(); ++l) {
// NOTE: very important to add the whitespace !
// the reason is that the first decoded token starts with a whitespace too!
std::string ss = std::string(" ") + cmd.substr(0, l + 1);
const int n = whisper_tokenize(ctx, ss.c_str(), tokens, 1024);
if (n < 0) {
fprintf(stderr, "%s: error: failed to tokenize command '%s'\n", __func__, cmd.c_str());
return 3;
}
if (n == 1) {
allowed_tokens.back().push_back(tokens[0]);
}
}
max_len = std::max(max_len, (int) cmd.size());
}
fprintf(stderr, "%s: allowed commands [ tokens ]:\n", __func__);
fprintf(stderr, "\n");
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
fprintf(stderr, " - \033[1m%-*s\033[0m = [", max_len, allowed_commands[i].c_str());
for (const auto & token : allowed_tokens[i]) {
2022-12-13 19:46:42 +00:00
fprintf(stderr, " %5d", token);
2022-12-13 17:21:32 +00:00
}
fprintf(stderr, " ]\n");
}
k_prompt = "select one from the available words: ";
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
if (i > 0) {
k_prompt += ", ";
}
k_prompt += allowed_commands[i];
}
k_prompt += ". selected word: ";
// tokenize prompt
{
k_tokens.resize(1024);
const int n = whisper_tokenize(ctx, k_prompt.c_str(), k_tokens.data(), 1024);
if (n < 0) {
fprintf(stderr, "%s: error: failed to tokenize prompt '%s'\n", __func__, k_prompt.c_str());
return 4;
}
k_tokens.resize(n);
}
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, k_prompt.c_str());
fprintf(stderr, "%s: tokens: [", __func__);
for (const auto & token : k_tokens) {
fprintf(stderr, " %d", token);
}
fprintf(stderr, " ]\n");
fprintf(stderr, "\n");
fprintf(stderr, "%s: listening for a command ...\n", __func__);
fprintf(stderr, "\n");
} else {
fprintf(stderr, "\n");
fprintf(stderr, "%s: general-purpose mode\n", __func__);
k_prompt = "Ok Whisper, start listening for commands.";
}
2022-11-25 17:06:56 +00:00
// main loop
while (is_running) {
// handle Ctrl + C
{
SDL_Event event;
while (SDL_PollEvent(&event)) {
switch (event.type) {
case SDL_QUIT:
{
is_running = false;
} break;
default:
break;
}
}
if (!is_running) {
break;
}
}
// delay
std::this_thread::sleep_for(std::chrono::milliseconds(100));
2022-12-13 17:21:32 +00:00
if (allowed_commands.empty()) {
// general-purpose mode
// freely transcribe the voice into text
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
if (ask_prompt) {
fprintf(stdout, "\n");
fprintf(stdout, "%s: Say the following phrase: '%s%s%s'\n", __func__, "\033[1m", k_prompt.c_str(), "\033[0m");
fprintf(stdout, "\n");
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
ask_prompt = false;
}
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
{
int64_t t_ms = 0;
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
audio.get(2000, pcmf32_cur);
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
if (!have_prompt) {
// wait for activation phrase
audio.get(params.prompt_ms, pcmf32_cur);
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob0, t_ms));
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", txt.c_str(), "\033[0m", (int) t_ms);
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
const float sim = similarity(txt, k_prompt);
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
if (txt.length() < 0.8*k_prompt.length() || txt.length() > 1.2*k_prompt.length() || sim < 0.8f) {
fprintf(stdout, "%s: WARNING: prompt not recognized, try again\n", __func__);
ask_prompt = true;
} else {
fprintf(stdout, "\n");
fprintf(stdout, "%s: The prompt has been recognized!\n", __func__);
fprintf(stdout, "%s: Waiting for voice commands ...\n", __func__);
fprintf(stdout, "\n");
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
// save the audio for the prompt
pcmf32_prompt = pcmf32_cur;
have_prompt = true;
}
2022-11-25 17:06:56 +00:00
} else {
2022-12-13 17:21:32 +00:00
// we have heard the activation phrase, now detect the commands
audio.get(params.command_ms, pcmf32_cur);
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
// prepend the prompt audio
pcmf32_cur.insert(pcmf32_cur.begin(), pcmf32_prompt.begin(), pcmf32_prompt.end());
const auto txt = ::trim(::transcribe(ctx, params, pcmf32_cur, prob, t_ms));
prob = 100.0f*(prob - prob0);
//fprintf(stdout, "%s: heard '%s'\n", __func__, txt.c_str());
// find the prompt in the text
float best_sim = 0.0f;
size_t best_len = 0;
for (int n = 0.8*k_prompt.size(); n <= 1.2*k_prompt.size(); ++n) {
const auto prompt = txt.substr(0, n);
const float sim = similarity(prompt, k_prompt);
//fprintf(stderr, "%s: prompt = '%s', sim = %f\n", __func__, prompt.c_str(), sim);
if (sim > best_sim) {
best_sim = sim;
best_len = n;
}
}
const std::string command = ::trim(txt.substr(best_len));
fprintf(stdout, "%s: Command '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", command.c_str(), "\033[0m", (int) t_ms);
fprintf(stdout, "\n");
2022-11-25 17:06:56 +00:00
}
2022-12-13 17:21:32 +00:00
audio.clear();
}
}
} else {
// command-list mode
// guide the transcription to match the most likely command from a provided list
audio.get(2000, pcmf32_cur);
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, params.print_energy)) {
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
const auto t_start = std::chrono::high_resolution_clock::now();
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
wparams.print_progress = false;
wparams.print_special = params.print_special;
wparams.print_realtime = false;
wparams.print_timestamps = !params.no_timestamps;
wparams.translate = params.translate;
wparams.no_context = true;
wparams.single_segment = true;
wparams.max_tokens = 1;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
wparams.prompt_tokens = k_tokens.data();
wparams.prompt_n_tokens = k_tokens.size();
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
// run the transformer and a single decoding pass
if (whisper_full(ctx, wparams, pcmf32_cur.data(), pcmf32_cur.size()) != 0) {
fprintf(stderr, "%s: ERROR: whisper_full() failed\n", __func__);
break;
}
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
const auto * probs = whisper_get_probs(ctx);
std::vector<std::pair<float, int>> probs_id;
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
double psum = 0.0;
for (int i = 0; i < (int) allowed_commands.size(); ++i) {
probs_id.push_back(std::make_pair(probs[allowed_tokens[i][0]], i));
for (int j = 1; j < (int) allowed_tokens[i].size(); ++j) {
probs_id.back().first += probs[allowed_tokens[i][j]];
2022-11-25 17:06:56 +00:00
}
2022-12-13 17:21:32 +00:00
probs_id.back().first /= allowed_tokens[i].size();
psum += probs_id.back().first;
}
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
// normalize
for (auto & p : probs_id) {
p.first /= psum;
}
// sort descending
{
using pair_type = decltype(probs_id)::value_type;
std::sort(probs_id.begin(), probs_id.end(), [](const pair_type & a, const pair_type & b) {
return a.first > b.first;
});
}
2022-11-25 17:06:56 +00:00
2022-12-13 17:21:32 +00:00
// print the commands and the respective probabilities
{
2022-11-25 17:06:56 +00:00
fprintf(stdout, "\n");
2022-12-13 17:21:32 +00:00
for (const auto & cmd : probs_id) {
fprintf(stdout, "%s: %s%-*s%s = %f | ", __func__, "\033[1m", max_len, allowed_commands[cmd.second].c_str(), "\033[0m", cmd.first);
for (int i = 0; i < (int) allowed_tokens[cmd.second].size(); ++i) {
2022-12-13 19:46:42 +00:00
fprintf(stdout, "'%4s' %f ", whisper_token_to_str(ctx, allowed_tokens[cmd.second][i]), probs[allowed_tokens[cmd.second][i]]);
2022-12-13 17:21:32 +00:00
}
fprintf(stdout, "\n");
}
2022-11-25 17:06:56 +00:00
}
2022-12-13 17:21:32 +00:00
// best command
{
fprintf(stdout, "\n");
fprintf(stdout, "%s: detected command: %s%s%s | p = %f | t = %d ms\n", __func__,
"\033[1m", allowed_commands[probs_id[0].second].c_str(), "\033[0m", probs_id[0].first,
(int) std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - t_start).count());
fprintf(stdout, "\n");
}
const auto t_end = std::chrono::high_resolution_clock::now();
2022-11-25 17:06:56 +00:00
audio.clear();
}
}
}
audio.pause();
whisper_print_timings(ctx);
whisper_free(ctx);
return 0;
}