mirror of
https://github.com/ggerganov/whisper.cpp.git
synced 2025-01-20 11:38:47 +00:00
105 lines
4.4 KiB
Plaintext
105 lines
4.4 KiB
Plaintext
|
#include "im2col.cuh"
|
||
|
|
||
|
template <typename T>
|
||
|
static __global__ void im2col_kernel(
|
||
|
const float * x, T * dst, int64_t batch_offset,
|
||
|
int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
|
||
|
int s0, int s1, int p0, int p1, int d0, int d1) {
|
||
|
const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
if (i >= pelements) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const int64_t ksize = OW * (KH > 1 ? KW : 1);
|
||
|
const int64_t kx = i / ksize;
|
||
|
const int64_t kd = kx * ksize;
|
||
|
const int64_t ky = (i - kd) / OW;
|
||
|
const int64_t ix = i % OW;
|
||
|
|
||
|
const int64_t oh = blockIdx.y;
|
||
|
const int64_t batch = blockIdx.z / IC;
|
||
|
const int64_t ic = blockIdx.z % IC;
|
||
|
|
||
|
const int64_t iiw = ix * s0 + kx * d0 - p0;
|
||
|
const int64_t iih = oh * s1 + ky * d1 - p1;
|
||
|
|
||
|
const int64_t offset_dst =
|
||
|
((batch * OH + oh) * OW + ix) * CHW +
|
||
|
(ic * (KW * KH) + ky * KW + kx);
|
||
|
|
||
|
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||
|
dst[offset_dst] = 0.0f;
|
||
|
} else {
|
||
|
const int64_t offset_src = ic * offset_delta + batch * batch_offset;
|
||
|
dst[offset_dst] = x[offset_src + iih * IW + iiw];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static void im2col_cuda(const float * x, T* dst,
|
||
|
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
||
|
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||
|
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||
|
const int parallel_elements = OW * KW * KH;
|
||
|
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
|
||
|
dim3 block_nums(num_blocks, OH, batch * IC);
|
||
|
im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
||
|
}
|
||
|
|
||
|
static void im2col_cuda_f16(const float * x, half * dst,
|
||
|
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
||
|
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||
|
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||
|
|
||
|
im2col_cuda<half>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
|
||
|
}
|
||
|
|
||
|
static void im2col_cuda_f32(const float * x, float * dst,
|
||
|
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
||
|
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
||
|
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||
|
|
||
|
im2col_cuda<float>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
|
||
|
}
|
||
|
|
||
|
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||
|
const ggml_tensor * src0 = dst->src[0];
|
||
|
const ggml_tensor * src1 = dst->src[1];
|
||
|
const float * src1_d = (const float *)src1->data;
|
||
|
float * dst_d = (float *)dst->data;
|
||
|
cudaStream_t stream = ctx.stream();
|
||
|
|
||
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||
|
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||
|
|
||
|
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||
|
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
||
|
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
|
||
|
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
|
||
|
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
|
||
|
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
|
||
|
|
||
|
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
|
||
|
|
||
|
const int64_t IC = src1->ne[is_2D ? 2 : 1];
|
||
|
const int64_t IH = is_2D ? src1->ne[1] : 1;
|
||
|
const int64_t IW = src1->ne[0];
|
||
|
|
||
|
const int64_t KH = is_2D ? src0->ne[1] : 1;
|
||
|
const int64_t KW = src0->ne[0];
|
||
|
|
||
|
const int64_t OH = is_2D ? dst->ne[2] : 1;
|
||
|
const int64_t OW = dst->ne[1];
|
||
|
|
||
|
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
||
|
const int64_t batch = src1->ne[3];
|
||
|
const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
|
||
|
|
||
|
if(dst->type == GGML_TYPE_F16) {
|
||
|
im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
|
||
|
} else {
|
||
|
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
|
||
|
}
|
||
|
}
|