mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-18 10:46:28 +00:00
1281 lines
44 KiB
Plaintext
1281 lines
44 KiB
Plaintext
|
#include "common.cuh"
|
||
|
|
||
|
static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
|
||
|
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
||
|
|
||
|
int x32 = 0;
|
||
|
x32 |= x16[0] << 0;
|
||
|
x32 |= x16[1] << 16;
|
||
|
|
||
|
return x32;
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
|
||
|
const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
|
||
|
|
||
|
int x32 = 0;
|
||
|
x32 |= x16[0] << 0;
|
||
|
x32 |= x16[1] << 16;
|
||
|
|
||
|
return x32;
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
|
||
|
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
|
||
|
return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
|
||
|
}
|
||
|
|
||
|
|
||
|
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
|
||
|
// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
|
||
|
|
||
|
#define VDR_Q4_0_Q8_1_MMVQ 2
|
||
|
#define VDR_Q4_0_Q8_1_MMQ 4
|
||
|
|
||
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
|
||
|
const int * v, const int * u, const float & d4, const half2 & ds8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
int sumi = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < vdr; ++i) {
|
||
|
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
|
||
|
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
|
||
|
|
||
|
// SIMD dot product of quantized values
|
||
|
sumi = __dp4a(vi0, u[2*i+0], sumi);
|
||
|
sumi = __dp4a(vi1, u[2*i+1], sumi);
|
||
|
}
|
||
|
|
||
|
const float2 ds8f = __half22float2(ds8);
|
||
|
|
||
|
// second part effectively subtracts 8 from each quant value
|
||
|
return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
#define VDR_Q4_1_Q8_1_MMVQ 2
|
||
|
#define VDR_Q4_1_Q8_1_MMQ 4
|
||
|
|
||
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
|
||
|
const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
int sumi = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < vdr; ++i) {
|
||
|
const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
|
||
|
const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
|
||
|
|
||
|
// SIMD dot product of quantized values
|
||
|
sumi = __dp4a(vi0, u[2*i+0], sumi);
|
||
|
sumi = __dp4a(vi1, u[2*i+1], sumi);
|
||
|
}
|
||
|
|
||
|
#ifdef GGML_CUDA_F16
|
||
|
const float2 tmp = __half22float2(__hmul2(dm4, ds8));
|
||
|
const float d4d8 = tmp.x;
|
||
|
const float m4s8 = tmp.y;
|
||
|
#else
|
||
|
const float2 dm4f = __half22float2(dm4);
|
||
|
const float2 ds8f = __half22float2(ds8);
|
||
|
const float d4d8 = dm4f.x * ds8f.x;
|
||
|
const float m4s8 = dm4f.y * ds8f.y;
|
||
|
#endif // GGML_CUDA_F16
|
||
|
|
||
|
// scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
|
||
|
return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
#define VDR_Q5_0_Q8_1_MMVQ 2
|
||
|
#define VDR_Q5_0_Q8_1_MMQ 4
|
||
|
|
||
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
|
||
|
const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
int sumi = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < vdr; ++i) {
|
||
|
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
|
||
|
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
|
||
|
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
|
||
|
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
|
||
|
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
|
||
|
sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
|
||
|
|
||
|
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
|
||
|
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
|
||
|
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
|
||
|
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
|
||
|
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
|
||
|
sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
|
||
|
}
|
||
|
|
||
|
const float2 ds8f = __half22float2(ds8);
|
||
|
|
||
|
// second part effectively subtracts 16 from each quant value
|
||
|
return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
#define VDR_Q5_1_Q8_1_MMVQ 2
|
||
|
#define VDR_Q5_1_Q8_1_MMQ 4
|
||
|
|
||
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
|
||
|
const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
int sumi = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < vdr; ++i) {
|
||
|
int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
|
||
|
vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
|
||
|
vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
|
||
|
vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
|
||
|
vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
|
||
|
sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
|
||
|
|
||
|
int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
|
||
|
vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
|
||
|
vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
|
||
|
vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
|
||
|
vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
|
||
|
sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
|
||
|
}
|
||
|
|
||
|
#ifdef GGML_CUDA_F16
|
||
|
const float2 tmp = __half22float2(__hmul2(dm5, ds8));
|
||
|
const float d5d8 = tmp.x;
|
||
|
const float m5s8 = tmp.y;
|
||
|
#else
|
||
|
const float2 dm5f = __half22float2(dm5);
|
||
|
const float2 ds8f = __half22float2(ds8);
|
||
|
const float d5d8 = dm5f.x * ds8f.x;
|
||
|
const float m5s8 = dm5f.y * ds8f.y;
|
||
|
#endif // GGML_CUDA_F16
|
||
|
|
||
|
// scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
|
||
|
return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
|
||
|
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
#define VDR_Q8_0_Q8_1_MMVQ 2
|
||
|
#define VDR_Q8_0_Q8_1_MMQ 8
|
||
|
|
||
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
|
||
|
const int * v, const int * u, const float & d8_0, const float & d8_1) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
int sumi = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < vdr; ++i) {
|
||
|
// SIMD dot product of quantized values
|
||
|
sumi = __dp4a(v[i], u[i], sumi);
|
||
|
}
|
||
|
|
||
|
return d8_0*d8_1 * sumi;
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
|
||
|
const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
int sumi = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < vdr; ++i) {
|
||
|
// SIMD dot product of quantized values
|
||
|
sumi = __dp4a(v[i], u[i], sumi);
|
||
|
}
|
||
|
|
||
|
#ifdef GGML_CUDA_F16
|
||
|
const float2 tmp = __half22float2(__hmul2(dm8, ds8));
|
||
|
const float d8d8 = tmp.x;
|
||
|
const float m8s8 = tmp.y;
|
||
|
#else
|
||
|
const float2 dm8f = __half22float2(dm8);
|
||
|
const float2 ds8f = __half22float2(ds8);
|
||
|
const float d8d8 = dm8f.x * ds8f.x;
|
||
|
const float m8s8 = dm8f.y * ds8f.y;
|
||
|
#endif // GGML_CUDA_F16
|
||
|
|
||
|
// scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
|
||
|
return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
#define VDR_Q2_K_Q8_1_MMVQ 1
|
||
|
#define VDR_Q2_K_Q8_1_MMQ 2
|
||
|
|
||
|
// contiguous v/x values
|
||
|
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
|
||
|
const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
||
|
const half2 & dm2, const float * __restrict__ d8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
float sumf_d = 0.0f;
|
||
|
float sumf_m = 0.0f;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR2_K; ++i) {
|
||
|
const int sc = scales[2*i];
|
||
|
|
||
|
const int vi = (v >> (2*i)) & 0x03030303;
|
||
|
|
||
|
sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
|
||
|
|
||
|
// fill int with 4x m
|
||
|
int m = sc >> 4;
|
||
|
m |= m << 8;
|
||
|
m |= m << 16;
|
||
|
sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
|
||
|
}
|
||
|
|
||
|
const float2 dm2f = __half22float2(dm2);
|
||
|
|
||
|
return dm2f.x*sumf_d - dm2f.y*sumf_m;
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
// contiguous u/y values
|
||
|
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
|
||
|
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
||
|
const half2 & dm2, const float & d8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
int sumi_d = 0;
|
||
|
int sumi_m = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
|
||
|
int sumi_d_sc = 0;
|
||
|
|
||
|
const int sc = scales[i0 / (QI8_1/2)];
|
||
|
|
||
|
// fill int with 4x m
|
||
|
int m = sc >> 4;
|
||
|
m |= m << 8;
|
||
|
m |= m << 16;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
||
|
sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
|
||
|
sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
|
||
|
}
|
||
|
|
||
|
sumi_d += sumi_d_sc * (sc & 0xF);
|
||
|
}
|
||
|
|
||
|
const float2 dm2f = __half22float2(dm2);
|
||
|
|
||
|
return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
#define VDR_Q3_K_Q8_1_MMVQ 1
|
||
|
#define VDR_Q3_K_Q8_1_MMQ 2
|
||
|
|
||
|
// contiguous v/x values
|
||
|
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
|
||
|
const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
|
||
|
const int & scale_offset, const float & d3, const float * __restrict__ d8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
float sumf = 0.0f;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR3_K; ++i) {
|
||
|
const int isc = scale_offset + 2*i;
|
||
|
|
||
|
const int isc_low = isc % (QK_K/32);
|
||
|
const int sc_shift_low = 4 * (isc / (QK_K/32));
|
||
|
const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
|
||
|
|
||
|
const int isc_high = isc % (QK_K/64);
|
||
|
const int sc_shift_high = 2 * (isc / (QK_K/64));
|
||
|
const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
|
||
|
|
||
|
const int sc = (sc_low | sc_high) - 32;
|
||
|
|
||
|
const int vil = (vl >> (2*i)) & 0x03030303;
|
||
|
|
||
|
const int vih = ((vh >> i) << 2) & 0x04040404;
|
||
|
|
||
|
const int vi = __vsubss4(vil, vih);
|
||
|
|
||
|
sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
|
||
|
}
|
||
|
|
||
|
return d3 * sumf;
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
// contiguous u/y values
|
||
|
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
|
||
|
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
|
||
|
const float & d3, const float & d8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
int sumi = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
|
||
|
int sumi_sc = 0;
|
||
|
|
||
|
for (int i = i0; i < i0 + QI8_1/2; ++i) {
|
||
|
sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
|
||
|
}
|
||
|
|
||
|
sumi += sumi_sc * scales[i0 / (QI8_1/2)];
|
||
|
}
|
||
|
|
||
|
return d3*d8 * sumi;
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
#define VDR_Q4_K_Q8_1_MMVQ 2
|
||
|
#define VDR_Q4_K_Q8_1_MMQ 8
|
||
|
|
||
|
// contiguous v/x values
|
||
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
|
||
|
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
||
|
const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
float sumf_d = 0.0f;
|
||
|
float sumf_m = 0.0f;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR4_K; ++i) {
|
||
|
const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
|
||
|
const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
|
||
|
|
||
|
const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
|
||
|
const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
|
||
|
|
||
|
sumf_d += d8[i] * (dot1 * sc[i]);
|
||
|
sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
|
||
|
}
|
||
|
|
||
|
const float2 dm4f = __half22float2(dm4);
|
||
|
|
||
|
return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
||
|
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
// contiguous u/y values
|
||
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
|
||
|
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
||
|
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
float sumf_d = 0.0f;
|
||
|
float sumf_m = 0.0f;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
|
||
|
int sumi_d = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int j = 0; j < QI8_1; ++j) {
|
||
|
sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
|
||
|
}
|
||
|
|
||
|
const float2 ds8f = __half22float2(ds8[i]);
|
||
|
|
||
|
sumf_d += ds8f.x * (sc[i] * sumi_d);
|
||
|
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
|
||
|
}
|
||
|
|
||
|
const float2 dm4f = __half22float2(dm4);
|
||
|
|
||
|
return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
||
|
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
#define VDR_Q5_K_Q8_1_MMVQ 2
|
||
|
#define VDR_Q5_K_Q8_1_MMQ 8
|
||
|
|
||
|
// contiguous v/x values
|
||
|
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
|
||
|
const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
||
|
const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
float sumf_d = 0.0f;
|
||
|
float sumf_m = 0.0f;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR5_K; ++i) {
|
||
|
const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
|
||
|
const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
|
||
|
|
||
|
const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
|
||
|
const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
|
||
|
|
||
|
const int v0i = vl0i | vh0i;
|
||
|
const int v1i = vl1i | vh1i;
|
||
|
|
||
|
const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
|
||
|
const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
|
||
|
|
||
|
sumf_d += d8[i] * (dot1 * sc[i]);
|
||
|
sumf_m += d8[i] * (dot2 * m[i]);
|
||
|
|
||
|
}
|
||
|
|
||
|
const float2 dm5f = __half22float2(dm5);
|
||
|
|
||
|
return dm5f.x*sumf_d - dm5f.y*sumf_m;
|
||
|
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
// contiguous u/y values
|
||
|
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
|
||
|
const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
|
||
|
const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
float sumf_d = 0.0f;
|
||
|
float sumf_m = 0.0f;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
|
||
|
int sumi_d = 0;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int j = 0; j < QI8_1; ++j) {
|
||
|
sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
|
||
|
}
|
||
|
|
||
|
const float2 ds8f = __half22float2(ds8[i]);
|
||
|
|
||
|
sumf_d += ds8f.x * (sc[i] * sumi_d);
|
||
|
sumf_m += ds8f.y * m[i]; // sum of q8_1 block * q4_K min val
|
||
|
}
|
||
|
|
||
|
const float2 dm4f = __half22float2(dm4);
|
||
|
|
||
|
return dm4f.x*sumf_d - dm4f.y*sumf_m;
|
||
|
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
#define VDR_Q6_K_Q8_1_MMVQ 1
|
||
|
#define VDR_Q6_K_Q8_1_MMQ 8
|
||
|
|
||
|
// contiguous v/x values
|
||
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
|
||
|
const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
|
||
|
const float & d, const float * __restrict__ d8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
float sumf = 0.0f;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR6_K; ++i) {
|
||
|
const int sc = scales[4*i];
|
||
|
|
||
|
const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
|
||
|
|
||
|
const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
|
||
|
|
||
|
const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
|
||
|
|
||
|
sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
|
||
|
}
|
||
|
|
||
|
return d*sumf;
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
// contiguous u/y values
|
||
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
|
||
|
const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
|
||
|
const float & d6, const float * __restrict__ d8) {
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
float sumf_d = 0.0f;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
|
||
|
int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = i0; i < i0 + 2; ++i) {
|
||
|
sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
|
||
|
sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
|
||
|
|
||
|
sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
|
||
|
sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
|
||
|
}
|
||
|
|
||
|
sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
|
||
|
}
|
||
|
|
||
|
return d6 * sumf_d;
|
||
|
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
|
||
|
|
||
|
int v[VDR_Q4_0_Q8_1_MMVQ];
|
||
|
int u[2*VDR_Q4_0_Q8_1_MMVQ];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
|
||
|
v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
|
||
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
||
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
|
||
|
}
|
||
|
|
||
|
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
|
||
|
}
|
||
|
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
|
||
|
|
||
|
int v[VDR_Q4_1_Q8_1_MMVQ];
|
||
|
int u[2*VDR_Q4_1_Q8_1_MMVQ];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
|
||
|
v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
|
||
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
||
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
|
||
|
}
|
||
|
|
||
|
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
|
||
|
|
||
|
int vl[VDR_Q5_0_Q8_1_MMVQ];
|
||
|
int vh[VDR_Q5_0_Q8_1_MMVQ];
|
||
|
int u[2*VDR_Q5_0_Q8_1_MMVQ];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
|
||
|
vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
|
||
|
vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
|
||
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
||
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
|
||
|
}
|
||
|
|
||
|
return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
|
||
|
|
||
|
int vl[VDR_Q5_1_Q8_1_MMVQ];
|
||
|
int vh[VDR_Q5_1_Q8_1_MMVQ];
|
||
|
int u[2*VDR_Q5_1_Q8_1_MMVQ];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
|
||
|
vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
|
||
|
vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
|
||
|
u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
||
|
u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
|
||
|
}
|
||
|
|
||
|
return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
|
||
|
|
||
|
int v[VDR_Q8_0_Q8_1_MMVQ];
|
||
|
int u[VDR_Q8_0_Q8_1_MMVQ];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
|
||
|
v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
|
||
|
u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
|
||
|
}
|
||
|
|
||
|
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, __low2half(bq8_1->ds));
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
const block_q2_K * bq2_K = (const block_q2_K *) vbq;
|
||
|
|
||
|
const int bq8_offset = QR2_K * (iqs / QI8_1);
|
||
|
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
|
||
|
|
||
|
const uint8_t * scales = bq2_K->scales + scale_offset;
|
||
|
|
||
|
const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
|
||
|
int u[QR2_K];
|
||
|
float d8[QR2_K];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR2_K; ++ i) {
|
||
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
||
|
d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
|
||
|
}
|
||
|
|
||
|
return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
const block_q3_K * bq3_K = (const block_q3_K *) vbq;
|
||
|
|
||
|
const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
|
||
|
const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
|
||
|
|
||
|
const float d = bq3_K->d;
|
||
|
|
||
|
const int vl = get_int_from_uint8(bq3_K->qs, iqs);
|
||
|
|
||
|
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
||
|
const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
|
||
|
|
||
|
int u[QR3_K];
|
||
|
float d8[QR3_K];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR3_K; ++i) {
|
||
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
|
||
|
d8[i] = __low2float(bq8_1[bq8_offset + i].ds);
|
||
|
}
|
||
|
|
||
|
return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
#ifndef GGML_QKK_64
|
||
|
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
||
|
|
||
|
int v[2];
|
||
|
int u[2*QR4_K];
|
||
|
float d8[QR4_K];
|
||
|
|
||
|
// iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
|
||
|
const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
|
||
|
|
||
|
// iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
|
||
|
// iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
|
||
|
// iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
|
||
|
// iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
|
||
|
|
||
|
const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
|
||
|
v[0] = q4[0];
|
||
|
v[1] = q4[4];
|
||
|
|
||
|
const uint16_t * scales = (const uint16_t *)bq4_K->scales;
|
||
|
uint16_t aux[2];
|
||
|
const int j = bq8_offset/2;
|
||
|
if (j < 2) {
|
||
|
aux[0] = scales[j+0] & 0x3f3f;
|
||
|
aux[1] = scales[j+2] & 0x3f3f;
|
||
|
} else {
|
||
|
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
||
|
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
||
|
}
|
||
|
const uint8_t * sc = (const uint8_t *)aux;
|
||
|
const uint8_t * m = sc + 2;
|
||
|
|
||
|
for (int i = 0; i < QR4_K; ++i) {
|
||
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
||
|
d8[i] = __low2float(bq8i->ds);
|
||
|
|
||
|
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
||
|
u[2*i+0] = q8[0];
|
||
|
u[2*i+1] = q8[4];
|
||
|
}
|
||
|
|
||
|
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
|
||
|
|
||
|
#else
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
|
||
|
|
||
|
float sumf_d = 0.0f;
|
||
|
float sumf_m = 0.0f;
|
||
|
|
||
|
uint16_t aux16[2];
|
||
|
const uint8_t * s = (const uint8_t *)aux16;
|
||
|
|
||
|
const uint16_t * a = (const uint16_t *)bq4_K->scales;
|
||
|
aux16[0] = a[0] & 0x0f0f;
|
||
|
aux16[1] = (a[0] >> 4) & 0x0f0f;
|
||
|
|
||
|
const float dall = bq4_K->dm[0];
|
||
|
const float dmin = bq4_K->dm[1];
|
||
|
|
||
|
const float d8_1 = __low2float(bq8_1[0].ds);
|
||
|
const float d8_2 = __low2float(bq8_1[1].ds);
|
||
|
|
||
|
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
||
|
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
||
|
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
||
|
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
||
|
|
||
|
const int * q4 = (const int *)bq4_K->qs + (iqs/2);
|
||
|
const int v1 = q4[0];
|
||
|
const int v2 = q4[4];
|
||
|
|
||
|
const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
|
||
|
const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
|
||
|
const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
|
||
|
const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
|
||
|
|
||
|
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
|
||
|
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
|
||
|
|
||
|
return dall * sumf_d - dmin * sumf_m;
|
||
|
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
#ifndef GGML_QKK_64
|
||
|
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
||
|
|
||
|
int vl[2];
|
||
|
int vh[2];
|
||
|
int u[2*QR5_K];
|
||
|
float d8[QR5_K];
|
||
|
|
||
|
const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
|
||
|
const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
|
||
|
const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
|
||
|
|
||
|
vl[0] = ql[0];
|
||
|
vl[1] = ql[4];
|
||
|
|
||
|
vh[0] = qh[0] >> bq8_offset;
|
||
|
vh[1] = qh[4] >> bq8_offset;
|
||
|
|
||
|
const uint16_t * scales = (const uint16_t *)bq5_K->scales;
|
||
|
uint16_t aux[2];
|
||
|
const int j = bq8_offset/2;
|
||
|
if (j < 2) {
|
||
|
aux[0] = scales[j+0] & 0x3f3f;
|
||
|
aux[1] = scales[j+2] & 0x3f3f;
|
||
|
} else {
|
||
|
aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
|
||
|
aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
|
||
|
}
|
||
|
const uint8_t * sc = (const uint8_t *)aux;
|
||
|
const uint8_t * m = sc + 2;
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR5_K; ++i) {
|
||
|
const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
|
||
|
d8[i] = __low2float(bq8i->ds);
|
||
|
|
||
|
const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
|
||
|
u[2*i+0] = q8[0];
|
||
|
u[2*i+1] = q8[4];
|
||
|
}
|
||
|
|
||
|
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
|
||
|
|
||
|
#else
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
|
||
|
|
||
|
const int8_t * s = bq5_K->scales;
|
||
|
|
||
|
const float d = bq5_K->d;
|
||
|
|
||
|
const float d8_1 = __low2half(bq8_1[0].ds);
|
||
|
const float d8_2 = __low2half(bq8_1[1].ds);
|
||
|
|
||
|
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
|
||
|
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
|
||
|
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
|
||
|
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
|
||
|
|
||
|
const int * ql = (const int *)bq5_K->qs + (iqs/2);
|
||
|
const int vl1 = ql[0];
|
||
|
const int vl2 = ql[4];
|
||
|
|
||
|
const int step = 4 * (iqs/2); // 0, 4, 8, 12
|
||
|
const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
|
||
|
const int in = step%8; // 0, 4, 0, 4
|
||
|
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
|
||
|
|
||
|
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
|
||
|
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
|
||
|
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
|
||
|
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
|
||
|
|
||
|
const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
|
||
|
+ d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
|
||
|
|
||
|
return d * sumf_d;
|
||
|
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
const block_q6_K * bq6_K = (const block_q6_K *) vbq;
|
||
|
|
||
|
const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
|
||
|
const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
|
||
|
const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
|
||
|
|
||
|
const int vl = get_int_from_uint8(bq6_K->ql, iqs);
|
||
|
const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
|
||
|
|
||
|
const int8_t * scales = bq6_K->scales + scale_offset;
|
||
|
|
||
|
int u[QR6_K];
|
||
|
float d8[QR6_K];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < QR6_K; ++i) {
|
||
|
u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
|
||
|
d8[i] = __low2float(bq8_1[bq8_offset + 2*i].ds);
|
||
|
}
|
||
|
|
||
|
return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
#if QK_K == 256
|
||
|
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
|
||
|
|
||
|
#if QR2_XXS == 8
|
||
|
const int ib32 = iqs;
|
||
|
const uint16_t * q2 = bq2->qs + 4*ib32;
|
||
|
const uint8_t * aux8 = (const uint8_t *)q2;
|
||
|
const int8_t * q8 = bq8_1[ib32].qs;
|
||
|
uint32_t aux32 = q2[2] | (q2[3] << 16);
|
||
|
int sumi = 0;
|
||
|
for (int l = 0; l < 4; ++l) {
|
||
|
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
|
||
|
const uint8_t signs = ksigns_iq2xs[aux32 & 127];
|
||
|
for (int j = 0; j < 8; ++j) {
|
||
|
sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||
|
}
|
||
|
q8 += 8;
|
||
|
aux32 >>= 7;
|
||
|
}
|
||
|
const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.25f;
|
||
|
return d * sumi;
|
||
|
#else
|
||
|
// iqs is 0...15
|
||
|
const int ib32 = iqs/2;
|
||
|
const int il = iqs%2;
|
||
|
const uint16_t * q2 = bq2->qs + 4*ib32;
|
||
|
const uint8_t * aux8 = (const uint8_t *)q2;
|
||
|
const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
|
||
|
const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
|
||
|
const uint32_t aux32 = q2[2] | (q2[3] << 16);
|
||
|
const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * __low2float(bq8_1[ib32].ds) * 0.25f;
|
||
|
const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
|
||
|
const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
|
||
|
const int8_t * q8 = bq8_1[ib32].qs + 16*il;
|
||
|
int sumi1 = 0, sumi2 = 0;
|
||
|
for (int j = 0; j < 8; ++j) {
|
||
|
sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
|
||
|
sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
|
||
|
}
|
||
|
return d * (sumi1 + sumi2);
|
||
|
#endif
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
#if QK_K == 256
|
||
|
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
|
||
|
|
||
|
const int ib32 = iqs;
|
||
|
const uint16_t * q2 = bq2->qs + 4*ib32;
|
||
|
const int8_t * q8 = bq8_1[ib32].qs;
|
||
|
const uint8_t ls1 = bq2->scales[ib32] & 0xf;
|
||
|
const uint8_t ls2 = bq2->scales[ib32] >> 4;
|
||
|
int sumi1 = 0;
|
||
|
for (int l = 0; l < 2; ++l) {
|
||
|
const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
|
||
|
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
|
||
|
const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
|
||
|
const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
|
||
|
sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
|
||
|
sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
|
||
|
q8 += 8;
|
||
|
}
|
||
|
int sumi2 = 0;
|
||
|
for (int l = 2; l < 4; ++l) {
|
||
|
const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
|
||
|
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
|
||
|
const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
|
||
|
const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
|
||
|
sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
|
||
|
sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
|
||
|
q8 += 8;
|
||
|
}
|
||
|
const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
|
||
|
return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
|
||
|
#else
|
||
|
GGML_UNUSED(ksigns64);
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
#else
|
||
|
GGML_UNUSED(ksigns64);
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// TODO
|
||
|
static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
#if QK_K == 256
|
||
|
const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
|
||
|
|
||
|
const int ib32 = iqs;
|
||
|
const int8_t * q8 = bq8_1[ib32].qs;
|
||
|
const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
|
||
|
const uint8_t ls1 = bq2->scales[ib32] & 0xf;
|
||
|
const uint8_t ls2 = bq2->scales[ib32] >> 4;
|
||
|
int sumi1 = 0;
|
||
|
for (int l = 0; l < 2; ++l) {
|
||
|
const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
|
||
|
const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
|
||
|
const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
|
||
|
const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
|
||
|
const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
|
||
|
sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
|
||
|
sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
|
||
|
q8 += 8;
|
||
|
}
|
||
|
int sumi2 = 0;
|
||
|
for (int l = 2; l < 4; ++l) {
|
||
|
const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
|
||
|
const uint32_t signs0 = __vcmpeq4(((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
|
||
|
const uint32_t signs1 = __vcmpeq4(((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
|
||
|
const int grid_l = __vsub4(grid[0] ^ signs0, signs0);
|
||
|
const int grid_h = __vsub4(grid[1] ^ signs1, signs1);
|
||
|
sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
|
||
|
sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
|
||
|
q8 += 8;
|
||
|
}
|
||
|
const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
|
||
|
return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
|
||
|
#else
|
||
|
GGML_UNUSED(ksigns64);
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
#else
|
||
|
GGML_UNUSED(ksigns64);
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
#if QK_K == 256
|
||
|
const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
|
||
|
|
||
|
const int ib32 = iqs;
|
||
|
const uint8_t * q3 = bq2->qs + 8*ib32;
|
||
|
const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
|
||
|
const int8_t * q8 = bq8_1[ib32].qs;
|
||
|
uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||
|
int sumi = 0;
|
||
|
for (int l = 0; l < 4; ++l) {
|
||
|
const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
|
||
|
const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
|
||
|
const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
|
||
|
const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]);
|
||
|
const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]);
|
||
|
sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
|
||
|
sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
|
||
|
q8 += 8;
|
||
|
aux32 >>= 7;
|
||
|
}
|
||
|
const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f;
|
||
|
return d * sumi;
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// TODO: don't use lookup table for signs
|
||
|
static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
#if QK_K == 256
|
||
|
const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
|
||
|
|
||
|
const int ib32 = iqs;
|
||
|
const uint8_t * qs = bq2->qs + 8*ib32;
|
||
|
const int8_t * q8 = bq8_1[ib32].qs;
|
||
|
int sumi = 0;
|
||
|
for (int l = 0; l < 4; ++l) {
|
||
|
const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
|
||
|
const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
|
||
|
uint32_t signs0 = __vcmpeq4(((bq2->signs[4*ib32+l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201);
|
||
|
uint32_t signs1 = __vcmpeq4(((bq2->signs[4*ib32+l] >> 4) * 0x01010101) & 0x08040201, 0x08040201);
|
||
|
const int grid_l = __vsub4(grid1[0] ^ signs0, signs0);
|
||
|
const int grid_h = __vsub4(grid2[0] ^ signs1, signs1);
|
||
|
sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
|
||
|
sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
|
||
|
q8 += 8;
|
||
|
}
|
||
|
const float d = (float)bq2->d * (1 + 2*((bq2->scales[ib32/2] >> 4*(ib32%2)) & 0xf)) * __low2float(bq8_1[ib32].ds);
|
||
|
return d * sumi;
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
#if QK_K == 256
|
||
|
const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
|
||
|
|
||
|
const int ib32 = iqs;
|
||
|
int sumi = 0;
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
const int * q8 = (const int *)bq8_1[ib32].qs;
|
||
|
for (int l = 0; l < 4; ++l) {
|
||
|
const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
|
||
|
int grid0 = grid[0] & 0x0f0f0f0f;
|
||
|
int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
|
||
|
sumi = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi));
|
||
|
}
|
||
|
#else
|
||
|
const int8_t * q8 = bq8_1[ib32].qs;
|
||
|
for (int l = 0; l < 4; ++l) {
|
||
|
const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
|
||
|
for (int j = 0; j < 4; ++j) {
|
||
|
sumi += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
|
||
|
}
|
||
|
q8 += 8;
|
||
|
}
|
||
|
#endif
|
||
|
const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA;
|
||
|
const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1);
|
||
|
const float d = d1q * __low2float (bq8_1[ib32].ds);
|
||
|
const float m = d1q * __high2float(bq8_1[ib32].ds);
|
||
|
return d * sumi + m * delta;
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
#if QK_K == 256
|
||
|
const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
|
||
|
|
||
|
const int ib32 = iqs;
|
||
|
int sumi[2] = {0, 0};
|
||
|
float sumf[2] = {0.f, 0.f};
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
const int * q8 = (const int *)bq8_1[ib32].qs;
|
||
|
for (int l = 0; l < 4; ++l) {
|
||
|
const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8)));
|
||
|
int grid0 = grid[0] & 0x0f0f0f0f;
|
||
|
int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
|
||
|
sumi[l/2] = __dp4a(q8[2*l+1], grid1, __dp4a(q8[2*l+0], grid0, sumi[l/2]));
|
||
|
const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
|
||
|
const int sumy = __dp4a(q8[2*l+1], 0x01010101, __dp4a(q8[2*l+0], 0x01010101, 0));
|
||
|
sumf[l/2] += delta*sumy;
|
||
|
}
|
||
|
#else
|
||
|
const int8_t * q8 = bq8_1[ib32].qs;
|
||
|
for (int l = 0; l < 4; ++l) {
|
||
|
const uint8_t * grid = (const uint8_t *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
|
||
|
int sumy = 0;
|
||
|
for (int j = 0; j < 4; ++j) {
|
||
|
sumi[l/2] += q8[j] * (grid[j] & 0xf) + q8[j+4] * (grid[j] >> 4);
|
||
|
sumy += q8[j] + q8[j+4];
|
||
|
}
|
||
|
const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
|
||
|
sumf[l/2] += delta*sumy;
|
||
|
q8 += 8;
|
||
|
}
|
||
|
#endif
|
||
|
iq1m_scale_t scale;
|
||
|
const uint16_t * sc = (const uint16_t *)bq1->scales;
|
||
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
||
|
const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds);
|
||
|
return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
static __device__ __forceinline__ void get_int_from_table_16(const uint32_t & q4, const uint8_t * values,
|
||
|
int & val1, int & val2) {
|
||
|
|
||
|
uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
|
||
|
aux32 = q4 & 0x0f0f0f0f;
|
||
|
uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
|
||
|
uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
|
||
|
val1 = v1 | (v2 << 16);
|
||
|
aux32 = (q4 >> 4) & 0x0f0f0f0f;
|
||
|
v1 = values[q8[0]] | (values[q8[1]] << 8);
|
||
|
v2 = values[q8[2]] | (values[q8[3]] << 8);
|
||
|
val2 = v1 | (v2 << 16);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
|
||
|
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
|
||
|
const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
|
||
|
|
||
|
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
||
|
|
||
|
int v1, v2;
|
||
|
int sumi1 = 0, sumi2 = 0;
|
||
|
for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
|
||
|
const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
|
||
|
get_int_from_table_16(aux, values, v1, v2);
|
||
|
sumi1 = __dp4a(v1, q8[l+0], sumi1);
|
||
|
sumi2 = __dp4a(v2, q8[l+4], sumi2);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
const uint8_t * q4 = bq->qs + 4*iqs;
|
||
|
const int8_t * q8 = bq8_1->qs + 4*iqs;
|
||
|
|
||
|
int sumi1 = 0, sumi2 = 0;
|
||
|
for (int l = 0; l < 4*VDR_Q4_0_Q8_1_MMVQ; ++l) {
|
||
|
sumi1 += q8[l+ 0] * kvalues_iq4nl[q4[l] & 0xf];
|
||
|
sumi2 += q8[l+16] * kvalues_iq4nl[q4[l] >> 4];
|
||
|
}
|
||
|
#endif
|
||
|
const float d = (float)bq->d * __low2float(bq8_1->ds);
|
||
|
return d * (sumi1 + sumi2);
|
||
|
}
|
||
|
|
||
|
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
|
||
|
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||
|
|
||
|
#if QK_K == 256
|
||
|
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||
|
|
||
|
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
|
||
|
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
|
||
|
|
||
|
// iqs is 0...7
|
||
|
const int ib32 = iqs;
|
||
|
const int32_t * q8 = (const int *)bq8_1[ib32].qs;
|
||
|
const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
|
||
|
const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
|
||
|
const float d = (float)bq4->d * (ls - 32) * __low2float(bq8_1[ib32].ds);
|
||
|
int v1, v2;
|
||
|
int sumi1 = 0, sumi2 = 0;
|
||
|
for (int j = 0; j < 4; ++j) {
|
||
|
get_int_from_table_16(q4[j], values, v1, v2);
|
||
|
sumi1 = __dp4a(v1, q8[j+0], sumi1);
|
||
|
sumi2 = __dp4a(v2, q8[j+4], sumi2);
|
||
|
}
|
||
|
return d * (sumi1 + sumi2);
|
||
|
|
||
|
#else
|
||
|
NO_DEVICE_CODE;
|
||
|
#endif
|
||
|
#else
|
||
|
return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
|
||
|
#endif
|
||
|
}
|