2023-03-27 18:00:32 +00:00
# include "llama.h"
# include "ggml.h"
2023-09-15 17:06:31 +00:00
# include "ggml-alloc.h"
2023-05-14 15:46:19 +00:00
# ifdef GGML_USE_CUBLAS
2023-09-15 17:06:31 +00:00
# include "ggml-cuda.h"
# elif defined(GGML_USE_CLBLAST)
# include "ggml-opencl.h"
# endif
# ifdef GGML_USE_METAL
# include "ggml-metal.h"
# endif
# ifdef GGML_USE_MPI
# include "ggml-mpi.h"
# endif
# ifdef GGML_USE_K_QUANTS
# ifndef QK_K
# ifdef GGML_QKK_64
# define QK_K 64
# else
# define QK_K 256
# endif
# endif
# endif
# ifdef __has_include
# if __has_include(<unistd.h>)
# include <unistd.h>
# if defined(_POSIX_MAPPED_FILES)
# include <sys/mman.h>
# endif
# if defined(_POSIX_MEMLOCK_RANGE)
# include <sys/resource.h>
# endif
# endif
2023-05-14 15:46:19 +00:00
# endif
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
# if defined(_WIN32)
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
# include <io.h>
# include <stdio.h> // for _fseeki64
# endif
# include <algorithm>
2023-04-10 19:59:13 +00:00
# include <array>
2023-09-15 17:06:31 +00:00
# include <cassert>
2023-03-27 18:00:32 +00:00
# include <cinttypes>
2023-09-15 17:06:31 +00:00
# include <climits>
# include <cstdarg>
# include <cstddef>
# include <cstdint>
# include <cstdio>
# include <cstring>
# include <ctime>
2023-03-27 18:00:32 +00:00
# include <fstream>
2023-09-15 17:06:31 +00:00
# include <initializer_list>
2023-03-27 18:00:32 +00:00
# include <map>
2023-04-10 19:59:13 +00:00
# include <memory>
2023-04-30 15:51:57 +00:00
# include <mutex>
# include <numeric>
2023-09-15 17:06:31 +00:00
# include <queue>
# include <random>
# include <regex>
# include <sstream>
# include <thread>
# include <unordered_map>
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
# if defined(_MSC_VER)
# pragma warning(disable: 4244 4267) // possible loss of data
# endif
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
# ifdef __GNUC__
# ifdef __MINGW32__
# define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
# else
# define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
# endif
# else
# define LLAMA_ATTRIBUTE_FORMAT(...)
# endif
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
//
// logging
//
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
LLAMA_ATTRIBUTE_FORMAT ( 2 , 3 )
static void llama_log_internal ( llama_log_level level , const char * format , . . . ) ;
static void llama_log_callback_default ( llama_log_level level , const char * text , void * user_data ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
# define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
# define LLAMA_LOG_WARN(...) llama_log_internal(LLAMA_LOG_LEVEL_WARN , __VA_ARGS__)
# define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__)
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
//
// helpers
//
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
static size_t utf8_len ( char src ) {
const size_t lookup [ ] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 3 , 4 } ;
uint8_t highbits = static_cast < uint8_t > ( src ) > > 4 ;
return lookup [ highbits ] ;
2023-04-30 15:51:57 +00:00
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
void replace_all ( std : : string & s , const std : : string & search , const std : : string & replace ) {
std : : string result ;
for ( size_t pos = 0 ; ; pos + = search . length ( ) ) {
auto new_pos = s . find ( search , pos ) ;
if ( new_pos = = std : : string : : npos ) {
result + = s . substr ( pos , s . size ( ) - pos ) ;
break ;
}
result + = s . substr ( pos , new_pos - pos ) + replace ;
pos = new_pos ;
}
s = std : : move ( result ) ;
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
# ifdef GGML_USE_CPU_HBM
# include <hbwmalloc.h>
# endif
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
static void zeros ( std : : ofstream & file , size_t n ) {
char zero = 0 ;
for ( size_t i = 0 ; i < n ; + + i ) {
file . write ( & zero , 1 ) ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
LLAMA_ATTRIBUTE_FORMAT ( 1 , 2 )
static std : : string format ( const char * fmt , . . . ) {
va_list ap ;
va_list ap2 ;
va_start ( ap , fmt ) ;
va_copy ( ap2 , ap ) ;
int size = vsnprintf ( NULL , 0 , fmt , ap ) ;
GGML_ASSERT ( size > = 0 & & size < INT_MAX ) ; // NOLINT
std : : vector < char > buf ( size + 1 ) ;
int size2 = vsnprintf ( buf . data ( ) , size + 1 , fmt , ap2 ) ;
GGML_ASSERT ( size2 = = size ) ;
va_end ( ap2 ) ;
va_end ( ap ) ;
return std : : string ( buf . data ( ) , size ) ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
//
// gguf constants (sync with gguf.py)
//
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
enum llm_arch {
LLM_ARCH_LLAMA ,
LLM_ARCH_FALCON ,
LLM_ARCH_BAICHUAN ,
LLM_ARCH_GPT2 ,
LLM_ARCH_GPTJ ,
LLM_ARCH_GPTNEOX ,
LLM_ARCH_MPT ,
LLM_ARCH_UNKNOWN ,
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
static std : : map < llm_arch , std : : string > LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA , " llama " } ,
{ LLM_ARCH_FALCON , " falcon " } ,
{ LLM_ARCH_GPT2 , " gpt2 " } ,
{ LLM_ARCH_GPTJ , " gptj " } ,
{ LLM_ARCH_GPTNEOX , " gptneox " } ,
{ LLM_ARCH_MPT , " mpt " } ,
{ LLM_ARCH_BAICHUAN , " baichuan " } ,
2023-03-27 18:00:32 +00:00
} ;
2023-09-15 17:06:31 +00:00
enum llm_kv {
LLM_KV_GENERAL_ARCHITECTURE ,
LLM_KV_GENERAL_QUANTIZATION_VERSION ,
LLM_KV_GENERAL_ALIGNMENT ,
LLM_KV_GENERAL_NAME ,
LLM_KV_GENERAL_AUTHOR ,
LLM_KV_GENERAL_URL ,
LLM_KV_GENERAL_DESCRIPTION ,
LLM_KV_GENERAL_LICENSE ,
LLM_KV_GENERAL_SOURCE_URL ,
LLM_KV_GENERAL_SOURCE_HF_REPO ,
LLM_KV_CONTEXT_LENGTH ,
LLM_KV_EMBEDDING_LENGTH ,
LLM_KV_BLOCK_COUNT ,
LLM_KV_FEED_FORWARD_LENGTH ,
LLM_KV_USE_PARALLEL_RESIDUAL ,
LLM_KV_TENSOR_DATA_LAYOUT ,
LLM_KV_ATTENTION_HEAD_COUNT ,
LLM_KV_ATTENTION_HEAD_COUNT_KV ,
LLM_KV_ATTENTION_MAX_ALIBI_BIAS ,
LLM_KV_ATTENTION_CLAMP_KQV ,
LLM_KV_ATTENTION_LAYERNORM_EPS ,
LLM_KV_ATTENTION_LAYERNORM_RMS_EPS ,
LLM_KV_ROPE_DIMENSION_COUNT ,
LLM_KV_ROPE_FREQ_BASE ,
LLM_KV_ROPE_SCALE_LINEAR ,
LLM_KV_TOKENIZER_MODEL ,
LLM_KV_TOKENIZER_LIST ,
LLM_KV_TOKENIZER_TOKEN_TYPE ,
LLM_KV_TOKENIZER_SCORES ,
LLM_KV_TOKENIZER_MERGES ,
LLM_KV_TOKENIZER_BOS_ID ,
LLM_KV_TOKENIZER_EOS_ID ,
LLM_KV_TOKENIZER_UNK_ID ,
LLM_KV_TOKENIZER_SEP_ID ,
LLM_KV_TOKENIZER_PAD_ID ,
LLM_KV_TOKENIZER_HF_JSON ,
LLM_KV_TOKENIZER_RWKV ,
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
static std : : map < llm_kv , std : : string > LLM_KV_NAMES = {
{ LLM_KV_GENERAL_ARCHITECTURE , " general.architecture " } ,
{ LLM_KV_GENERAL_QUANTIZATION_VERSION , " general.quantization_version " } ,
{ LLM_KV_GENERAL_ALIGNMENT , " general.alignment " } ,
{ LLM_KV_GENERAL_NAME , " general.name " } ,
{ LLM_KV_GENERAL_AUTHOR , " general.author " } ,
{ LLM_KV_GENERAL_URL , " general.url " } ,
{ LLM_KV_GENERAL_DESCRIPTION , " general.description " } ,
{ LLM_KV_GENERAL_LICENSE , " general.license " } ,
{ LLM_KV_GENERAL_SOURCE_URL , " general.source_url " } ,
{ LLM_KV_GENERAL_SOURCE_HF_REPO , " general.source_hf_repo " } ,
{ LLM_KV_CONTEXT_LENGTH , " %s.context_length " } ,
{ LLM_KV_EMBEDDING_LENGTH , " %s.embedding_length " } ,
{ LLM_KV_BLOCK_COUNT , " %s.block_count " } ,
{ LLM_KV_FEED_FORWARD_LENGTH , " %s.feed_forward_length " } ,
{ LLM_KV_USE_PARALLEL_RESIDUAL , " %s.use_parallel_residual " } ,
{ LLM_KV_TENSOR_DATA_LAYOUT , " %s.tensor_data_layout " } ,
{ LLM_KV_ATTENTION_HEAD_COUNT , " %s.attention.head_count " } ,
{ LLM_KV_ATTENTION_HEAD_COUNT_KV , " %s.attention.head_count_kv " } ,
{ LLM_KV_ATTENTION_MAX_ALIBI_BIAS , " %s.attention.max_alibi_bias " } ,
{ LLM_KV_ATTENTION_CLAMP_KQV , " %s.attention.clamp_kqv " } ,
{ LLM_KV_ATTENTION_LAYERNORM_EPS , " %s.attention.layer_norm_epsilon " } ,
{ LLM_KV_ATTENTION_LAYERNORM_RMS_EPS , " %s.attention.layer_norm_rms_epsilon " } ,
{ LLM_KV_ROPE_DIMENSION_COUNT , " %s.rope.dimension_count " } ,
{ LLM_KV_ROPE_FREQ_BASE , " %s.rope.freq_base " } ,
{ LLM_KV_ROPE_SCALE_LINEAR , " %s.rope.scale_linear " } ,
{ LLM_KV_TOKENIZER_MODEL , " tokenizer.ggml.model " } ,
{ LLM_KV_TOKENIZER_LIST , " tokenizer.ggml.tokens " } ,
{ LLM_KV_TOKENIZER_TOKEN_TYPE , " tokenizer.ggml.token_type " } ,
{ LLM_KV_TOKENIZER_SCORES , " tokenizer.ggml.scores " } ,
{ LLM_KV_TOKENIZER_MERGES , " tokenizer.ggml.merges " } ,
{ LLM_KV_TOKENIZER_BOS_ID , " tokenizer.ggml.bos_token_id " } ,
{ LLM_KV_TOKENIZER_EOS_ID , " tokenizer.ggml.eos_token_id " } ,
{ LLM_KV_TOKENIZER_UNK_ID , " tokenizer.ggml.unknown_token_id " } ,
{ LLM_KV_TOKENIZER_SEP_ID , " tokenizer.ggml.seperator_token_id " } ,
{ LLM_KV_TOKENIZER_PAD_ID , " tokenizer.ggml.padding_token_id " } ,
{ LLM_KV_TOKENIZER_HF_JSON , " tokenizer.huggingface.json " } ,
{ LLM_KV_TOKENIZER_RWKV , " tokenizer.rwkv.world " } ,
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
struct LLM_KV {
LLM_KV ( llm_arch arch ) : arch ( arch ) { }
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
llm_arch arch ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
std : : string operator ( ) ( llm_kv kv ) const {
return : : format ( LLM_KV_NAMES [ kv ] . c_str ( ) , LLM_ARCH_NAMES [ arch ] . c_str ( ) ) ;
2023-04-10 19:59:13 +00:00
}
2023-03-27 18:00:32 +00:00
} ;
2023-09-15 17:06:31 +00:00
enum llm_tensor {
LLM_TENSOR_TOKEN_EMBD ,
LLM_TENSOR_POS_EMBD ,
LLM_TENSOR_OUTPUT ,
LLM_TENSOR_OUTPUT_NORM ,
LLM_TENSOR_ROPE_FREQS ,
LLM_TENSOR_ATTN_Q ,
LLM_TENSOR_ATTN_K ,
LLM_TENSOR_ATTN_V ,
LLM_TENSOR_ATTN_QKV ,
LLM_TENSOR_ATTN_OUT ,
LLM_TENSOR_ATTN_NORM ,
LLM_TENSOR_ATTN_NORM_2 ,
LLM_TENSOR_ATTN_ROT_EMBD ,
LLM_TENSOR_FFN_GATE ,
LLM_TENSOR_FFN_DOWN ,
LLM_TENSOR_FFN_UP ,
LLM_TENSOR_FFN_NORM ,
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
static std : : map < llm_arch , std : : map < llm_tensor , std : : string > > LLM_TENSOR_NAMES = {
{
LLM_ARCH_LLAMA ,
{
{ LLM_TENSOR_TOKEN_EMBD , " token_embd " } ,
{ LLM_TENSOR_OUTPUT_NORM , " output_norm " } ,
{ LLM_TENSOR_OUTPUT , " output " } ,
{ LLM_TENSOR_ROPE_FREQS , " rope_freqs " } ,
{ LLM_TENSOR_ATTN_NORM , " blk.%d.attn_norm " } ,
{ LLM_TENSOR_ATTN_Q , " blk.%d.attn_q " } ,
{ LLM_TENSOR_ATTN_K , " blk.%d.attn_k " } ,
{ LLM_TENSOR_ATTN_V , " blk.%d.attn_v " } ,
{ LLM_TENSOR_ATTN_OUT , " blk.%d.attn_output " } ,
{ LLM_TENSOR_ATTN_ROT_EMBD , " blk.%d.attn_rot_embd " } ,
{ LLM_TENSOR_FFN_NORM , " blk.%d.ffn_norm " } ,
{ LLM_TENSOR_FFN_GATE , " blk.%d.ffn_gate " } ,
{ LLM_TENSOR_FFN_DOWN , " blk.%d.ffn_down " } ,
{ LLM_TENSOR_FFN_UP , " blk.%d.ffn_up " } ,
} ,
} ,
{
LLM_ARCH_BAICHUAN ,
{
{ LLM_TENSOR_TOKEN_EMBD , " token_embd " } ,
{ LLM_TENSOR_OUTPUT_NORM , " output_norm " } ,
{ LLM_TENSOR_OUTPUT , " output " } ,
{ LLM_TENSOR_ROPE_FREQS , " rope_freqs " } ,
{ LLM_TENSOR_ATTN_NORM , " blk.%d.attn_norm " } ,
{ LLM_TENSOR_ATTN_Q , " blk.%d.attn_q " } ,
{ LLM_TENSOR_ATTN_K , " blk.%d.attn_k " } ,
{ LLM_TENSOR_ATTN_V , " blk.%d.attn_v " } ,
{ LLM_TENSOR_ATTN_OUT , " blk.%d.attn_output " } ,
{ LLM_TENSOR_ATTN_ROT_EMBD , " blk.%d.attn_rot_embd " } ,
{ LLM_TENSOR_FFN_NORM , " blk.%d.ffn_norm " } ,
{ LLM_TENSOR_FFN_GATE , " blk.%d.ffn_gate " } ,
{ LLM_TENSOR_FFN_DOWN , " blk.%d.ffn_down " } ,
{ LLM_TENSOR_FFN_UP , " blk.%d.ffn_up " } ,
} ,
} ,
{
LLM_ARCH_FALCON ,
{
{ LLM_TENSOR_TOKEN_EMBD , " token_embd " } ,
{ LLM_TENSOR_OUTPUT_NORM , " output_norm " } ,
{ LLM_TENSOR_OUTPUT , " output " } ,
{ LLM_TENSOR_ATTN_NORM , " blk.%d.attn_norm " } ,
{ LLM_TENSOR_ATTN_NORM_2 , " blk.%d.attn_norm_2 " } ,
{ LLM_TENSOR_ATTN_QKV , " blk.%d.attn_qkv " } ,
{ LLM_TENSOR_ATTN_OUT , " blk.%d.attn_output " } ,
{ LLM_TENSOR_FFN_DOWN , " blk.%d.ffn_down " } ,
{ LLM_TENSOR_FFN_UP , " blk.%d.ffn_up " } ,
} ,
} ,
{
LLM_ARCH_GPT2 ,
{
{ LLM_TENSOR_TOKEN_EMBD , " token_embd " } ,
} ,
} ,
{
LLM_ARCH_GPTJ ,
{
{ LLM_TENSOR_TOKEN_EMBD , " token_embd " } ,
} ,
} ,
{
LLM_ARCH_GPTNEOX ,
{
{ LLM_TENSOR_TOKEN_EMBD , " token_embd " } ,
{ LLM_TENSOR_OUTPUT_NORM , " output_norm " } ,
{ LLM_TENSOR_OUTPUT , " output " } ,
{ LLM_TENSOR_ATTN_NORM , " blk.%d.attn_norm " } ,
{ LLM_TENSOR_ATTN_QKV , " blk.%d.attn_qkv " } ,
{ LLM_TENSOR_ATTN_OUT , " blk.%d.attn_output " } ,
{ LLM_TENSOR_FFN_NORM , " blk.%d.ffn_norm " } ,
{ LLM_TENSOR_FFN_DOWN , " blk.%d.ffn_down " } ,
{ LLM_TENSOR_FFN_UP , " blk.%d.ffn_up " } ,
} ,
} ,
{
LLM_ARCH_MPT ,
{
{ LLM_TENSOR_TOKEN_EMBD , " token_embd " } ,
} ,
} ,
{
LLM_ARCH_UNKNOWN ,
{
{ LLM_TENSOR_TOKEN_EMBD , " token_embd " } ,
} ,
} ,
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
static llm_arch llm_arch_from_string ( const std : : string & name ) {
for ( const auto & kv : LLM_ARCH_NAMES ) { // NOLINT
if ( kv . second = = name ) {
return kv . first ;
}
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
return LLM_ARCH_UNKNOWN ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// helper to handle gguf constants
// usage:
//
// const auto tn = LLM_TN(LLM_ARCH_LLAMA);
//
// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
//
struct LLM_TN {
LLM_TN ( llm_arch arch ) : arch ( arch ) { }
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
llm_arch arch ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
std : : string operator ( ) ( llm_tensor tensor ) const {
return LLM_TENSOR_NAMES [ arch ] . at ( tensor ) ;
}
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
std : : string operator ( ) ( llm_tensor tensor , const std : : string & suffix ) const {
return LLM_TENSOR_NAMES [ arch ] . at ( tensor ) + " . " + suffix ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
std : : string operator ( ) ( llm_tensor tensor , int bid ) const {
return : : format ( LLM_TENSOR_NAMES [ arch ] . at ( tensor ) . c_str ( ) , bid ) ;
}
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
std : : string operator ( ) ( llm_tensor tensor , const std : : string & suffix , int bid ) const {
return : : format ( LLM_TENSOR_NAMES [ arch ] . at ( tensor ) . c_str ( ) , bid ) + " . " + suffix ;
2023-04-10 19:59:13 +00:00
}
2023-03-27 18:00:32 +00:00
} ;
2023-09-15 17:06:31 +00:00
//
// gguf helpers
//
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
# define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
{ \
const std : : string skey ( key ) ; \
const int kid = gguf_find_key ( ctx , skey . c_str ( ) ) ; \
if ( kid > = 0 ) { \
enum gguf_type ktype = gguf_get_kv_type ( ctx , kid ) ; \
if ( ktype ! = ( type ) ) { \
throw std : : runtime_error ( format ( " key %s has wrong type: %s " , skey . c_str ( ) , gguf_type_name ( ktype ) ) ) ; \
} \
( dst ) = func ( ctx , kid ) ; \
} else if ( req ) { \
throw std : : runtime_error ( format ( " key not found in model: %s " , skey . c_str ( ) ) ) ; \
} \
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
//
// ggml helpers
//
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
static void ggml_graph_compute_helper ( std : : vector < uint8_t > & buf , ggml_cgraph * graph , int n_threads ) {
struct ggml_cplan plan = ggml_graph_plan ( graph , n_threads ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
if ( plan . work_size > 0 ) {
buf . resize ( plan . work_size ) ;
plan . work_data = buf . data ( ) ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
ggml_graph_compute ( graph , & plan ) ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
//
// llama helpers
//
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
# ifdef GGML_USE_CUBLAS
# define llama_host_malloc(n) ggml_cuda_host_malloc(n)
# define llama_host_free(data) ggml_cuda_host_free(data)
# elif GGML_USE_METAL
# define llama_host_malloc(n) ggml_metal_host_malloc(n)
# define llama_host_free(data) ggml_metal_host_free(data)
# elif GGML_USE_CPU_HBM
# define llama_host_malloc(n) hbw_malloc(n)
# define llama_host_free(data) if (data != NULL) hbw_free(data)
# else
# define llama_host_malloc(n) malloc(n)
# define llama_host_free(data) free(data)
# endif
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
# if defined(_WIN32)
static std : : string llama_format_win_err ( DWORD err ) {
LPSTR buf ;
size_t size = FormatMessageA ( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS ,
NULL , err , MAKELANGID ( LANG_NEUTRAL , SUBLANG_DEFAULT ) , ( LPSTR ) & buf , 0 , NULL ) ;
if ( ! size ) {
return " FormatMessageA failed " ;
}
std : : string ret ( buf , size ) ;
LocalFree ( buf ) ;
return ret ;
}
# endif
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
struct llama_buffer {
void * data = NULL ;
size_t size = 0 ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// fallback to malloc / free
// useful in cases where CUDA can try to allocate PINNED memory
bool fallback = false ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
void resize ( size_t n ) {
llama_host_free ( data ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
data = llama_host_malloc ( n ) ;
if ( ! data ) {
fallback = true ;
data = malloc ( n ) ;
} else {
fallback = false ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( data ) ;
size = n ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
~ llama_buffer ( ) {
if ( data ) {
if ( fallback ) { // NOLINT
free ( data ) ;
} else {
llama_host_free ( data ) ;
}
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
data = NULL ;
}
} ;
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp ;
size_t size ;
llama_file ( const char * fname , const char * mode ) {
fp = std : : fopen ( fname , mode ) ;
if ( fp = = NULL ) {
throw std : : runtime_error ( format ( " failed to open %s: %s " , fname , strerror ( errno ) ) ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
seek ( 0 , SEEK_END ) ;
size = tell ( ) ;
seek ( 0 , SEEK_SET ) ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
size_t tell ( ) const {
# ifdef _WIN32
__int64 ret = _ftelli64 ( fp ) ;
2023-03-27 18:00:32 +00:00
# else
2023-09-15 17:06:31 +00:00
long ret = std : : ftell ( fp ) ;
2023-03-27 18:00:32 +00:00
# endif
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( ret ! = - 1 ) ; // this really shouldn't fail
return ( size_t ) ret ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
void seek ( size_t offset , int whence ) const {
# ifdef _WIN32
int ret = _fseeki64 ( fp , ( __int64 ) offset , whence ) ;
2023-03-27 18:00:32 +00:00
# else
2023-09-15 17:06:31 +00:00
int ret = std : : fseek ( fp , ( long ) offset , whence ) ;
2023-03-27 18:00:32 +00:00
# endif
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( ret = = 0 ) ; // same
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
void read_raw ( void * ptr , size_t len ) const {
if ( len = = 0 ) {
return ;
}
errno = 0 ;
std : : size_t ret = std : : fread ( ptr , len , 1 , fp ) ;
if ( ferror ( fp ) ) {
throw std : : runtime_error ( format ( " read error: %s " , strerror ( errno ) ) ) ;
}
if ( ret ! = 1 ) {
throw std : : runtime_error ( std : : string ( " unexpectedly reached end of file " ) ) ;
}
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
uint32_t read_u32 ( ) const {
uint32_t ret ;
read_raw ( & ret , sizeof ( ret ) ) ;
return ret ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
void write_raw ( const void * ptr , size_t len ) const {
if ( len = = 0 ) {
return ;
}
errno = 0 ;
size_t ret = std : : fwrite ( ptr , len , 1 , fp ) ;
if ( ret ! = 1 ) {
throw std : : runtime_error ( format ( " write error: %s " , strerror ( errno ) ) ) ;
}
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
void write_u32 ( std : : uint32_t val ) const {
write_raw ( & val , sizeof ( val ) ) ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
~ llama_file ( ) {
if ( fp ) {
std : : fclose ( fp ) ;
}
}
2023-04-10 19:59:13 +00:00
} ;
2023-09-15 17:06:31 +00:00
struct llama_mmap {
void * addr ;
2023-04-10 19:59:13 +00:00
size_t size ;
2023-09-15 17:06:31 +00:00
llama_mmap ( const llama_mmap & ) = delete ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
# ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
llama_mmap ( struct llama_file * file , size_t prefetch = ( size_t ) - 1 /* -1 = max value */ , bool numa = false ) {
size = file - > size ;
int fd = fileno ( file - > fp ) ;
int flags = MAP_SHARED ;
// prefetch/readahead impairs performance on NUMA systems
if ( numa ) { prefetch = 0 ; }
# ifdef __linux__
if ( prefetch ) { flags | = MAP_POPULATE ; }
# endif
addr = mmap ( NULL , file - > size , PROT_READ , flags , fd , 0 ) ;
if ( addr = = MAP_FAILED ) {
throw std : : runtime_error ( format ( " mmap failed: %s " , strerror ( errno ) ) ) ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
if ( prefetch > 0 ) {
// Advise the kernel to preload the mapped memory
if ( posix_madvise ( addr , std : : min ( file - > size , prefetch ) , POSIX_MADV_WILLNEED ) ) {
fprintf ( stderr , " warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s \n " ,
strerror ( errno ) ) ;
2023-04-10 19:59:13 +00:00
}
}
2023-09-15 17:06:31 +00:00
if ( numa ) {
// advise the kernel not to use readahead
// (because the next page might not belong on the same node)
if ( posix_madvise ( addr , file - > size , POSIX_MADV_RANDOM ) ) {
fprintf ( stderr , " warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s \n " ,
strerror ( errno ) ) ;
}
2023-04-10 19:59:13 +00:00
}
}
2023-09-15 17:06:31 +00:00
~ llama_mmap ( ) {
munmap ( addr , size ) ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
# elif defined(_WIN32)
static constexpr bool SUPPORTED = true ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
llama_mmap ( struct llama_file * file , bool prefetch = true , bool numa = false ) {
( void ) numa ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
size = file - > size ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
HANDLE hFile = ( HANDLE ) _get_osfhandle ( _fileno ( file - > fp ) ) ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
HANDLE hMapping = CreateFileMappingA ( hFile , NULL , PAGE_READONLY , 0 , 0 , NULL ) ;
DWORD error = GetLastError ( ) ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
if ( hMapping = = NULL ) {
throw std : : runtime_error ( format ( " CreateFileMappingA failed: %s " , llama_format_win_err ( error ) . c_str ( ) ) ) ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
addr = MapViewOfFile ( hMapping , FILE_MAP_READ , 0 , 0 , 0 ) ;
error = GetLastError ( ) ;
CloseHandle ( hMapping ) ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
if ( addr = = NULL ) {
throw std : : runtime_error ( format ( " MapViewOfFile failed: %s " , llama_format_win_err ( error ) . c_str ( ) ) ) ;
2023-04-10 19:59:13 +00:00
}
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
if ( prefetch ) {
// PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
BOOL ( WINAPI * pPrefetchVirtualMemory ) ( HANDLE , ULONG_PTR , PWIN32_MEMORY_RANGE_ENTRY , ULONG ) ;
HMODULE hKernel32 = GetModuleHandleW ( L " kernel32.dll " ) ;
// may fail on pre-Windows 8 systems
pPrefetchVirtualMemory = reinterpret_cast < decltype ( pPrefetchVirtualMemory ) > ( GetProcAddress ( hKernel32 , " PrefetchVirtualMemory " ) ) ;
if ( pPrefetchVirtualMemory ) {
// advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range ;
range . VirtualAddress = addr ;
range . NumberOfBytes = ( SIZE_T ) size ;
if ( ! pPrefetchVirtualMemory ( GetCurrentProcess ( ) , 1 , & range , 0 ) ) {
fprintf ( stderr , " warning: PrefetchVirtualMemory failed: %s \n " ,
llama_format_win_err ( GetLastError ( ) ) . c_str ( ) ) ;
2023-04-10 19:59:13 +00:00
}
}
2023-09-15 17:06:31 +00:00
}
}
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
~ llama_mmap ( ) {
if ( ! UnmapViewOfFile ( addr ) ) {
fprintf ( stderr , " warning: UnmapViewOfFile failed: %s \n " ,
llama_format_win_err ( GetLastError ( ) ) . c_str ( ) ) ;
}
}
# else
static constexpr bool SUPPORTED = false ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
llama_mmap ( struct llama_file * file , bool prefetch = true , bool numa = false ) {
( void ) file ;
( void ) prefetch ;
( void ) numa ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
throw std : : runtime_error ( std : : string ( " mmap not supported " ) ) ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
# endif
2023-04-10 19:59:13 +00:00
} ;
2023-09-15 17:06:31 +00:00
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct llama_mlock {
void * addr = NULL ;
size_t size = 0 ;
bool failed_already = false ;
llama_mlock ( ) { }
llama_mlock ( const llama_mlock & ) = delete ;
~ llama_mlock ( ) {
if ( size ) {
raw_unlock ( addr , size ) ;
}
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
void init ( void * ptr ) {
GGML_ASSERT ( addr = = NULL & & size = = 0 ) ; // NOLINT
addr = ptr ;
}
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
void grow_to ( size_t target_size ) {
GGML_ASSERT ( addr ) ;
if ( failed_already ) {
return ;
}
size_t granularity = lock_granularity ( ) ;
target_size = ( target_size + granularity - 1 ) & ~ ( granularity - 1 ) ;
if ( target_size > size ) {
if ( raw_lock ( ( uint8_t * ) addr + size , target_size - size ) ) {
size = target_size ;
} else {
failed_already = true ;
2023-04-10 19:59:13 +00:00
}
}
}
2023-09-15 17:06:31 +00:00
# ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
static size_t lock_granularity ( ) {
return ( size_t ) sysconf ( _SC_PAGESIZE ) ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
# ifdef __APPLE__
# define MLOCK_SUGGESTION \
" Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
" decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l). \n "
# else
# define MLOCK_SUGGESTION \
" Try increasing RLIMIT_MLOCK ('ulimit -l' as root). \n "
# endif
bool raw_lock ( const void * addr , size_t size ) const {
if ( ! mlock ( addr , size ) ) {
return true ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
char * errmsg = std : : strerror ( errno ) ;
bool suggest = ( errno = = ENOMEM ) ;
// Check if the resource limit is fine after all
struct rlimit lock_limit ;
if ( suggest & & getrlimit ( RLIMIT_MEMLOCK , & lock_limit ) ) {
suggest = false ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
if ( suggest & & ( lock_limit . rlim_max > lock_limit . rlim_cur + size ) ) {
suggest = false ;
2023-04-10 19:59:13 +00:00
}
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
fprintf ( stderr , " warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s \n %s " ,
size , this - > size , errmsg , suggest ? MLOCK_SUGGESTION : " " ) ;
return false ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
# undef MLOCK_SUGGESTION
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
static void raw_unlock ( void * addr , size_t size ) {
if ( munlock ( addr , size ) ) {
fprintf ( stderr , " warning: failed to munlock buffer: %s \n " , std : : strerror ( errno ) ) ;
2023-04-10 19:59:13 +00:00
}
}
2023-09-15 17:06:31 +00:00
# elif defined(_WIN32)
static constexpr bool SUPPORTED = true ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
static size_t lock_granularity ( ) {
SYSTEM_INFO si ;
GetSystemInfo ( & si ) ;
return ( size_t ) si . dwPageSize ;
}
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
bool raw_lock ( void * ptr , size_t len ) const {
for ( int tries = 1 ; ; tries + + ) {
if ( VirtualLock ( ptr , len ) ) {
return true ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
if ( tries = = 2 ) {
fprintf ( stderr , " warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s \n " ,
len , size , llama_format_win_err ( GetLastError ( ) ) . c_str ( ) ) ;
return false ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size , max_ws_size ;
if ( ! GetProcessWorkingSetSize ( GetCurrentProcess ( ) , & min_ws_size , & max_ws_size ) ) {
fprintf ( stderr , " warning: GetProcessWorkingSetSize failed: %s \n " ,
llama_format_win_err ( GetLastError ( ) ) . c_str ( ) ) ;
return false ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = len + 1048576 ;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size + = increment ;
max_ws_size + = increment ;
if ( ! SetProcessWorkingSetSize ( GetCurrentProcess ( ) , min_ws_size , max_ws_size ) ) {
fprintf ( stderr , " warning: SetProcessWorkingSetSize failed: %s \n " ,
llama_format_win_err ( GetLastError ( ) ) . c_str ( ) ) ;
return false ;
2023-04-10 19:59:13 +00:00
}
}
}
2023-09-15 17:06:31 +00:00
static void raw_unlock ( void * ptr , size_t len ) {
if ( ! VirtualUnlock ( ptr , len ) ) {
fprintf ( stderr , " warning: failed to VirtualUnlock buffer: %s \n " ,
llama_format_win_err ( GetLastError ( ) ) . c_str ( ) ) ;
2023-04-10 19:59:13 +00:00
}
}
2023-09-15 17:06:31 +00:00
# else
static constexpr bool SUPPORTED = false ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
static size_t lock_granularity ( ) {
return ( size_t ) 65536 ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
bool raw_lock ( const void * addr , size_t len ) const {
fprintf ( stderr , " warning: mlock not supported on this system \n " ) ;
2023-03-27 18:00:32 +00:00
return false ;
}
2023-09-15 17:06:31 +00:00
static void raw_unlock ( const void * addr , size_t len ) { }
# endif
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
typedef void ( * offload_func_t ) ( struct ggml_tensor * tensor ) ;
static void llama_nop ( struct ggml_tensor * tensor ) { // don't offload by default
( void ) tensor ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
static std : : string llama_token_to_str ( const struct llama_context * ctx , llama_token token ) {
std : : vector < char > result ( 8 , 0 ) ;
const int n_tokens = llama_token_to_piece ( ctx , token , result . data ( ) , result . size ( ) ) ;
if ( n_tokens < 0 ) {
result . resize ( - n_tokens ) ;
int check = llama_token_to_piece ( ctx , token , result . data ( ) , result . size ( ) ) ;
GGML_ASSERT ( check = = - n_tokens ) ;
} else {
result . resize ( n_tokens ) ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
return std : : string ( result . data ( ) , result . size ( ) ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
//
// globals
//
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
struct llama_state {
// We save the log callback globally
llama_log_callback log_callback = llama_log_callback_default ;
void * log_callback_user_data = nullptr ;
} ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
static llama_state g_state ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
// available llama models
enum e_model {
MODEL_UNKNOWN ,
MODEL_3B ,
MODEL_7B ,
MODEL_13B ,
MODEL_30B ,
MODEL_34B ,
MODEL_40B ,
MODEL_65B ,
MODEL_70B ,
} ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
static const size_t kB = 1024 ;
static const size_t MB = kB * kB ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
// default hparams (LLaMA 7B)
struct llama_hparams {
uint32_t n_vocab = 32000 ;
uint32_t n_ctx_train = 2048 ; // the context size used during training
uint32_t n_ctx = 512 ; // the context size used during inference
uint32_t n_embd = 4096 ;
uint32_t n_head = 32 ;
uint32_t n_head_kv = 32 ;
uint32_t n_layer = 32 ;
uint32_t n_rot = 64 ;
uint32_t n_ff = 11008 ;
float f_norm_eps = 1e-5 ;
float f_norm_rms_eps = 1e-5 ;
float rope_freq_base = 10000.0f ;
float rope_freq_scale = 1.0f ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
bool operator ! = ( const llama_hparams & other ) const {
return static_cast < bool > ( memcmp ( this , & other , sizeof ( llama_hparams ) ) ) ; // NOLINT
2023-04-10 19:59:13 +00:00
}
2023-05-14 15:46:19 +00:00
2023-09-15 17:06:31 +00:00
uint32_t n_gqa ( ) const {
return n_head / n_head_kv ;
}
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
uint32_t n_embd_head ( ) const {
return n_embd / n_head ;
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
uint32_t n_embd_gqa ( ) const {
return n_embd / n_gqa ( ) ;
2023-04-10 19:59:13 +00:00
}
2023-09-15 17:06:31 +00:00
size_t kv_size ( ) const {
size_t result = 2ull ;
result * = ( size_t ) n_embd_gqa ( ) ;
result * = ( size_t ) n_ctx ;
result * = ( size_t ) n_layer ;
result * = sizeof ( ggml_fp16_t ) ;
return result ;
}
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
struct llama_layer {
// normalization
struct ggml_tensor * attn_norm ;
struct ggml_tensor * attn_norm_b ;
struct ggml_tensor * attn_norm_2 ;
struct ggml_tensor * attn_norm_2_b ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// attention
struct ggml_tensor * wq ;
struct ggml_tensor * wk ;
struct ggml_tensor * wv ;
struct ggml_tensor * wo ;
struct ggml_tensor * wqkv ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// normalization
struct ggml_tensor * ffn_norm ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// ff
struct ggml_tensor * w1 ; // ffn_gate
struct ggml_tensor * w2 ; // ffn_down
struct ggml_tensor * w3 ; // ffn_up
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
struct llama_kv_cache {
struct ggml_tensor * k = NULL ;
struct ggml_tensor * v = NULL ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
struct ggml_context * ctx = NULL ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
llama_buffer buf ;
int n ; // number of tokens currently in the cache
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
~ llama_kv_cache ( ) {
if ( ctx ) {
ggml_free ( ctx ) ;
2023-05-14 15:46:19 +00:00
}
2023-09-15 17:06:31 +00:00
# ifdef GGML_USE_CUBLAS
ggml_cuda_free_data ( k ) ;
ggml_cuda_free_data ( v ) ;
# endif // GGML_USE_CUBLAS
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
struct llama_vocab {
using id = int32_t ;
using token = std : : string ;
using ttype = llama_token_type ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
struct token_data {
token text ;
float score ;
ttype type ;
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
std : : unordered_map < token , id > token_to_id ;
std : : vector < token_data > id_to_token ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
std : : map < std : : pair < std : : string , std : : string > , int > bpe_ranks ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// default LLaMA special tokens
id special_bos_id = 1 ;
id special_eos_id = 2 ;
id special_unk_id = 0 ;
id special_sep_id = - 1 ;
id special_pad_id = - 1 ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
id linefeed_id = 13 ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
int find_bpe_rank ( std : : string token_left , std : : string token_right ) const {
replace_all ( token_left , " " , " \u0120 " ) ;
replace_all ( token_left , " \n " , " \u010A " ) ;
replace_all ( token_right , " " , " \u0120 " ) ;
replace_all ( token_right , " \n " , " \u010A " ) ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
auto it = bpe_ranks . find ( std : : make_pair ( token_left , token_right ) ) ;
if ( it = = bpe_ranks . end ( ) ) {
return - 1 ;
2023-05-23 11:04:39 +00:00
}
2023-09-15 17:06:31 +00:00
return it - > second ;
}
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
struct llama_model {
e_model type = MODEL_UNKNOWN ;
llm_arch arch = LLM_ARCH_UNKNOWN ;
llama_ftype ftype = LLAMA_FTYPE_ALL_F32 ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
std : : string name = " n/a " ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
llama_hparams hparams ;
llama_vocab vocab ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
struct ggml_tensor * tok_embeddings ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
struct ggml_tensor * output_norm ;
struct ggml_tensor * output_norm_b ;
struct ggml_tensor * output ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
std : : vector < llama_layer > layers ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
int n_gpu_layers ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// context
struct ggml_context * ctx = NULL ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// the model memory buffer
llama_buffer buf ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// model memory mapped file
std : : unique_ptr < llama_mmap > mapping ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// objects representing data potentially being locked in memory
llama_mlock mlock_buf ;
llama_mlock mlock_mmap ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
// for quantize-stats only
std : : vector < std : : pair < std : : string , struct ggml_tensor * > > tensors_by_name ;
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
int64_t t_load_us = 0 ;
int64_t t_start_us = 0 ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
~ llama_model ( ) {
if ( ctx ) {
ggml_free ( ctx ) ;
}
2023-05-14 15:46:19 +00:00
2023-09-15 17:06:31 +00:00
# ifdef GGML_USE_CUBLAS
for ( size_t i = 0 ; i < tensors_by_name . size ( ) ; + + i ) {
ggml_cuda_free_data ( tensors_by_name [ i ] . second ) ;
}
ggml_cuda_free_scratch ( ) ;
# elif defined(GGML_USE_CLBLAST)
for ( size_t i = 0 ; i < tensors_by_name . size ( ) ; + + i ) {
ggml_cl_free_data ( tensors_by_name [ i ] . second ) ;
2023-05-23 11:04:39 +00:00
}
# endif
}
2023-09-15 17:06:31 +00:00
} ;
2023-05-14 15:46:19 +00:00
2023-09-15 17:06:31 +00:00
struct llama_context {
llama_context ( const llama_model & model ) : model ( model ) , t_load_us ( model . t_load_us ) , t_start_us ( model . t_start_us ) { }
~ llama_context ( ) {
if ( model_owner ) {
delete & model ;
}
# ifdef GGML_USE_METAL
if ( ctx_metal ) {
ggml_metal_free ( ctx_metal ) ;
}
# endif
if ( alloc ) {
ggml_allocr_free ( alloc ) ;
}
2023-05-23 11:04:39 +00:00
}
2023-05-14 15:46:19 +00:00
2023-09-15 17:06:31 +00:00
std : : mt19937 rng ;
2023-05-14 15:46:19 +00:00
2023-09-15 17:06:31 +00:00
bool has_evaluated_once = false ;
int64_t t_sample_us = 0 ;
int64_t t_eval_us = 0 ;
int64_t t_p_eval_us = 0 ;
int32_t n_sample = 0 ; // number of tokens sampled
int32_t n_eval = 0 ; // number of eval calls
int32_t n_p_eval = 0 ; // number of tokens in eval calls for the prompt (with batch size > 1)
const llama_model & model ;
bool model_owner = false ;
int64_t t_load_us ;
int64_t t_start_us ;
// key + value cache for the self attention
struct llama_kv_cache kv_self ;
// decode output (2-dimensional array: [n_tokens][n_vocab])
std : : vector < float > logits ;
bool logits_all = false ;
// input embedding (1-dimensional array: [n_embd])
std : : vector < float > embedding ;
// reusable buffer for `struct ggml_graph_plan.work_data`
std : : vector < uint8_t > work_buffer ;
// memory buffers used to evaluate the model
llama_buffer buf_compute ;
llama_buffer buf_alloc ;
ggml_allocr * alloc = NULL ;
# ifdef GGML_USE_METAL
ggml_metal_context * ctx_metal = NULL ;
# endif
# ifdef GGML_USE_MPI
ggml_mpi_context * ctx_mpi = NULL ;
# endif
} ;
//
// kv cache helpers
//
static bool llama_kv_cache_init (
const struct llama_hparams & hparams ,
struct llama_kv_cache & cache ,
ggml_type wtype ,
int n_ctx ,
int n_gpu_layers ) {
const int n_embd = hparams . n_embd_gqa ( ) ;
const int n_layer = hparams . n_layer ;
const int64_t n_mem = n_layer * n_ctx ;
const int64_t n_elements = n_embd * n_mem ;
cache . buf . resize ( 2u * n_elements * ggml_type_size ( wtype ) + 2u * MB ) ;
cache . n = 0 ;
struct ggml_init_params params ;
params . mem_size = cache . buf . size ;
params . mem_buffer = cache . buf . data ;
params . no_alloc = false ;
cache . ctx = ggml_init ( params ) ;
if ( ! cache . ctx ) {
LLAMA_LOG_ERROR ( " %s: failed to allocate memory for kv cache \n " , __func__ ) ;
return false ;
}
cache . k = ggml_new_tensor_1d ( cache . ctx , wtype , n_elements ) ;
cache . v = ggml_new_tensor_1d ( cache . ctx , wtype , n_elements ) ;
ggml_set_name ( cache . k , " cache_k " ) ;
ggml_set_name ( cache . v , " cache_v " ) ;
( void ) n_gpu_layers ;
# ifdef GGML_USE_CUBLAS
if ( n_gpu_layers > n_layer + 1 ) {
ggml_cuda_assign_buffers_no_scratch ( cache . v ) ;
}
if ( n_gpu_layers > n_layer + 2 ) {
ggml_cuda_assign_buffers_no_scratch ( cache . k ) ;
}
# endif // GGML_USE_CUBLAS
return true ;
}
//
// model loading and saving
//
enum llama_fver {
GGUF_FILE_VERSION_V1 = 1 ,
GGUF_FILE_VERSION_V2 = 2 ,
} ;
static const char * llama_file_version_name ( llama_fver version ) {
switch ( version ) {
case GGUF_FILE_VERSION_V1 : return " GGUF V1 (support until nov 2023) " ;
case GGUF_FILE_VERSION_V2 : return " GGUF V2 (latest) " ;
}
return " unknown " ;
}
static std : : string llama_format_tensor_shape ( const std : : vector < int64_t > & ne ) {
char buf [ 256 ] ;
snprintf ( buf , sizeof ( buf ) , " %5 " PRId64 , ne . at ( 0 ) ) ;
for ( size_t i = 1 ; i < ne . size ( ) ; i + + ) {
snprintf ( buf + strlen ( buf ) , sizeof ( buf ) - strlen ( buf ) , " , %5 " PRId64 , ne . at ( i ) ) ;
}
return buf ;
}
static std : : string llama_format_tensor_shape ( const struct ggml_tensor * t ) {
char buf [ 256 ] ;
snprintf ( buf , sizeof ( buf ) , " %5 " PRId64 , t - > ne [ 0 ] ) ;
for ( int i = 1 ; i < GGML_MAX_DIMS ; i + + ) {
snprintf ( buf + strlen ( buf ) , sizeof ( buf ) - strlen ( buf ) , " , %5 " PRId64 , t - > ne [ i ] ) ;
}
return buf ;
}
struct llama_model_loader {
int n_kv = 0 ;
int n_tensors = 0 ;
int n_created = 0 ;
int64_t n_elements = 0 ;
bool use_mmap = false ;
llama_file file ;
llama_ftype ftype ;
llama_fver fver ;
std : : unique_ptr < llama_mmap > mapping ;
struct gguf_context * ctx_gguf = NULL ;
struct ggml_context * ctx_meta = NULL ;
llama_model_loader ( const std : : string & fname , bool use_mmap ) : file ( fname . c_str ( ) , " rb " ) {
struct gguf_init_params params = {
/*.no_alloc = */ true ,
/*.ctx = */ & ctx_meta ,
} ;
ctx_gguf = gguf_init_from_file ( fname . c_str ( ) , params ) ;
if ( ! ctx_gguf ) {
throw std : : runtime_error ( format ( " %s: failed to load model from %s \n " , __func__ , fname . c_str ( ) ) ) ;
}
n_kv = gguf_get_n_kv ( ctx_gguf ) ;
n_tensors = gguf_get_n_tensors ( ctx_gguf ) ;
fver = ( enum llama_fver ) gguf_get_version ( ctx_gguf ) ;
for ( int i = 0 ; i < n_tensors ; i + + ) {
const char * name = gguf_get_tensor_name ( ctx_gguf , i ) ;
struct ggml_tensor * t = ggml_get_tensor ( ctx_meta , name ) ;
n_elements + = ggml_nelements ( t ) ;
}
LLAMA_LOG_INFO ( " %s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s) \n " ,
__func__ , n_kv , n_tensors , fname . c_str ( ) , llama_file_version_name ( fver ) ) ;
// determine file type based on the number of tensors for each quantization and print meta data
// TODO: make optional
{
std : : map < enum ggml_type , uint32_t > n_type ;
uint32_t n_type_max = 0 ;
enum ggml_type type_max = GGML_TYPE_F32 ;
for ( int i = 0 ; i < n_tensors ; i + + ) {
const char * name = gguf_get_tensor_name ( ctx_gguf , i ) ;
struct ggml_tensor * meta = ggml_get_tensor ( ctx_meta , name ) ;
n_type [ meta - > type ] + + ;
if ( n_type_max < n_type [ meta - > type ] ) {
n_type_max = n_type [ meta - > type ] ;
type_max = meta - > type ;
}
LLAMA_LOG_INFO ( " %s: - tensor %4d: %32s %-8s [ %s ] \n " , __func__ , i , name , ggml_type_name ( meta - > type ) , llama_format_tensor_shape ( meta ) . c_str ( ) ) ;
}
switch ( type_max ) {
case GGML_TYPE_F32 : ftype = LLAMA_FTYPE_ALL_F32 ; break ;
case GGML_TYPE_F16 : ftype = LLAMA_FTYPE_MOSTLY_F16 ; break ;
case GGML_TYPE_Q4_0 : ftype = LLAMA_FTYPE_MOSTLY_Q4_0 ; break ;
case GGML_TYPE_Q4_1 : ftype = LLAMA_FTYPE_MOSTLY_Q4_1 ; break ;
case GGML_TYPE_Q5_0 : ftype = LLAMA_FTYPE_MOSTLY_Q5_0 ; break ;
case GGML_TYPE_Q5_1 : ftype = LLAMA_FTYPE_MOSTLY_Q5_1 ; break ;
case GGML_TYPE_Q8_0 : ftype = LLAMA_FTYPE_MOSTLY_Q8_0 ; break ;
case GGML_TYPE_Q2_K : ftype = LLAMA_FTYPE_MOSTLY_Q2_K ; break ;
case GGML_TYPE_Q3_K : ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M ; break ;
case GGML_TYPE_Q4_K : ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M ; break ;
case GGML_TYPE_Q5_K : ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M ; break ;
case GGML_TYPE_Q6_K : ftype = LLAMA_FTYPE_MOSTLY_Q6_K ; break ;
default :
{
LLAMA_LOG_WARN ( " %s: unknown type %s \n " , __func__ , ggml_type_name ( type_max ) ) ;
ftype = LLAMA_FTYPE_ALL_F32 ;
} break ;
}
// this is a way to mark that we have "guessed" the file type
ftype = ( llama_ftype ) ( ftype | LLAMA_FTYPE_GUESSED ) ;
{
const int kid = gguf_find_key ( ctx_gguf , " general.file_type " ) ;
if ( kid > = 0 ) {
ftype = ( llama_ftype ) gguf_get_val_u32 ( ctx_gguf , kid ) ;
}
}
for ( int i = 0 ; i < n_kv ; i + + ) {
const char * name = gguf_get_key ( ctx_gguf , i ) ;
const enum gguf_type type = gguf_get_kv_type ( ctx_gguf , i ) ;
LLAMA_LOG_INFO ( " %s: - kv %3d: %42s %-8s \n " , __func__ , i , name , gguf_type_name ( type ) ) ;
}
// print type counts
for ( auto & kv : n_type ) {
if ( kv . second = = 0 ) {
continue ;
}
LLAMA_LOG_INFO ( " %s: - type %4s: %4d tensors \n " , __func__ , ggml_type_name ( kv . first ) , kv . second ) ;
}
}
if ( ! llama_mmap : : SUPPORTED ) {
LLAMA_LOG_WARN ( " %s: mmap is not supported on this platform \n " , __func__ ) ;
use_mmap = false ;
}
this - > use_mmap = use_mmap ;
}
~ llama_model_loader ( ) {
if ( ctx_gguf ) {
gguf_free ( ctx_gguf ) ;
}
if ( ctx_meta ) {
ggml_free ( ctx_meta ) ;
}
}
std : : string get_arch_name ( ) const {
const auto kv = LLM_KV ( LLM_ARCH_UNKNOWN ) ;
std : : string arch_name ;
GGUF_GET_KEY ( ctx_gguf , arch_name , gguf_get_val_str , GGUF_TYPE_STRING , false , kv ( LLM_KV_GENERAL_ARCHITECTURE ) ) ;
return arch_name ;
}
enum llm_arch get_arch ( ) const {
const std : : string arch_name = get_arch_name ( ) ;
return llm_arch_from_string ( arch_name ) ;
}
const char * get_tensor_name ( int i ) const {
return gguf_get_tensor_name ( ctx_gguf , i ) ;
}
struct ggml_tensor * get_tensor_meta ( int i ) const {
return ggml_get_tensor ( ctx_meta , get_tensor_name ( i ) ) ;
}
void calc_sizes ( size_t & ctx_size_p , size_t & mmapped_size_p ) const {
ctx_size_p = 0 ;
mmapped_size_p = 0 ;
for ( int i = 0 ; i < n_tensors ; i + + ) {
struct ggml_tensor * meta = get_tensor_meta ( i ) ;
ctx_size_p + = sizeof ( struct ggml_tensor ) + GGML_OBJECT_SIZE ;
( use_mmap ? mmapped_size_p : ctx_size_p ) + = ggml_nbytes_pad ( meta ) ;
}
}
struct ggml_tensor * create_tensor_for ( struct ggml_context * ctx , struct ggml_tensor * meta , ggml_backend backend ) {
if ( backend ! = GGML_BACKEND_CPU ) {
ggml_set_no_alloc ( ctx , true ) ;
}
struct ggml_tensor * tensor = ggml_dup_tensor ( ctx , meta ) ;
tensor - > backend = backend ; // TODO: ggml_set_backend
ggml_set_name ( tensor , ggml_get_name ( meta ) ) ;
if ( backend ! = GGML_BACKEND_CPU ) {
ggml_set_no_alloc ( ctx , use_mmap ) ;
}
n_created + + ;
return tensor ;
}
struct ggml_tensor * create_tensor ( struct ggml_context * ctx , const std : : string & name , const std : : vector < int64_t > & ne , ggml_backend backend ) {
struct ggml_tensor * cur = ggml_get_tensor ( ctx_meta , name . c_str ( ) ) ;
if ( cur = = NULL ) {
throw std : : runtime_error ( format ( " %s: tensor '%s' not found " , __func__ , name . c_str ( ) ) ) ;
}
{
bool is_ok = true ;
for ( size_t i = 0 ; i < ne . size ( ) ; + + i ) {
if ( ne [ i ] ! = cur - > ne [ i ] ) {
is_ok = false ;
break ;
}
}
if ( ! is_ok ) {
throw std : : runtime_error (
format ( " %s: tensor '%s' has wrong shape; expected %s, got %s " ,
__func__ , name . c_str ( ) ,
llama_format_tensor_shape ( ne ) . c_str ( ) ,
llama_format_tensor_shape ( cur ) . c_str ( ) ) ) ;
}
}
return create_tensor_for ( ctx , cur , backend ) ;
}
void done_getting_tensors ( ) const {
if ( n_created ! = n_tensors ) {
throw std : : runtime_error ( format ( " %s: wrong number of tensors; expected %d, got %d " , __func__ , n_tensors , n_created ) ) ;
}
}
size_t file_offset ( const char * name ) const {
const int idx = gguf_find_tensor ( ctx_gguf , name ) ;
if ( idx < 0 ) {
throw std : : runtime_error ( format ( " %s: tensor '%s' not found in the file " , __func__ , name ) ) ;
}
return gguf_get_data_offset ( ctx_gguf ) + gguf_get_tensor_offset ( ctx_gguf , idx ) ;
}
void load_data_for ( struct ggml_tensor * cur ) const {
const size_t offs = file_offset ( ggml_get_name ( cur ) ) ;
if ( use_mmap ) {
cur - > data = ( uint8_t * ) mapping - > addr + offs ;
} else {
file . seek ( offs , SEEK_SET ) ;
file . read_raw ( cur - > data , ggml_nbytes ( cur ) ) ;
}
}
void load_all_data ( struct ggml_context * ctx , llama_progress_callback progress_callback , void * progress_callback_user_data , llama_mlock * lmlock ) {
size_t size_data = 0 ;
size_t size_lock = 0 ;
size_t size_pref = 0 ; // prefetch
for ( int i = 0 ; i < gguf_get_n_tensors ( ctx_gguf ) ; i + + ) {
struct ggml_tensor * cur = ggml_get_tensor ( ctx , gguf_get_tensor_name ( ctx_gguf , i ) ) ;
size_data + = ggml_nbytes ( cur ) ;
if ( cur - > backend = = GGML_BACKEND_CPU ) {
size_pref + = ggml_nbytes ( cur ) ;
}
}
if ( use_mmap ) {
mapping . reset ( new llama_mmap ( & file , size_pref , ggml_is_numa ( ) ) ) ;
if ( lmlock ) {
lmlock - > init ( mapping - > addr ) ;
}
}
size_t done_size = 0 ;
for ( int i = 0 ; i < gguf_get_n_tensors ( ctx_gguf ) ; i + + ) {
struct ggml_tensor * cur = ggml_get_tensor ( ctx , gguf_get_tensor_name ( ctx_gguf , i ) ) ;
GGML_ASSERT ( cur ) ; // unused tensors should have been caught by load_data already
if ( progress_callback ) {
progress_callback ( ( float ) done_size / size_data , progress_callback_user_data ) ;
}
// allocate temp buffer if not using mmap
if ( ! use_mmap & & cur - > data = = NULL ) {
GGML_ASSERT ( cur - > backend ! = GGML_BACKEND_CPU ) ;
# ifdef GGML_USE_CPU_HBM
cur - > data = ( uint8_t * ) hbw_malloc ( ggml_nbytes ( cur ) ) ;
# else
cur - > data = ( uint8_t * ) malloc ( ggml_nbytes ( cur ) ) ;
# endif
}
load_data_for ( cur ) ;
switch ( cur - > backend ) {
case GGML_BACKEND_CPU :
if ( use_mmap & & lmlock ) {
size_lock + = ggml_nbytes ( cur ) ;
lmlock - > grow_to ( size_lock ) ;
}
break ;
# if defined(GGML_USE_CUBLAS)
case GGML_BACKEND_GPU :
case GGML_BACKEND_GPU_SPLIT :
// old code:
//ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
// TODO: test if this works !!
ggml_cuda_transform_tensor ( cur - > data , cur ) ;
if ( ! use_mmap ) {
free ( cur - > data ) ;
}
break ;
# elif defined(GGML_USE_CLBLAST)
case GGML_BACKEND_GPU :
ggml_cl_transform_tensor ( cur - > data , cur ) ;
if ( ! use_mmap ) {
free ( cur - > data ) ;
}
break ;
# endif
default :
continue ;
}
done_size + = ggml_nbytes ( cur ) ;
}
}
} ;
//
// load LLaMA models
//
std : : string llama_model_ftype_name ( enum llama_ftype ftype ) {
if ( ftype & LLAMA_FTYPE_GUESSED ) {
return llama_model_ftype_name ( ( enum llama_ftype ) ( ftype & ~ LLAMA_FTYPE_GUESSED ) ) + " (guessed) " ;
}
switch ( ftype ) {
case LLAMA_FTYPE_ALL_F32 : return " all F32 " ;
case LLAMA_FTYPE_MOSTLY_F16 : return " mostly F16 " ;
case LLAMA_FTYPE_MOSTLY_Q4_0 : return " mostly Q4_0 " ;
case LLAMA_FTYPE_MOSTLY_Q4_1 : return " mostly Q4_1 " ;
case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 :
return " mostly Q4_1, some F16 " ;
case LLAMA_FTYPE_MOSTLY_Q5_0 : return " mostly Q5_0 " ;
case LLAMA_FTYPE_MOSTLY_Q5_1 : return " mostly Q5_1 " ;
case LLAMA_FTYPE_MOSTLY_Q8_0 : return " mostly Q8_0 " ;
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K : return " mostly Q2_K " ;
case LLAMA_FTYPE_MOSTLY_Q3_K_S : return " mostly Q3_K - Small " ;
case LLAMA_FTYPE_MOSTLY_Q3_K_M : return " mostly Q3_K - Medium " ;
case LLAMA_FTYPE_MOSTLY_Q3_K_L : return " mostly Q3_K - Large " ;
case LLAMA_FTYPE_MOSTLY_Q4_K_S : return " mostly Q4_K - Small " ;
case LLAMA_FTYPE_MOSTLY_Q4_K_M : return " mostly Q4_K - Medium " ;
case LLAMA_FTYPE_MOSTLY_Q5_K_S : return " mostly Q5_K - Small " ;
case LLAMA_FTYPE_MOSTLY_Q5_K_M : return " mostly Q5_K - Medium " ;
case LLAMA_FTYPE_MOSTLY_Q6_K : return " mostly Q6_K " ;
default : return " unknown, may not work " ;
}
}
static const char * llama_model_type_name ( e_model type ) {
switch ( type ) {
case MODEL_3B : return " 3B " ;
case MODEL_7B : return " 7B " ;
case MODEL_13B : return " 13B " ;
case MODEL_30B : return " 30B " ;
case MODEL_34B : return " 34B " ;
case MODEL_40B : return " 40B " ;
case MODEL_65B : return " 65B " ;
case MODEL_70B : return " 70B " ;
default : return " ?B " ;
}
}
static void llm_load_arch ( llama_model_loader & ml , llama_model & model ) {
model . arch = ml . get_arch ( ) ;
if ( model . arch = = LLM_ARCH_UNKNOWN ) {
throw std : : runtime_error ( " unknown model architecture: ' " + ml . get_arch_name ( ) + " ' " ) ;
}
}
static void llm_load_hparams (
llama_model_loader & ml ,
llama_model & model ,
int n_ctx ,
float rope_freq_base ,
float rope_freq_scale ) {
struct gguf_context * ctx = ml . ctx_gguf ;
const auto kv = LLM_KV ( model . arch ) ;
auto & hparams = model . hparams ;
// get general kv
GGUF_GET_KEY ( ctx , model . name , gguf_get_val_str , GGUF_TYPE_STRING , false , kv ( LLM_KV_GENERAL_NAME ) ) ;
// get hparams kv
GGUF_GET_KEY ( ctx , hparams . n_vocab , gguf_get_arr_n , GGUF_TYPE_ARRAY , true , kv ( LLM_KV_TOKENIZER_LIST ) ) ;
GGUF_GET_KEY ( ctx , hparams . n_ctx_train , gguf_get_val_u32 , GGUF_TYPE_UINT32 , true , kv ( LLM_KV_CONTEXT_LENGTH ) ) ;
GGUF_GET_KEY ( ctx , hparams . n_embd , gguf_get_val_u32 , GGUF_TYPE_UINT32 , true , kv ( LLM_KV_EMBEDDING_LENGTH ) ) ;
GGUF_GET_KEY ( ctx , hparams . n_ff , gguf_get_val_u32 , GGUF_TYPE_UINT32 , true , kv ( LLM_KV_FEED_FORWARD_LENGTH ) ) ;
GGUF_GET_KEY ( ctx , hparams . n_head , gguf_get_val_u32 , GGUF_TYPE_UINT32 , true , kv ( LLM_KV_ATTENTION_HEAD_COUNT ) ) ;
GGUF_GET_KEY ( ctx , hparams . n_layer , gguf_get_val_u32 , GGUF_TYPE_UINT32 , true , kv ( LLM_KV_BLOCK_COUNT ) ) ;
// n_head_kv is optional, default to n_head
hparams . n_head_kv = hparams . n_head ;
GGUF_GET_KEY ( ctx , hparams . n_head_kv , gguf_get_val_u32 , GGUF_TYPE_UINT32 , false , kv ( LLM_KV_ATTENTION_HEAD_COUNT_KV ) ) ;
// TODO: manually setting rope freq base and scale should override this
// FIXME: partial fix when the param specified is not the default value, but
// will not work for overriding the model value to the params default
llama_context_params defaults = llama_context_default_params ( ) ;
// rope_freq_base
{
float ropebase = 10000.0f ;
GGUF_GET_KEY ( ctx , ropebase , gguf_get_val_f32 , GGUF_TYPE_FLOAT32 , false , kv ( LLM_KV_ROPE_FREQ_BASE ) ) ;
if ( ropebase ! = 10000.0f & & rope_freq_base = = defaults . rope_freq_base ) {
rope_freq_base = ropebase ;
}
}
// rope_freq_scale (inverse of the kv) is optional
{
float ropescale = 1.0f ;
GGUF_GET_KEY ( ctx , ropescale , gguf_get_val_f32 , GGUF_TYPE_FLOAT32 , false , kv ( LLM_KV_ROPE_SCALE_LINEAR ) ) ;
if ( ropescale ! = 1.0f & & rope_freq_scale = = defaults . rope_freq_scale ) {
rope_freq_scale = 1.0f / ropescale ;
}
}
// sanity check for n_rot (optional)
{
hparams . n_rot = hparams . n_embd / hparams . n_head ;
GGUF_GET_KEY ( ctx , hparams . n_rot , gguf_get_val_u32 , GGUF_TYPE_UINT32 , false , kv ( LLM_KV_ROPE_DIMENSION_COUNT ) ) ;
if ( model . arch = = LLM_ARCH_LLAMA | | model . arch = = LLM_ARCH_FALCON ) {
if ( hparams . n_rot ! = hparams . n_embd / hparams . n_head ) {
throw std : : runtime_error ( format ( " invalid n_rot: %u, expected %u " , hparams . n_rot , hparams . n_embd / hparams . n_head ) ) ;
}
}
// gpt-neox n_rot = rotary_pct * (n_embd / n_head)
// gpt-j n_rot = rotary_dim
}
// arch-specific KVs
switch ( model . arch ) {
case LLM_ARCH_LLAMA :
{
GGUF_GET_KEY ( ctx , hparams . f_norm_rms_eps , gguf_get_val_f32 , GGUF_TYPE_FLOAT32 , true , kv ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS ) ) ;
switch ( hparams . n_layer ) {
case 26 : model . type = e_model : : MODEL_3B ; break ;
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 40 : model . type = e_model : : MODEL_13B ; break ;
case 48 : model . type = e_model : : MODEL_34B ; break ;
case 60 : model . type = e_model : : MODEL_30B ; break ;
case 80 : model . type = hparams . n_head = = hparams . n_head_kv ? e_model : : MODEL_65B : e_model : : MODEL_70B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_FALCON :
{
GGUF_GET_KEY ( ctx , hparams . f_norm_eps , gguf_get_val_f32 , GGUF_TYPE_FLOAT32 , true , kv ( LLM_KV_ATTENTION_LAYERNORM_EPS ) ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 60 : model . type = e_model : : MODEL_40B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
case LLM_ARCH_BAICHUAN :
{
GGUF_GET_KEY ( ctx , hparams . f_norm_rms_eps , gguf_get_val_f32 , GGUF_TYPE_FLOAT32 , true , kv ( LLM_KV_ATTENTION_LAYERNORM_RMS_EPS ) ) ;
switch ( hparams . n_layer ) {
case 32 : model . type = e_model : : MODEL_7B ; break ;
case 40 : model . type = e_model : : MODEL_13B ; break ;
default : model . type = e_model : : MODEL_UNKNOWN ;
}
} break ;
default : ( void ) 0 ;
} ;
model . ftype = ml . ftype ;
hparams . n_ctx = n_ctx ;
hparams . rope_freq_base = rope_freq_base ;
hparams . rope_freq_scale = rope_freq_scale ;
}
// TODO: This should probably be in llama.h
static std : : vector < llama_vocab : : id > llama_tokenize_internal ( const llama_vocab & vocab , std : : string raw_text , bool bos ) ;
static llama_token llama_byte_to_token ( const llama_vocab & vocab , uint8_t ch ) ;
static void llm_load_vocab (
llama_model_loader & ml ,
llama_model & model ) {
auto & vocab = model . vocab ;
struct gguf_context * ctx = ml . ctx_gguf ;
const auto kv = LLM_KV ( model . arch ) ;
const int token_idx = gguf_find_key ( ctx , kv ( LLM_KV_TOKENIZER_LIST ) . c_str ( ) ) ;
if ( token_idx = = - 1 ) {
throw std : : runtime_error ( " cannot find tokenizer vocab in model file \n " ) ;
}
const int score_idx = gguf_find_key ( ctx , kv ( LLM_KV_TOKENIZER_SCORES ) . c_str ( ) ) ;
if ( score_idx = = - 1 ) {
throw std : : runtime_error ( " cannot find tokenizer scores in model file \n " ) ;
}
const float * scores = ( const float * ) gguf_get_arr_data ( ctx , score_idx ) ;
const int toktype_idx = gguf_find_key ( ctx , kv ( LLM_KV_TOKENIZER_TOKEN_TYPE ) . c_str ( ) ) ;
if ( toktype_idx = = - 1 ) {
throw std : : runtime_error ( " cannot find token type list in GGUF file \n " ) ;
}
const int * toktypes = ( const int * ) gguf_get_arr_data ( ctx , toktype_idx ) ;
// determine vocab type
{
std : : string tokenizer_name ;
GGUF_GET_KEY ( ctx , tokenizer_name , gguf_get_val_str , GGUF_TYPE_STRING , true , kv ( LLM_KV_TOKENIZER_MODEL ) ) ;
if ( tokenizer_name = = " llama " ) {
vocab . type = LLAMA_VOCAB_TYPE_SPM ;
// default special tokens
vocab . special_bos_id = 1 ;
vocab . special_eos_id = 2 ;
vocab . special_unk_id = 0 ;
vocab . special_sep_id = - 1 ;
vocab . special_pad_id = - 1 ;
} else if ( tokenizer_name = = " gpt2 " ) {
vocab . type = LLAMA_VOCAB_TYPE_BPE ;
// read bpe merges and populate bpe ranks
const int merges_keyidx = gguf_find_key ( ctx , kv ( LLM_KV_TOKENIZER_MERGES ) . c_str ( ) ) ;
if ( merges_keyidx = = - 1 ) {
throw std : : runtime_error ( " cannot find tokenizer merges in model file \n " ) ;
}
const int n_merges = gguf_get_arr_n ( ctx , merges_keyidx ) ;
for ( int i = 0 ; i < n_merges ; i + + ) {
const std : : string word = gguf_get_arr_str ( ctx , merges_keyidx , i ) ;
std : : string first ;
std : : string second ;
const size_t pos = word . find ( ' ' , 1 ) ;
if ( pos ! = std : : string : : npos ) {
first = word . substr ( 0 , pos ) ;
second = word . substr ( pos + 1 ) ;
}
vocab . bpe_ranks . emplace ( std : : make_pair ( first , second ) , i ) ;
}
// default special tokens
vocab . special_bos_id = 11 ;
vocab . special_eos_id = 11 ;
vocab . special_unk_id = - 1 ;
vocab . special_sep_id = - 1 ;
vocab . special_pad_id = - 1 ;
} else {
LLAMA_LOG_WARN ( " %s: unknown tokenizer: '%s' " , __func__ , tokenizer_name . c_str ( ) ) ;
LLAMA_LOG_WARN ( " %s: using default tokenizer: 'llama' " , __func__ ) ;
vocab . type = LLAMA_VOCAB_TYPE_SPM ;
}
}
const uint32_t n_vocab = gguf_get_arr_n ( ctx , token_idx ) ;
vocab . id_to_token . resize ( n_vocab ) ;
for ( uint32_t i = 0 ; i < n_vocab ; i + + ) {
std : : string word = gguf_get_arr_str ( ctx , token_idx , i ) ;
vocab . token_to_id [ word ] = i ;
auto & token_data = vocab . id_to_token [ i ] ;
token_data . text = std : : move ( word ) ;
token_data . score = scores [ i ] ;
token_data . type = ( llama_token_type ) toktypes [ i ] ;
}
// determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
if ( vocab . type = = LLAMA_VOCAB_TYPE_SPM ) {
vocab . linefeed_id = llama_byte_to_token ( vocab , ' \n ' ) ;
} else {
vocab . linefeed_id = llama_tokenize_internal ( vocab , " \n " , false ) [ 0 ] ;
}
// special tokens
GGUF_GET_KEY ( ctx , vocab . special_bos_id , gguf_get_val_u32 , GGUF_TYPE_UINT32 , false , kv ( LLM_KV_TOKENIZER_BOS_ID ) ) ;
GGUF_GET_KEY ( ctx , vocab . special_eos_id , gguf_get_val_u32 , GGUF_TYPE_UINT32 , false , kv ( LLM_KV_TOKENIZER_EOS_ID ) ) ;
GGUF_GET_KEY ( ctx , vocab . special_unk_id , gguf_get_val_u32 , GGUF_TYPE_UINT32 , false , kv ( LLM_KV_TOKENIZER_UNK_ID ) ) ;
GGUF_GET_KEY ( ctx , vocab . special_sep_id , gguf_get_val_u32 , GGUF_TYPE_UINT32 , false , kv ( LLM_KV_TOKENIZER_SEP_ID ) ) ;
GGUF_GET_KEY ( ctx , vocab . special_pad_id , gguf_get_val_u32 , GGUF_TYPE_UINT32 , false , kv ( LLM_KV_TOKENIZER_PAD_ID ) ) ;
}
static void llm_load_print_meta ( llama_model_loader & ml , llama_model & model ) {
const auto & hparams = model . hparams ;
const auto & vocab = model . vocab ;
// hparams
LLAMA_LOG_INFO ( " %s: format = %s \n " , __func__ , llama_file_version_name ( ml . fver ) ) ;
LLAMA_LOG_INFO ( " %s: arch = %s \n " , __func__ , LLM_ARCH_NAMES . at ( model . arch ) . c_str ( ) ) ;
LLAMA_LOG_INFO ( " %s: vocab type = %s \n " , __func__ , vocab . type = = LLAMA_VOCAB_TYPE_SPM ? " SPM " : " BPE " ) ; // TODO: fix
LLAMA_LOG_INFO ( " %s: n_vocab = %u \n " , __func__ , hparams . n_vocab ) ;
LLAMA_LOG_INFO ( " %s: n_merges = %u \n " , __func__ , ( int ) vocab . bpe_ranks . size ( ) ) ;
LLAMA_LOG_INFO ( " %s: n_ctx_train = %u \n " , __func__ , hparams . n_ctx_train ) ;
LLAMA_LOG_INFO ( " %s: n_ctx = %u \n " , __func__ , hparams . n_ctx ) ;
LLAMA_LOG_INFO ( " %s: n_embd = %u \n " , __func__ , hparams . n_embd ) ;
LLAMA_LOG_INFO ( " %s: n_head = %u \n " , __func__ , hparams . n_head ) ;
LLAMA_LOG_INFO ( " %s: n_head_kv = %u \n " , __func__ , hparams . n_head_kv ) ;
LLAMA_LOG_INFO ( " %s: n_layer = %u \n " , __func__ , hparams . n_layer ) ;
LLAMA_LOG_INFO ( " %s: n_rot = %u \n " , __func__ , hparams . n_rot ) ; // a.k.a. n_embd_head, n_head_dim
LLAMA_LOG_INFO ( " %s: n_gqa = %u \n " , __func__ , hparams . n_gqa ( ) ) ;
LLAMA_LOG_INFO ( " %s: f_norm_eps = %.1e \n " , __func__ , hparams . f_norm_eps ) ;
LLAMA_LOG_INFO ( " %s: f_norm_rms_eps = %.1e \n " , __func__ , hparams . f_norm_rms_eps ) ;
LLAMA_LOG_INFO ( " %s: n_ff = %u \n " , __func__ , hparams . n_ff ) ;
LLAMA_LOG_INFO ( " %s: freq_base = %.1f \n " , __func__ , hparams . rope_freq_base ) ;
LLAMA_LOG_INFO ( " %s: freq_scale = %g \n " , __func__ , hparams . rope_freq_scale ) ;
LLAMA_LOG_INFO ( " %s: model type = %s \n " , __func__ , llama_model_type_name ( model . type ) ) ;
LLAMA_LOG_INFO ( " %s: model ftype = %s \n " , __func__ , llama_model_ftype_name ( model . ftype ) . c_str ( ) ) ;
LLAMA_LOG_INFO ( " %s: model size = %.2f B \n " , __func__ , ml . n_elements * 1e-9 ) ;
// general kv
LLAMA_LOG_INFO ( " %s: general.name = %s \n " , __func__ , model . name . c_str ( ) ) ;
// special tokens
if ( vocab . special_bos_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: BOS token = %d '%s' \n " , __func__ , vocab . special_bos_id , vocab . id_to_token [ vocab . special_bos_id ] . text . c_str ( ) ) ; }
if ( vocab . special_eos_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: EOS token = %d '%s' \n " , __func__ , vocab . special_eos_id , vocab . id_to_token [ vocab . special_eos_id ] . text . c_str ( ) ) ; }
if ( vocab . special_unk_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: UNK token = %d '%s' \n " , __func__ , vocab . special_unk_id , vocab . id_to_token [ vocab . special_unk_id ] . text . c_str ( ) ) ; }
if ( vocab . special_sep_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: SEP token = %d '%s' \n " , __func__ , vocab . special_sep_id , vocab . id_to_token [ vocab . special_sep_id ] . text . c_str ( ) ) ; }
if ( vocab . special_pad_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: PAD token = %d '%s' \n " , __func__ , vocab . special_pad_id , vocab . id_to_token [ vocab . special_pad_id ] . text . c_str ( ) ) ; }
if ( vocab . linefeed_id ! = - 1 ) { LLAMA_LOG_INFO ( " %s: LF token = %d '%s' \n " , __func__ , vocab . linefeed_id , vocab . id_to_token [ vocab . linefeed_id ] . text . c_str ( ) ) ; }
}
static void llm_load_tensors (
llama_model_loader & ml ,
llama_model & model ,
int n_batch ,
int n_gpu_layers ,
int main_gpu ,
const float * tensor_split ,
const bool mul_mat_q ,
bool low_vram ,
ggml_type memory_type ,
bool use_mlock ,
llama_progress_callback progress_callback ,
void * progress_callback_user_data ) {
model . t_start_us = ggml_time_us ( ) ;
auto & ctx = model . ctx ;
auto & hparams = model . hparams ;
model . n_gpu_layers = n_gpu_layers ;
size_t ctx_size ;
size_t mmapped_size ;
ml . calc_sizes ( ctx_size , mmapped_size ) ;
LLAMA_LOG_INFO ( " %s: ggml ctx size = %7.2f MB \n " , __func__ , ctx_size / 1024.0 / 1024.0 ) ;
// create the ggml context
{
model . buf . resize ( ctx_size ) ;
if ( use_mlock ) {
model . mlock_buf . init ( model . buf . data ) ;
model . mlock_buf . grow_to ( model . buf . size ) ;
}
struct ggml_init_params params = {
/*.mem_size =*/ model . buf . size ,
/*.mem_buffer =*/ model . buf . data ,
/*.no_alloc =*/ ml . use_mmap ,
} ;
model . ctx = ggml_init ( params ) ;
if ( ! model . ctx ) {
throw std : : runtime_error ( format ( " ggml_init() failed " ) ) ;
}
}
( void ) main_gpu ;
( void ) mul_mat_q ;
# if defined(GGML_USE_CUBLAS)
LLAMA_LOG_INFO ( " %s: using " GGML_CUDA_NAME " for GPU acceleration \n " , __func__ ) ;
ggml_cuda_set_main_device ( main_gpu ) ;
ggml_cuda_set_mul_mat_q ( mul_mat_q ) ;
# define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
# define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
# elif defined(GGML_USE_CLBLAST)
LLAMA_LOG_INFO ( " %s: using OpenCL for GPU acceleration \n " , __func__ ) ;
# define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
# define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
# else
# define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
# define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
# endif
// prepare memory for the weights
size_t vram_weights = 0 ;
{
const int64_t n_embd = hparams . n_embd ;
const int64_t n_embd_gqa = hparams . n_embd_gqa ( ) ;
const int64_t n_layer = hparams . n_layer ;
const int64_t n_vocab = hparams . n_vocab ;
const auto tn = LLM_TN ( model . arch ) ;
switch ( model . arch ) {
case LLM_ARCH_LLAMA :
{
model . tok_embeddings = ml . create_tensor ( ctx , tn ( LLM_TENSOR_TOKEN_EMBD , " weight " ) , { n_embd , n_vocab } , GGML_BACKEND_CPU ) ;
// output
{
ggml_backend backend_norm ;
ggml_backend backend_output ;
if ( n_gpu_layers > int ( n_layer ) ) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
# ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD ;
# else
backend_norm = low_vram | | n_gpu_layers < = ( int ) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD ;
# endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT ;
} else {
backend_norm = GGML_BACKEND_CPU ;
backend_output = GGML_BACKEND_CPU ;
}
model . output_norm = ml . create_tensor ( ctx , tn ( LLM_TENSOR_OUTPUT_NORM , " weight " ) , { n_embd } , backend_norm ) ;
model . output = ml . create_tensor ( ctx , tn ( LLM_TENSOR_OUTPUT , " weight " ) , { n_embd , n_vocab } , backend_output ) ;
if ( backend_norm = = GGML_BACKEND_GPU ) {
vram_weights + = ggml_nbytes ( model . output_norm ) ;
}
if ( backend_output = = GGML_BACKEND_GPU_SPLIT ) {
vram_weights + = ggml_nbytes ( model . output ) ;
}
}
const uint32_t n_ff = hparams . n_ff ;
const int i_gpu_start = n_layer - n_gpu_layers ;
model . layers . resize ( n_layer ) ;
for ( uint32_t i = 0 ; i < n_layer ; + + i ) {
const ggml_backend backend = int ( i ) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD ; // NOLINT
const ggml_backend backend_split = int ( i ) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT ; // NOLINT
auto & layer = model . layers [ i ] ;
layer . attn_norm = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_NORM , " weight " , i ) , { n_embd } , backend ) ;
layer . wq = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_Q , " weight " , i ) , { n_embd , n_embd } , backend_split ) ;
layer . wk = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_K , " weight " , i ) , { n_embd , n_embd_gqa } , backend_split ) ;
layer . wv = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_V , " weight " , i ) , { n_embd , n_embd_gqa } , backend_split ) ;
layer . wo = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_OUT , " weight " , i ) , { n_embd , n_embd } , backend_split ) ;
layer . ffn_norm = ml . create_tensor ( ctx , tn ( LLM_TENSOR_FFN_NORM , " weight " , i ) , { n_embd } , backend ) ;
layer . w1 = ml . create_tensor ( ctx , tn ( LLM_TENSOR_FFN_GATE , " weight " , i ) , { n_embd , n_ff } , backend_split ) ;
layer . w2 = ml . create_tensor ( ctx , tn ( LLM_TENSOR_FFN_DOWN , " weight " , i ) , { n_ff , n_embd } , backend_split ) ;
layer . w3 = ml . create_tensor ( ctx , tn ( LLM_TENSOR_FFN_UP , " weight " , i ) , { n_embd , n_ff } , backend_split ) ;
if ( backend = = GGML_BACKEND_GPU ) {
vram_weights + =
ggml_nbytes ( layer . attn_norm ) + ggml_nbytes ( layer . wq ) + ggml_nbytes ( layer . wk ) +
ggml_nbytes ( layer . wv ) + ggml_nbytes ( layer . wo ) + ggml_nbytes ( layer . ffn_norm ) +
ggml_nbytes ( layer . w1 ) + ggml_nbytes ( layer . w2 ) + ggml_nbytes ( layer . w3 ) ;
}
}
} break ;
case LLM_ARCH_BAICHUAN :
{
model . tok_embeddings = ml . create_tensor ( ctx , tn ( LLM_TENSOR_TOKEN_EMBD , " weight " ) , { n_embd , n_vocab } , GGML_BACKEND_CPU ) ;
{
ggml_backend backend_norm ;
ggml_backend backend_output ;
if ( n_gpu_layers > int ( n_layer ) ) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
# ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD ;
# else
backend_norm = low_vram | | n_gpu_layers < = ( int ) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD ;
# endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT ;
} else {
backend_norm = GGML_BACKEND_CPU ;
backend_output = GGML_BACKEND_CPU ;
}
model . output_norm = ml . create_tensor ( ctx , tn ( LLM_TENSOR_OUTPUT_NORM , " weight " ) , { n_embd } , backend_norm ) ;
model . output = ml . create_tensor ( ctx , tn ( LLM_TENSOR_OUTPUT , " weight " ) , { n_embd , n_vocab } , backend_output ) ;
if ( backend_norm = = GGML_BACKEND_GPU ) {
vram_weights + = ggml_nbytes ( model . output_norm ) ;
}
if ( backend_output = = GGML_BACKEND_GPU_SPLIT ) {
vram_weights + = ggml_nbytes ( model . output ) ;
}
}
const uint32_t n_ff = hparams . n_ff ;
const int i_gpu_start = n_layer - n_gpu_layers ;
model . layers . resize ( n_layer ) ;
for ( uint32_t i = 0 ; i < n_layer ; + + i ) {
const ggml_backend backend = int ( i ) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD ; // NOLINT
const ggml_backend backend_split = int ( i ) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT ; // NOLINT
auto & layer = model . layers [ i ] ;
layer . attn_norm = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_NORM , " weight " , i ) , { n_embd } , backend ) ;
layer . wq = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_Q , " weight " , i ) , { n_embd , n_embd } , backend_split ) ;
layer . wk = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_K , " weight " , i ) , { n_embd , n_embd_gqa } , backend_split ) ;
layer . wv = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_V , " weight " , i ) , { n_embd , n_embd_gqa } , backend_split ) ;
layer . wo = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_OUT , " weight " , i ) , { n_embd , n_embd } , backend_split ) ;
layer . ffn_norm = ml . create_tensor ( ctx , tn ( LLM_TENSOR_FFN_NORM , " weight " , i ) , { n_embd } , backend ) ;
layer . w1 = ml . create_tensor ( ctx , tn ( LLM_TENSOR_FFN_GATE , " weight " , i ) , { n_embd , n_ff } , backend_split ) ;
layer . w2 = ml . create_tensor ( ctx , tn ( LLM_TENSOR_FFN_DOWN , " weight " , i ) , { n_ff , n_embd } , backend_split ) ;
layer . w3 = ml . create_tensor ( ctx , tn ( LLM_TENSOR_FFN_UP , " weight " , i ) , { n_embd , n_ff } , backend_split ) ;
if ( backend = = GGML_BACKEND_GPU ) {
vram_weights + =
ggml_nbytes ( layer . attn_norm ) + ggml_nbytes ( layer . wq ) + ggml_nbytes ( layer . wk ) +
ggml_nbytes ( layer . wv ) + ggml_nbytes ( layer . wo ) + ggml_nbytes ( layer . ffn_norm ) +
ggml_nbytes ( layer . w1 ) + ggml_nbytes ( layer . w2 ) + ggml_nbytes ( layer . w3 ) ;
}
}
} break ;
case LLM_ARCH_FALCON :
{
// TODO: CPU-only for now
model . tok_embeddings = ml . create_tensor ( ctx , tn ( LLM_TENSOR_TOKEN_EMBD , " weight " ) , { n_embd , n_vocab } , GGML_BACKEND_CPU ) ;
// output
{
ggml_backend backend_norm ;
ggml_backend backend_output ;
if ( n_gpu_layers > int ( n_layer ) ) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
# ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD ;
# else
backend_norm = low_vram | | n_gpu_layers < = ( int ) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD ;
# endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT ;
} else {
backend_norm = GGML_BACKEND_CPU ;
backend_output = GGML_BACKEND_CPU ;
}
model . output_norm = ml . create_tensor ( ctx , tn ( LLM_TENSOR_OUTPUT_NORM , " weight " ) , { n_embd } , backend_norm ) ;
model . output_norm_b = ml . create_tensor ( ctx , tn ( LLM_TENSOR_OUTPUT_NORM , " bias " ) , { n_embd } , backend_norm ) ;
model . output = ml . create_tensor ( ctx , tn ( LLM_TENSOR_OUTPUT , " weight " ) , { n_embd , n_vocab } , backend_output ) ;
if ( backend_norm = = GGML_BACKEND_GPU ) {
vram_weights + = ggml_nbytes ( model . output_norm ) ;
vram_weights + = ggml_nbytes ( model . output_norm_b ) ;
}
if ( backend_output = = GGML_BACKEND_GPU_SPLIT ) {
vram_weights + = ggml_nbytes ( model . output ) ;
}
}
const uint32_t n_ff = hparams . n_ff ;
const int i_gpu_start = n_layer - n_gpu_layers ;
model . layers . resize ( n_layer ) ;
for ( uint32_t i = 0 ; i < n_layer ; + + i ) {
const ggml_backend backend = int ( i ) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD ; // NOLINT
const ggml_backend backend_split = int ( i ) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT ; // NOLINT
auto & layer = model . layers [ i ] ;
layer . attn_norm = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_NORM , " weight " , i ) , { n_embd } , backend ) ;
layer . attn_norm_b = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_NORM , " bias " , i ) , { n_embd } , backend ) ;
if ( gguf_find_tensor ( ml . ctx_gguf , tn ( LLM_TENSOR_ATTN_NORM_2 , " weight " , i ) . c_str ( ) ) > = 0 ) {
layer . attn_norm_2 = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_NORM_2 , " weight " , i ) , { n_embd } , backend ) ;
layer . attn_norm_2_b = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_NORM_2 , " bias " , i ) , { n_embd } , backend ) ;
if ( backend = = GGML_BACKEND_GPU ) {
vram_weights + = ggml_nbytes ( layer . attn_norm_2 ) ;
vram_weights + = ggml_nbytes ( layer . attn_norm_2_b ) ;
}
}
layer . wqkv = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_QKV , " weight " , i ) , { n_embd , n_embd + 2 * n_embd_gqa } , backend_split ) ;
layer . wo = ml . create_tensor ( ctx , tn ( LLM_TENSOR_ATTN_OUT , " weight " , i ) , { n_embd , n_embd } , backend_split ) ;
layer . w2 = ml . create_tensor ( ctx , tn ( LLM_TENSOR_FFN_DOWN , " weight " , i ) , { n_ff , n_embd } , backend_split ) ;
layer . w3 = ml . create_tensor ( ctx , tn ( LLM_TENSOR_FFN_UP , " weight " , i ) , { n_embd , n_ff } , backend_split ) ;
if ( backend = = GGML_BACKEND_GPU ) {
vram_weights + =
ggml_nbytes ( layer . attn_norm ) + ggml_nbytes ( layer . attn_norm_b ) +
ggml_nbytes ( layer . wqkv ) + ggml_nbytes ( layer . wo ) +
ggml_nbytes ( layer . w2 ) + ggml_nbytes ( layer . w3 ) ;
}
}
} break ;
default :
throw std : : runtime_error ( " unknown architecture " ) ;
} ;
}
ml . done_getting_tensors ( ) ;
// print memory requirements
{
const size_t scale = memory_type = = GGML_TYPE_F32 ? 2 : 1 ;
// this is the total memory required to run the inference
size_t mem_required =
ctx_size +
mmapped_size - vram_weights ; // weights in VRAM not in memory
// this is the memory required by one llama_state
const size_t mem_required_state = scale * hparams . kv_size ( ) ;
LLAMA_LOG_INFO ( " %s: mem required = %7.2f MB (+ %7.2f MB per state) \n " , __func__ ,
mem_required / 1024.0 / 1024.0 , mem_required_state / 1024.0 / 1024.0 ) ;
( void ) n_batch ;
# if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
const int n_gpu = std : : min ( n_gpu_layers , int ( hparams . n_layer ) ) ;
LLAMA_LOG_INFO ( " %s: offloading %d repeating layers to GPU \n " , __func__ , n_gpu ) ;
if ( n_gpu_layers > ( int ) hparams . n_layer ) {
LLAMA_LOG_INFO ( " %s: offloading non-repeating layers to GPU \n " , __func__ ) ;
2023-05-14 15:46:19 +00:00
}
2023-09-15 17:06:31 +00:00
size_t vram_kv_cache = 0 ;
# ifdef GGML_USE_CUBLAS
const int max_backend_supported_layers = hparams . n_layer + 3 ;
const int max_offloadable_layers = low_vram ? hparams . n_layer + 1 : hparams . n_layer + 3 ;
if ( n_gpu_layers > ( int ) hparams . n_layer + 1 ) {
if ( low_vram ) {
LLAMA_LOG_INFO ( " %s: cannot offload v cache to GPU due to low VRAM option \n " , __func__ ) ;
} else {
LLAMA_LOG_INFO ( " %s: offloading v cache to GPU \n " , __func__ ) ;
vram_kv_cache + = hparams . kv_size ( ) / 2 ;
2023-05-23 11:04:39 +00:00
}
2023-09-15 17:06:31 +00:00
}
if ( n_gpu_layers > ( int ) hparams . n_layer + 2 ) {
if ( low_vram ) {
LLAMA_LOG_WARN ( " %s: cannot offload k cache to GPU due to low VRAM option \n " , __func__ ) ;
} else {
LLAMA_LOG_INFO ( " %s: offloading k cache to GPU \n " , __func__ ) ;
vram_kv_cache + = hparams . kv_size ( ) / 2 ;
2023-05-23 11:04:39 +00:00
}
2023-05-14 15:46:19 +00:00
}
2023-09-15 17:06:31 +00:00
# elif defined(GGML_USE_CLBLAST)
const int max_backend_supported_layers = hparams . n_layer + 1 ;
const int max_offloadable_layers = hparams . n_layer + 1 ;
2023-05-23 11:04:39 +00:00
# endif // GGML_USE_CUBLAS
2023-05-14 15:46:19 +00:00
2023-09-15 17:06:31 +00:00
LLAMA_LOG_INFO ( " %s: offloaded %d/%d layers to GPU \n " ,
__func__ , std : : min ( n_gpu_layers , max_offloadable_layers ) , max_backend_supported_layers ) ;
LLAMA_LOG_INFO ( " %s: VRAM used: %zu MB \n " ,
__func__ , ( vram_weights + vram_kv_cache + MB - 1 ) / MB ) ; // round up
# else
( void ) n_gpu_layers ;
# endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
}
// populate `tensors_by_name`
for ( int i = 0 ; i < ml . n_tensors ; + + i ) {
struct ggml_tensor * cur = ggml_get_tensor ( ctx , ml . get_tensor_name ( i ) ) ;
model . tensors_by_name . emplace_back ( ggml_get_name ( cur ) , cur ) ;
}
( void ) tensor_split ;
# if defined(GGML_USE_CUBLAS)
{
ggml_cuda_set_tensor_split ( tensor_split ) ;
}
# endif
ml . load_all_data ( ctx , progress_callback , progress_callback_user_data , use_mlock ? & model . mlock_mmap : NULL ) ;
2023-05-23 11:04:39 +00:00
if ( progress_callback ) {
progress_callback ( 1.0f , progress_callback_user_data ) ;
2023-05-14 15:46:19 +00:00
}
2023-05-23 11:04:39 +00:00
2023-09-15 17:06:31 +00:00
model . mapping = std : : move ( ml . mapping ) ;
2023-03-27 18:00:32 +00:00
2023-04-10 19:59:13 +00:00
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
2023-09-15 17:06:31 +00:00
model . t_load_us = ggml_time_us ( ) - model . t_start_us ;
2023-04-10 19:59:13 +00:00
}
2023-03-27 18:00:32 +00:00
2023-04-10 19:59:13 +00:00
static bool llama_model_load (
const std : : string & fname ,
2023-09-15 17:06:31 +00:00
llama_model & model ,
2023-04-10 19:59:13 +00:00
int n_ctx ,
2023-09-15 17:06:31 +00:00
int n_batch ,
2023-05-14 15:46:19 +00:00
int n_gpu_layers ,
2023-09-15 17:06:31 +00:00
int main_gpu ,
const float * tensor_split ,
const bool mul_mat_q ,
float rope_freq_base ,
float rope_freq_scale ,
bool low_vram ,
2023-04-10 19:59:13 +00:00
ggml_type memory_type ,
bool use_mmap ,
bool use_mlock ,
bool vocab_only ,
llama_progress_callback progress_callback ,
void * progress_callback_user_data ) {
try {
2023-09-15 17:06:31 +00:00
std : : unique_ptr < llama_model_loader > ml ( new llama_model_loader ( fname , use_mmap ) ) ;
llm_load_arch ( * ml , model ) ;
llm_load_hparams ( * ml , model , n_ctx , rope_freq_base , rope_freq_scale ) ;
llm_load_vocab ( * ml , model ) ;
llm_load_print_meta ( * ml , model ) ;
if ( model . hparams . n_vocab ! = model . vocab . id_to_token . size ( ) ) {
throw std : : runtime_error ( " vocab size mismatch " ) ;
}
if ( vocab_only ) {
LLAMA_LOG_INFO ( " %s: vocab only - skipping tensors \n " , __func__ ) ;
return true ;
}
llm_load_tensors (
* ml , model , n_batch , n_gpu_layers ,
main_gpu , tensor_split , mul_mat_q , low_vram , memory_type ,
use_mlock , progress_callback , progress_callback_user_data ) ;
} catch ( const std : : exception & err ) {
LLAMA_LOG_ERROR ( " error loading model: %s \n " , err . what ( ) ) ;
2023-04-10 19:59:13 +00:00
return false ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
return true ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
static struct ggml_cgraph * llm_build_llama (
llama_context & lctx ,
const llama_token * tokens ,
const float * embd ,
int n_tokens ,
int n_past ) {
GGML_ASSERT ( ( ! tokens & & embd ) | | ( tokens & & ! embd ) ) ; // NOLINT
const int N = n_tokens ;
const auto & model = lctx . model ;
const auto & hparams = model . hparams ;
const auto & kv_self = lctx . kv_self ;
GGML_ASSERT ( ! ! kv_self . ctx ) ;
const int64_t n_embd = hparams . n_embd ;
const int64_t n_layer = hparams . n_layer ;
const int64_t n_ctx = hparams . n_ctx ;
const int64_t n_head = hparams . n_head ;
const int64_t n_head_kv = hparams . n_head_kv ;
const int64_t n_embd_head = hparams . n_embd_head ( ) ;
const int64_t n_embd_gqa = hparams . n_embd_gqa ( ) ;
GGML_ASSERT ( n_embd_head = = hparams . n_rot ) ;
const float freq_base = hparams . rope_freq_base ;
const float freq_scale = hparams . rope_freq_scale ;
const float norm_rms_eps = hparams . f_norm_rms_eps ;
const int n_gpu_layers = model . n_gpu_layers ;
auto & buf_compute = lctx . buf_compute ;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute . size ,
/*.mem_buffer =*/ buf_compute . data ,
/*.no_alloc =*/ false ,
} ;
params . no_alloc = true ;
struct ggml_context * ctx0 = ggml_init ( params ) ;
ggml_cgraph * gf = ggml_new_graph ( ctx0 ) ;
struct ggml_tensor * cur ;
struct ggml_tensor * inpL ;
if ( tokens ) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d ( ctx0 , GGML_TYPE_I32 , N ) ;
ggml_allocr_alloc ( lctx . alloc , inp_tokens ) ;
if ( ! ggml_allocr_is_measure ( lctx . alloc ) ) {
memcpy ( inp_tokens - > data , tokens , N * ggml_element_size ( inp_tokens ) ) ;
}
ggml_set_name ( inp_tokens , " inp_tokens " ) ;
inpL = ggml_get_rows ( ctx0 , model . tok_embeddings , inp_tokens ) ;
} else {
# ifdef GGML_USE_MPI
GGML_ASSERT ( false & & " not implemented " ) ;
# endif
inpL = ggml_new_tensor_2d ( ctx0 , GGML_TYPE_F32 , n_embd , N ) ;
ggml_allocr_alloc ( lctx . alloc , inpL ) ;
if ( ! ggml_allocr_is_measure ( lctx . alloc ) ) {
memcpy ( inpL - > data , embd , N * n_embd * ggml_element_size ( inpL ) ) ;
}
2023-05-14 15:46:19 +00:00
}
2023-09-15 17:06:31 +00:00
const int i_gpu_start = n_layer - n_gpu_layers ;
( void ) i_gpu_start ;
// offload functions set the tensor output backend to GPU
// tensors are GPU-accelerated if any input or the output has been offloaded
//
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
// in that case ggml_cuda_assign_buffers has no effect
offload_func_t offload_func_nr = llama_nop ; // nr = non-repeating
offload_func_t offload_func_kq = llama_nop ;
offload_func_t offload_func_v = llama_nop ;
# ifdef GGML_USE_CUBLAS
if ( n_gpu_layers > n_layer ) {
offload_func_nr = ggml_cuda_assign_buffers_no_alloc ;
}
if ( n_gpu_layers > n_layer + 1 ) {
offload_func_v = ggml_cuda_assign_buffers_no_alloc ;
}
if ( n_gpu_layers > n_layer + 2 ) {
offload_func_kq = ggml_cuda_assign_buffers_no_alloc ;
}
# endif // GGML_USE_CUBLAS
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d ( ctx0 , GGML_TYPE_F32 , 1 ) ;
ggml_allocr_alloc ( lctx . alloc , KQ_scale ) ;
if ( ! ggml_allocr_is_measure ( lctx . alloc ) ) {
ggml_set_f32 ( KQ_scale , 1.0f / sqrtf ( float ( n_embd ) / n_head ) ) ;
}
ggml_set_name ( KQ_scale , " 1/sqrt(n_embd_head) " ) ;
for ( int il = 0 ; il < n_layer ; + + il ) {
ggml_format_name ( inpL , " layer_inp_%d " , il ) ;
offload_func_t offload_func = llama_nop ;
# ifdef GGML_USE_CUBLAS
if ( il > = i_gpu_start ) {
offload_func = ggml_cuda_assign_buffers_no_alloc ;
}
# endif // GGML_USE_CUBLAS
struct ggml_tensor * inpSA = inpL ;
// norm
{
cur = ggml_rms_norm ( ctx0 , inpL , norm_rms_eps ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " rms_norm_0 " ) ;
// cur = cur*attn_norm(broadcasted)
cur = ggml_mul ( ctx0 , cur , model . layers [ il ] . attn_norm ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " attention_norm_0 " ) ;
}
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * tmpk = ggml_mul_mat ( ctx0 , model . layers [ il ] . wk , cur ) ;
offload_func_kq ( tmpk ) ;
ggml_set_name ( tmpk , " tmpk " ) ;
struct ggml_tensor * tmpq = ggml_mul_mat ( ctx0 , model . layers [ il ] . wq , cur ) ;
offload_func_kq ( tmpq ) ;
ggml_set_name ( tmpq , " tmpq " ) ;
struct ggml_tensor * Kcur = ggml_rope_custom_inplace ( ctx0 , ggml_reshape_3d ( ctx0 , tmpk , n_embd_head , n_head_kv , N ) , n_past , n_embd_head , 0 , 0 , freq_base , freq_scale ) ;
offload_func_kq ( Kcur ) ;
ggml_set_name ( Kcur , " Kcur " ) ;
struct ggml_tensor * Qcur = ggml_rope_custom_inplace ( ctx0 , ggml_reshape_3d ( ctx0 , tmpq , n_embd_head , n_head , N ) , n_past , n_embd_head , 0 , 0 , freq_base , freq_scale ) ;
offload_func_kq ( Qcur ) ;
ggml_set_name ( Qcur , " Qcur " ) ;
// store key and value to memory
{
// compute the transposed [N, n_embd] V matrix
struct ggml_tensor * tmpv = ggml_mul_mat ( ctx0 , model . layers [ il ] . wv , cur ) ;
offload_func_v ( tmpv ) ;
ggml_set_name ( tmpv , " tmpv " ) ;
struct ggml_tensor * Vcur = ggml_transpose ( ctx0 , ggml_reshape_2d ( ctx0 , tmpv , n_embd_gqa , N ) ) ;
offload_func_v ( Vcur ) ;
ggml_set_name ( Vcur , " Vcur " ) ;
struct ggml_tensor * k = ggml_view_1d ( ctx0 , kv_self . k , N * n_embd_gqa , ( ggml_element_size ( kv_self . k ) * n_embd_gqa ) * ( il * n_ctx + n_past ) ) ;
offload_func_kq ( k ) ;
ggml_set_name ( k , " k " ) ;
struct ggml_tensor * v = ggml_view_2d ( ctx0 , kv_self . v , N , n_embd_gqa ,
( n_ctx ) * ggml_element_size ( kv_self . v ) ,
( il * n_ctx ) * ggml_element_size ( kv_self . v ) * n_embd_gqa + n_past * ggml_element_size ( kv_self . v ) ) ;
offload_func_v ( v ) ;
ggml_set_name ( v , " v " ) ;
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand ( gf , ggml_cpy ( ctx0 , Kcur , k ) ) ;
ggml_build_forward_expand ( gf , ggml_cpy ( ctx0 , Vcur , v ) ) ;
}
struct ggml_tensor * Q = ggml_permute ( ctx0 , Qcur , 0 , 2 , 1 , 3 ) ;
offload_func_kq ( Q ) ;
ggml_set_name ( Q , " Q " ) ;
struct ggml_tensor * K =
ggml_view_3d ( ctx0 , kv_self . k ,
n_embd_head , n_past + N , n_head_kv ,
ggml_element_size ( kv_self . k ) * n_embd_gqa ,
ggml_element_size ( kv_self . k ) * n_embd_head ,
ggml_element_size ( kv_self . k ) * n_embd_gqa * n_ctx * il ) ;
offload_func_kq ( K ) ;
ggml_set_name ( K , " K " ) ;
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat ( ctx0 , K , Q ) ;
offload_func_kq ( KQ ) ;
ggml_set_name ( KQ , " KQ " ) ;
// KQ_scaled = KQ / sqrt(n_embd_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace ( ctx0 , KQ , KQ_scale ) ;
offload_func_kq ( KQ_scaled ) ;
ggml_set_name ( KQ_scaled , " KQ_scaled " ) ;
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace ( ctx0 , KQ_scaled , n_past ) ;
offload_func_kq ( KQ_masked ) ;
ggml_set_name ( KQ_masked , " KQ_masked " ) ;
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace ( ctx0 , KQ_masked ) ;
offload_func_v ( KQ_soft_max ) ;
ggml_set_name ( KQ_soft_max , " KQ_soft_max " ) ;
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d ( ctx0 , kv_self . v ,
n_past + N , n_embd_head , n_head_kv ,
ggml_element_size ( kv_self . v ) * n_ctx ,
ggml_element_size ( kv_self . v ) * n_ctx * n_embd_head ,
ggml_element_size ( kv_self . v ) * n_ctx * n_embd_gqa * il ) ;
offload_func_v ( V ) ;
ggml_set_name ( V , " V " ) ;
# if 1
struct ggml_tensor * KQV = ggml_mul_mat ( ctx0 , V , KQ_soft_max ) ;
offload_func_v ( KQV ) ;
ggml_set_name ( KQV , " KQV " ) ;
# else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
// is there a better way?
struct ggml_tensor * V_cont = ggml_cpy ( ctx0 , V , ggml_new_tensor_3d ( ctx0 , kv_self . v - > type , n_past + N , n_embd_head , n_head ) ) ;
struct ggml_tensor * KQV = ggml_mul_mat ( ctx0 , V_cont , KQ_soft_max ) ;
# endif
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute ( ctx0 , KQV , 0 , 2 , 1 , 3 ) ;
offload_func_v ( KQV_merged ) ;
ggml_set_name ( KQV_merged , " KQV_merged " ) ;
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy ( ctx0 ,
KQV_merged ,
ggml_new_tensor_2d ( ctx0 , GGML_TYPE_F32 , n_embd , N ) ) ;
offload_func_v ( cur ) ;
ggml_set_name ( cur , " KQV_merged_contiguous " ) ;
// projection (no bias)
cur = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . wo ,
cur ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " result_wo " ) ;
}
struct ggml_tensor * inpFF = ggml_add ( ctx0 , cur , inpSA ) ;
offload_func ( inpFF ) ;
ggml_set_name ( inpFF , " inpFF " ) ;
// feed-forward network
{
// norm
{
cur = ggml_rms_norm ( ctx0 , inpFF , norm_rms_eps ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " rms_norm_1 " ) ;
// cur = cur*ffn_norm(broadcasted)
cur = ggml_mul ( ctx0 , cur , model . layers [ il ] . ffn_norm ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " ffn_norm " ) ;
}
struct ggml_tensor * tmp = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . w3 ,
cur ) ;
offload_func ( tmp ) ;
ggml_set_name ( tmp , " result_w3 " ) ;
cur = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . w1 ,
cur ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " result_w1 " ) ;
// SILU activation
cur = ggml_silu ( ctx0 , cur ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " silu " ) ;
cur = ggml_mul ( ctx0 , cur , tmp ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " silu_x_result_w3 " ) ;
cur = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . w2 ,
cur ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " result_w2 " ) ;
}
cur = ggml_add ( ctx0 , cur , inpFF ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " inpFF_+_result_w2 " ) ;
// input for next layer
inpL = cur ;
}
cur = inpL ;
// norm
{
cur = ggml_rms_norm ( ctx0 , cur , norm_rms_eps ) ;
offload_func_nr ( cur ) ;
ggml_set_name ( cur , " rms_norm_2 " ) ;
// cur = cur*norm(broadcasted)
cur = ggml_mul ( ctx0 , cur , model . output_norm ) ;
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
ggml_set_name ( cur , " result_norm " ) ;
}
// lm_head
cur = ggml_mul_mat ( ctx0 , model . output , cur ) ;
ggml_set_name ( cur , " result_output " ) ;
ggml_build_forward_expand ( gf , cur ) ;
ggml_free ( ctx0 ) ;
return gf ;
}
static struct ggml_cgraph * llm_build_baichaun (
llama_context & lctx ,
const llama_token * tokens ,
const float * embd ,
int n_tokens ,
int n_past ) {
GGML_ASSERT ( ( ! tokens & & embd ) | | ( tokens & & ! embd ) ) ; // NOLINT
2023-03-27 18:00:32 +00:00
const int N = n_tokens ;
const auto & model = lctx . model ;
const auto & hparams = model . hparams ;
2023-09-15 17:06:31 +00:00
const auto & kv_self = lctx . kv_self ;
GGML_ASSERT ( ! ! kv_self . ctx ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
const int64_t n_embd = hparams . n_embd ;
const int64_t n_layer = hparams . n_layer ;
const int64_t n_ctx = hparams . n_ctx ;
const int64_t n_head = hparams . n_head ;
const int64_t n_head_kv = hparams . n_head_kv ;
const int64_t n_embd_head = hparams . n_embd_head ( ) ;
const int64_t n_embd_gqa = hparams . n_embd_gqa ( ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( n_embd_head = = hparams . n_rot ) ;
const float freq_base = hparams . rope_freq_base ;
const float freq_scale = hparams . rope_freq_scale ;
const float norm_rms_eps = hparams . f_norm_rms_eps ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
const int n_gpu_layers = model . n_gpu_layers ;
2023-09-07 09:33:12 +00:00
2023-09-15 17:06:31 +00:00
auto & buf_compute = lctx . buf_compute ;
2023-03-27 18:00:32 +00:00
struct ggml_init_params params = {
2023-04-10 19:59:13 +00:00
/*.mem_size =*/ buf_compute . size ,
2023-09-15 17:06:31 +00:00
/*.mem_buffer =*/ buf_compute . data ,
2023-04-10 19:59:13 +00:00
/*.no_alloc =*/ false ,
2023-03-27 18:00:32 +00:00
} ;
2023-09-15 17:06:31 +00:00
params . no_alloc = true ;
2023-03-27 18:00:32 +00:00
struct ggml_context * ctx0 = ggml_init ( params ) ;
2023-09-15 17:06:31 +00:00
ggml_cgraph * gf = ggml_new_graph ( ctx0 ) ;
struct ggml_tensor * cur ;
struct ggml_tensor * inpL ;
if ( tokens ) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d ( ctx0 , GGML_TYPE_I32 , N ) ;
ggml_allocr_alloc ( lctx . alloc , inp_tokens ) ;
if ( ! ggml_allocr_is_measure ( lctx . alloc ) ) {
memcpy ( inp_tokens - > data , tokens , N * ggml_element_size ( inp_tokens ) ) ;
}
ggml_set_name ( inp_tokens , " inp_tokens " ) ;
inpL = ggml_get_rows ( ctx0 , model . tok_embeddings , inp_tokens ) ;
} else {
# ifdef GGML_USE_MPI
GGML_ASSERT ( false & & " not implemented " ) ;
# endif
inpL = ggml_new_tensor_2d ( ctx0 , GGML_TYPE_F32 , n_embd , N ) ;
ggml_allocr_alloc ( lctx . alloc , inpL ) ;
if ( ! ggml_allocr_is_measure ( lctx . alloc ) ) {
memcpy ( inpL - > data , embd , N * n_embd * ggml_element_size ( inpL ) ) ;
}
}
const int i_gpu_start = n_layer - n_gpu_layers ;
( void ) i_gpu_start ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// offload functions set the tensor output backend to GPU
// tensors are GPU-accelerated if any input or the output has been offloaded
//
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
// in that case ggml_cuda_assign_buffers has no effect
offload_func_t offload_func_nr = llama_nop ; // nr = non-repeating
offload_func_t offload_func_kq = llama_nop ;
offload_func_t offload_func_v = llama_nop ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
# ifdef GGML_USE_CUBLAS
if ( n_gpu_layers > n_layer ) {
offload_func_nr = ggml_cuda_assign_buffers_no_alloc ;
}
if ( n_gpu_layers > n_layer + 1 ) {
offload_func_v = ggml_cuda_assign_buffers_no_alloc ;
}
if ( n_gpu_layers > n_layer + 2 ) {
offload_func_kq = ggml_cuda_assign_buffers_no_alloc ;
}
# endif // GGML_USE_CUBLAS
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d ( ctx0 , GGML_TYPE_F32 , 1 ) ;
ggml_allocr_alloc ( lctx . alloc , KQ_scale ) ;
if ( ! ggml_allocr_is_measure ( lctx . alloc ) ) {
ggml_set_f32 ( KQ_scale , 1.0f / sqrtf ( float ( n_embd ) / n_head ) ) ;
}
ggml_set_name ( KQ_scale , " 1/sqrt(n_embd_head) " ) ;
2023-03-27 18:00:32 +00:00
for ( int il = 0 ; il < n_layer ; + + il ) {
2023-09-15 17:06:31 +00:00
ggml_format_name ( inpL , " layer_inp_%d " , il ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
offload_func_t offload_func = llama_nop ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
# ifdef GGML_USE_CUBLAS
if ( il > = i_gpu_start ) {
offload_func = ggml_cuda_assign_buffers_no_alloc ;
}
# endif // GGML_USE_CUBLAS
struct ggml_tensor * inpSA = inpL ;
2023-03-27 18:00:32 +00:00
// norm
{
2023-09-15 17:06:31 +00:00
cur = ggml_rms_norm ( ctx0 , inpL , norm_rms_eps ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " rms_norm_0 " ) ;
// cur = cur*attn_norm(broadcasted)
cur = ggml_mul ( ctx0 , cur , model . layers [ il ] . attn_norm ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " attention_norm_0 " ) ;
2023-03-27 18:00:32 +00:00
}
// self-attention
{
2023-04-10 19:59:13 +00:00
// compute Q and K and RoPE them
2023-09-15 17:06:31 +00:00
struct ggml_tensor * tmpk = ggml_mul_mat ( ctx0 , model . layers [ il ] . wk , cur ) ;
offload_func_kq ( tmpk ) ;
ggml_set_name ( tmpk , " tmpk " ) ;
struct ggml_tensor * tmpq = ggml_mul_mat ( ctx0 , model . layers [ il ] . wq , cur ) ;
offload_func_kq ( tmpq ) ;
ggml_set_name ( tmpq , " tmpq " ) ;
struct ggml_tensor * Kcur ;
struct ggml_tensor * Qcur ;
switch ( model . type ) {
case MODEL_7B :
Kcur = ggml_rope_custom_inplace ( ctx0 , ggml_reshape_3d ( ctx0 , tmpk , n_embd_head , n_head_kv , N ) , n_past , n_embd_head , 0 , 0 , freq_base , freq_scale ) ;
Qcur = ggml_rope_custom_inplace ( ctx0 , ggml_reshape_3d ( ctx0 , tmpq , n_embd_head , n_head , N ) , n_past , n_embd_head , 0 , 0 , freq_base , freq_scale ) ;
break ;
case MODEL_13B :
Kcur = ggml_reshape_3d ( ctx0 , tmpk , n_embd / n_head , n_head , N ) ;
Qcur = ggml_reshape_3d ( ctx0 , tmpq , n_embd / n_head , n_head , N ) ;
break ;
default :
GGML_ASSERT ( false ) ;
}
offload_func_kq ( Kcur ) ;
2023-05-14 15:46:19 +00:00
ggml_set_name ( Kcur , " Kcur " ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
offload_func_kq ( Qcur ) ;
ggml_set_name ( Qcur , " Qcur " ) ;
2023-03-27 18:00:32 +00:00
// store key and value to memory
2023-04-10 19:59:13 +00:00
{
// compute the transposed [N, n_embd] V matrix
2023-09-15 17:06:31 +00:00
struct ggml_tensor * tmpv = ggml_mul_mat ( ctx0 , model . layers [ il ] . wv , cur ) ;
offload_func_v ( tmpv ) ;
ggml_set_name ( tmpv , " tmpv " ) ;
struct ggml_tensor * Vcur = ggml_transpose ( ctx0 , ggml_reshape_2d ( ctx0 , tmpv , n_embd_gqa , N ) ) ;
offload_func_v ( Vcur ) ;
ggml_set_name ( Vcur , " Vcur " ) ;
struct ggml_tensor * k = ggml_view_1d ( ctx0 , kv_self . k , N * n_embd_gqa , ( ggml_element_size ( kv_self . k ) * n_embd_gqa ) * ( il * n_ctx + n_past ) ) ;
offload_func_kq ( k ) ;
ggml_set_name ( k , " k " ) ;
struct ggml_tensor * v = ggml_view_2d ( ctx0 , kv_self . v , N , n_embd_gqa ,
2023-04-10 19:59:13 +00:00
( n_ctx ) * ggml_element_size ( kv_self . v ) ,
2023-09-15 17:06:31 +00:00
( il * n_ctx ) * ggml_element_size ( kv_self . v ) * n_embd_gqa + n_past * ggml_element_size ( kv_self . v ) ) ;
offload_func_v ( v ) ;
ggml_set_name ( v , " v " ) ;
2023-03-27 18:00:32 +00:00
2023-04-10 19:59:13 +00:00
// important: storing RoPE-ed version of K in the KV cache!
2023-09-15 17:06:31 +00:00
ggml_build_forward_expand ( gf , ggml_cpy ( ctx0 , Kcur , k ) ) ;
ggml_build_forward_expand ( gf , ggml_cpy ( ctx0 , Vcur , v ) ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
struct ggml_tensor * Q = ggml_permute ( ctx0 , Qcur , 0 , 2 , 1 , 3 ) ;
offload_func_kq ( Q ) ;
2023-05-14 15:46:19 +00:00
ggml_set_name ( Q , " Q " ) ;
2023-03-27 18:00:32 +00:00
struct ggml_tensor * K =
2023-09-15 17:06:31 +00:00
ggml_view_3d ( ctx0 , kv_self . k ,
n_embd_head , n_past + N , n_head_kv ,
ggml_element_size ( kv_self . k ) * n_embd_gqa ,
ggml_element_size ( kv_self . k ) * n_embd_head ,
ggml_element_size ( kv_self . k ) * n_embd_gqa * n_ctx * il ) ;
offload_func_kq ( K ) ;
2023-05-14 15:46:19 +00:00
ggml_set_name ( K , " K " ) ;
2023-03-27 18:00:32 +00:00
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat ( ctx0 , K , Q ) ;
2023-09-15 17:06:31 +00:00
offload_func_kq ( KQ ) ;
2023-05-14 15:46:19 +00:00
ggml_set_name ( KQ , " KQ " ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// KQ_scaled = KQ / sqrt(n_embd_head)
2023-05-14 15:46:19 +00:00
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace ( ctx0 , KQ , KQ_scale ) ;
2023-09-15 17:06:31 +00:00
offload_func_kq ( KQ_scaled ) ;
2023-05-14 15:46:19 +00:00
ggml_set_name ( KQ_scaled , " KQ_scaled " ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
struct ggml_tensor * KQ_masked ;
struct ggml_tensor * KQ_scaled_alibi ;
switch ( model . type ) {
case MODEL_7B :
KQ_masked = ggml_diag_mask_inf_inplace ( ctx0 , KQ_scaled , n_past ) ;
break ;
case MODEL_13B :
KQ_scaled_alibi = ggml_alibi ( ctx0 , KQ_scaled , n_past , n_head , 8 ) ;
ggml_set_name ( KQ_scaled_alibi , " KQ_scaled_alibi " ) ;
KQ_masked = ggml_diag_mask_inf ( ctx0 , KQ_scaled_alibi , n_past ) ;
break ;
default :
GGML_ASSERT ( false ) ;
}
2023-03-27 18:00:32 +00:00
// KQ_masked = mask_past(KQ_scaled)
2023-09-15 17:06:31 +00:00
// struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
// struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
// offload_func_kq(KQ_masked);
// ggml_set_name(KQ_masked, "KQ_masked");
2023-03-27 18:00:32 +00:00
// KQ = soft_max(KQ_masked)
2023-05-14 15:46:19 +00:00
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace ( ctx0 , KQ_masked ) ;
2023-09-15 17:06:31 +00:00
offload_func_v ( KQ_soft_max ) ;
2023-05-14 15:46:19 +00:00
ggml_set_name ( KQ_soft_max , " KQ_soft_max " ) ;
2023-04-10 19:59:13 +00:00
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d ( ctx0 , kv_self . v ,
2023-09-15 17:06:31 +00:00
n_past + N , n_embd_head , n_head_kv ,
ggml_element_size ( kv_self . v ) * n_ctx ,
ggml_element_size ( kv_self . v ) * n_ctx * n_embd_head ,
ggml_element_size ( kv_self . v ) * n_ctx * n_embd_gqa * il ) ;
offload_func_v ( V ) ;
2023-05-14 15:46:19 +00:00
ggml_set_name ( V , " V " ) ;
2023-03-27 18:00:32 +00:00
2023-04-10 19:59:13 +00:00
# if 1
struct ggml_tensor * KQV = ggml_mul_mat ( ctx0 , V , KQ_soft_max ) ;
2023-09-15 17:06:31 +00:00
offload_func_v ( KQV ) ;
2023-05-14 15:46:19 +00:00
ggml_set_name ( KQV , " KQV " ) ;
2023-04-10 19:59:13 +00:00
# else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
// is there a better way?
2023-09-15 17:06:31 +00:00
struct ggml_tensor * V_cont = ggml_cpy ( ctx0 , V , ggml_new_tensor_3d ( ctx0 , kv_self . v - > type , n_past + N , n_embd_head , n_head ) ) ;
2023-04-10 19:59:13 +00:00
struct ggml_tensor * KQV = ggml_mul_mat ( ctx0 , V_cont , KQ_soft_max ) ;
# endif
2023-03-27 18:00:32 +00:00
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute ( ctx0 , KQV , 0 , 2 , 1 , 3 ) ;
2023-09-15 17:06:31 +00:00
offload_func_v ( KQV_merged ) ;
2023-05-14 15:46:19 +00:00
ggml_set_name ( KQV_merged , " KQV_merged " ) ;
2023-03-27 18:00:32 +00:00
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy ( ctx0 ,
KQV_merged ,
ggml_new_tensor_2d ( ctx0 , GGML_TYPE_F32 , n_embd , N ) ) ;
2023-09-15 17:06:31 +00:00
offload_func_v ( cur ) ;
2023-05-14 15:46:19 +00:00
ggml_set_name ( cur , " KQV_merged_contiguous " ) ;
2023-03-27 18:00:32 +00:00
// projection (no bias)
cur = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . wo ,
cur ) ;
2023-09-15 17:06:31 +00:00
offload_func ( cur ) ;
ggml_set_name ( cur , " result_wo " ) ;
2023-03-27 18:00:32 +00:00
}
struct ggml_tensor * inpFF = ggml_add ( ctx0 , cur , inpSA ) ;
2023-09-15 17:06:31 +00:00
offload_func ( inpFF ) ;
ggml_set_name ( inpFF , " inpFF " ) ;
2023-03-27 18:00:32 +00:00
// feed-forward network
{
// norm
{
2023-09-15 17:06:31 +00:00
cur = ggml_rms_norm ( ctx0 , inpFF , norm_rms_eps ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " rms_norm_1 " ) ;
2023-03-27 18:00:32 +00:00
2023-05-23 11:04:39 +00:00
// cur = cur*ffn_norm(broadcasted)
cur = ggml_mul ( ctx0 , cur , model . layers [ il ] . ffn_norm ) ;
2023-09-15 17:06:31 +00:00
offload_func ( cur ) ;
ggml_set_name ( cur , " ffn_norm " ) ;
2023-03-27 18:00:32 +00:00
}
struct ggml_tensor * tmp = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . w3 ,
cur ) ;
2023-09-15 17:06:31 +00:00
offload_func ( tmp ) ;
ggml_set_name ( tmp , " result_w3 " ) ;
2023-03-27 18:00:32 +00:00
cur = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . w1 ,
cur ) ;
2023-09-15 17:06:31 +00:00
offload_func ( cur ) ;
ggml_set_name ( cur , " result_w1 " ) ;
2023-03-27 18:00:32 +00:00
// SILU activation
cur = ggml_silu ( ctx0 , cur ) ;
2023-09-15 17:06:31 +00:00
offload_func ( cur ) ;
ggml_set_name ( cur , " silu " ) ;
2023-03-27 18:00:32 +00:00
cur = ggml_mul ( ctx0 , cur , tmp ) ;
2023-09-15 17:06:31 +00:00
offload_func ( cur ) ;
ggml_set_name ( cur , " silu_x_result_w3 " ) ;
2023-03-27 18:00:32 +00:00
cur = ggml_mul_mat ( ctx0 ,
model . layers [ il ] . w2 ,
cur ) ;
2023-09-15 17:06:31 +00:00
offload_func ( cur ) ;
ggml_set_name ( cur , " result_w2 " ) ;
2023-03-27 18:00:32 +00:00
}
cur = ggml_add ( ctx0 , cur , inpFF ) ;
2023-09-15 17:06:31 +00:00
offload_func ( cur ) ;
ggml_set_name ( cur , " inpFF_+_result_w2 " ) ;
2023-03-27 18:00:32 +00:00
// input for next layer
inpL = cur ;
}
2023-09-15 17:06:31 +00:00
cur = inpL ;
// norm
{
cur = ggml_rms_norm ( ctx0 , cur , norm_rms_eps ) ;
offload_func_nr ( cur ) ;
ggml_set_name ( cur , " rms_norm_2 " ) ;
// cur = cur*norm(broadcasted)
cur = ggml_mul ( ctx0 , cur , model . output_norm ) ;
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
ggml_set_name ( cur , " result_norm " ) ;
}
// lm_head
cur = ggml_mul_mat ( ctx0 , model . output , cur ) ;
ggml_set_name ( cur , " result_output " ) ;
ggml_build_forward_expand ( gf , cur ) ;
ggml_free ( ctx0 ) ;
return gf ;
}
static struct ggml_cgraph * llm_build_falcon (
llama_context & lctx ,
const llama_token * tokens ,
const float * embd ,
int n_tokens ,
int n_past ) {
GGML_ASSERT ( ( ! tokens & & embd ) | | ( tokens & & ! embd ) ) ; // NOLINT
const int N = n_tokens ;
const auto & model = lctx . model ;
const auto & hparams = model . hparams ;
const auto & kv_self = lctx . kv_self ;
GGML_ASSERT ( ! ! kv_self . ctx ) ;
const int64_t n_embd = hparams . n_embd ;
const int64_t n_layer = hparams . n_layer ;
const int64_t n_ctx = hparams . n_ctx ;
const int64_t n_head = hparams . n_head ;
const int64_t n_head_kv = hparams . n_head_kv ;
const int64_t n_embd_head = hparams . n_embd_head ( ) ;
const int64_t n_embd_gqa = hparams . n_embd_gqa ( ) ;
GGML_ASSERT ( n_embd_head = = hparams . n_rot ) ;
const float freq_base = hparams . rope_freq_base ;
const float freq_scale = hparams . rope_freq_scale ;
const float norm_eps = hparams . f_norm_eps ;
const int n_gpu_layers = model . n_gpu_layers ;
auto & buf_compute = lctx . buf_compute ;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute . size ,
/*.mem_buffer =*/ buf_compute . data ,
/*.no_alloc =*/ false ,
} ;
params . no_alloc = true ;
struct ggml_context * ctx0 = ggml_init ( params ) ;
ggml_cgraph * gf = ggml_new_graph ( ctx0 ) ;
struct ggml_tensor * cur ;
struct ggml_tensor * inpL ;
if ( tokens ) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d ( ctx0 , GGML_TYPE_I32 , N ) ;
ggml_allocr_alloc ( lctx . alloc , inp_tokens ) ;
if ( ! ggml_allocr_is_measure ( lctx . alloc ) ) {
memcpy ( inp_tokens - > data , tokens , N * ggml_element_size ( inp_tokens ) ) ;
}
ggml_set_name ( inp_tokens , " inp_tokens " ) ;
inpL = ggml_get_rows ( ctx0 , model . tok_embeddings , inp_tokens ) ;
} else {
# ifdef GGML_USE_MPI
GGML_ASSERT ( false & & " not implemented " ) ;
# endif
inpL = ggml_new_tensor_2d ( ctx0 , GGML_TYPE_F32 , n_embd , N ) ;
ggml_allocr_alloc ( lctx . alloc , inpL ) ;
if ( ! ggml_allocr_is_measure ( lctx . alloc ) ) {
memcpy ( inpL - > data , embd , N * n_embd * ggml_element_size ( inpL ) ) ;
}
}
const int i_gpu_start = n_layer - n_gpu_layers ;
( void ) i_gpu_start ;
// offload functions set the tensor output backend to GPU
// tensors are GPU-accelerated if any input or the output has been offloaded
//
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
// in that case ggml_cuda_assign_buffers has no effect
offload_func_t offload_func_nr = llama_nop ; // nr = non-repeating
offload_func_t offload_func_kq = llama_nop ;
offload_func_t offload_func_v = llama_nop ;
# ifdef GGML_USE_CUBLAS
if ( n_gpu_layers > n_layer ) {
offload_func_nr = ggml_cuda_assign_buffers_no_alloc ;
}
if ( n_gpu_layers > n_layer + 1 ) {
offload_func_v = ggml_cuda_assign_buffers_no_alloc ;
}
if ( n_gpu_layers > n_layer + 2 ) {
offload_func_kq = ggml_cuda_assign_buffers_no_alloc ;
}
# endif // GGML_USE_CUBLAS
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d ( ctx0 , GGML_TYPE_F32 , 1 ) ;
ggml_allocr_alloc ( lctx . alloc , KQ_scale ) ;
if ( ! ggml_allocr_is_measure ( lctx . alloc ) ) {
ggml_set_f32 ( KQ_scale , 1.0f / sqrtf ( float ( n_embd ) / n_head ) ) ;
}
ggml_set_name ( KQ_scale , " 1/sqrt(n_embd_head) " ) ;
for ( int il = 0 ; il < n_layer ; + + il ) {
struct ggml_tensor * attn_norm ;
offload_func_t offload_func = llama_nop ;
# ifdef GGML_USE_CUBLAS
if ( il > = i_gpu_start ) {
offload_func = ggml_cuda_assign_buffers_no_alloc ;
}
# endif // GGML_USE_CUBLAS
// self-attention
// TODO: refactor into common function (shared with LLaMA)
{
attn_norm = ggml_norm ( ctx0 , inpL , norm_eps ) ;
offload_func ( attn_norm ) ;
attn_norm = ggml_add ( ctx0 ,
ggml_mul ( ctx0 , attn_norm , model . layers [ il ] . attn_norm ) ,
model . layers [ il ] . attn_norm_b ) ;
offload_func ( attn_norm - > src [ 0 ] ) ;
offload_func ( attn_norm ) ;
if ( model . layers [ il ] . attn_norm_2 ) { // Falcon-40B
cur = ggml_norm ( ctx0 , inpL , norm_eps ) ;
offload_func ( cur ) ;
cur = ggml_add ( ctx0 ,
ggml_mul ( ctx0 , cur , model . layers [ il ] . attn_norm_2 ) ,
model . layers [ il ] . attn_norm_2_b ) ;
offload_func ( cur - > src [ 0 ] ) ;
offload_func ( cur ) ;
} else { // Falcon 7B
cur = attn_norm ;
}
// compute QKV
cur = ggml_mul_mat ( ctx0 , model . layers [ il ] . wqkv , cur ) ;
offload_func_kq ( cur ) ;
// Note that the strides for Kcur, Vcur are set up so that the
// resulting views are misaligned with the tensor's storage
// (by applying the K/V offset we shift the tensor's original
// view to stick out behind the viewed QKV tensor's allocated
// memory, so to say). This is ok because no actual accesses
// happen to that out-of-range memory, but it can require some
// trickery when trying to accurately dump these views for
// debugging.
const size_t wsize = ggml_type_size ( cur - > type ) ;
// TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for
// non-contiguous views is added for the rope operator
struct ggml_tensor * tmpq = ggml_cont ( ctx0 , ggml_view_3d (
ctx0 , cur , n_embd_head , n_head , N ,
wsize * n_embd_head ,
wsize * n_embd_head * ( n_head + 2 * n_head_kv ) ,
0 ) ) ;
offload_func_kq ( tmpq ) ;
struct ggml_tensor * tmpk = ggml_cont ( ctx0 , ggml_view_3d (
ctx0 , cur , n_embd_head , n_head_kv , N ,
wsize * n_embd_head ,
wsize * n_embd_head * ( n_head + 2 * n_head_kv ) ,
wsize * n_embd_head * n_head ) ) ;
offload_func_kq ( tmpk ) ;
struct ggml_tensor * tmpv = ggml_view_3d (
ctx0 , cur , n_embd_head , n_head_kv , N ,
wsize * n_embd_head ,
wsize * n_embd_head * ( n_head + 2 * n_head_kv ) ,
wsize * n_embd_head * ( n_head + n_head_kv ) ) ;
offload_func_v ( tmpv ) ;
// using mode = 2 for neox mode
struct ggml_tensor * Qcur = ggml_rope_custom_inplace ( ctx0 , tmpq , n_past , n_embd_head , 2 , 0 , freq_base , freq_scale ) ;
offload_func_kq ( Qcur ) ;
struct ggml_tensor * Kcur = ggml_rope_custom_inplace ( ctx0 , tmpk , n_past , n_embd_head , 2 , 0 , freq_base , freq_scale ) ;
offload_func_kq ( Kcur ) ;
{
struct ggml_tensor * Vcur = ggml_transpose ( ctx0 , ggml_reshape_2d ( ctx0 , ggml_cont ( ctx0 , tmpv ) , n_embd_gqa , N ) ) ;
offload_func_v ( Vcur ) ;
offload_func_v ( Vcur - > src [ 0 ] - > src [ 0 ] ) ;
ggml_set_name ( Vcur , " Vcur " ) ;
struct ggml_tensor * k = ggml_view_1d ( ctx0 , kv_self . k , N * n_embd_gqa , ( ggml_element_size ( kv_self . k ) * n_embd_gqa ) * ( il * n_ctx + n_past ) ) ;
offload_func_kq ( k ) ;
ggml_set_name ( k , " k " ) ;
struct ggml_tensor * v = ggml_view_2d ( ctx0 , kv_self . v , N , n_embd_gqa ,
( n_ctx ) * ggml_element_size ( kv_self . v ) ,
( il * n_ctx ) * ggml_element_size ( kv_self . v ) * n_embd_gqa + n_past * ggml_element_size ( kv_self . v ) ) ;
offload_func_v ( v ) ;
ggml_build_forward_expand ( gf , ggml_cpy ( ctx0 , Kcur , k ) ) ;
ggml_build_forward_expand ( gf , ggml_cpy ( ctx0 , Vcur , v ) ) ;
}
struct ggml_tensor * Q = ggml_permute ( ctx0 , Qcur , 0 , 2 , 1 , 3 ) ;
offload_func_kq ( Q ) ;
ggml_set_name ( Q , " Q " ) ;
struct ggml_tensor * K =
ggml_view_3d ( ctx0 , kv_self . k ,
n_embd_head , n_past + N , n_head_kv ,
ggml_element_size ( kv_self . k ) * n_embd_gqa ,
ggml_element_size ( kv_self . k ) * n_embd_head ,
ggml_element_size ( kv_self . k ) * n_embd_gqa * n_ctx * il ) ;
offload_func_kq ( K ) ;
ggml_set_name ( K , " K " ) ;
struct ggml_tensor * KQ = ggml_mul_mat ( ctx0 , K , Q ) ;
offload_func_kq ( KQ ) ;
ggml_set_name ( KQ , " KQ " ) ;
struct ggml_tensor * KQ_scaled = ggml_scale_inplace ( ctx0 , KQ , KQ_scale ) ;
offload_func_kq ( KQ_scaled ) ;
ggml_set_name ( KQ_scaled , " KQ_scaled " ) ;
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace ( ctx0 , KQ_scaled , n_past ) ;
offload_func_kq ( KQ_masked ) ;
ggml_set_name ( KQ_masked , " KQ_masked " ) ;
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace ( ctx0 , KQ_masked ) ;
offload_func_v ( KQ_soft_max ) ;
ggml_set_name ( KQ_soft_max , " KQ_soft_max " ) ;
struct ggml_tensor * V =
ggml_view_3d ( ctx0 , kv_self . v ,
n_past + N , n_embd_head , n_head_kv ,
ggml_element_size ( kv_self . v ) * n_ctx ,
ggml_element_size ( kv_self . v ) * n_ctx * n_embd_head ,
ggml_element_size ( kv_self . v ) * n_ctx * n_embd_gqa * il ) ;
offload_func_v ( V ) ;
ggml_set_name ( V , " V " ) ;
struct ggml_tensor * KQV = ggml_mul_mat ( ctx0 , V , KQ_soft_max ) ;
offload_func_v ( KQV ) ;
ggml_set_name ( KQV , " KQV " ) ;
struct ggml_tensor * KQV_merged = ggml_permute ( ctx0 , KQV , 0 , 2 , 1 , 3 ) ;
offload_func_v ( KQV_merged ) ;
ggml_set_name ( KQV_merged , " KQV_merged " ) ;
cur = ggml_cpy ( ctx0 , KQV_merged , ggml_new_tensor_2d ( ctx0 , GGML_TYPE_F32 , n_embd , N ) ) ;
offload_func_v ( cur ) ;
ggml_set_name ( cur , " KQV_merged_contiguous " ) ;
cur = ggml_mul_mat ( ctx0 , model . layers [ il ] . wo , cur ) ;
offload_func ( cur ) ;
ggml_set_name ( cur , " result_wo " ) ;
}
struct ggml_tensor * attn_out = cur ;
// feed forward
{
struct ggml_tensor * inpFF = attn_norm ;
cur = ggml_mul_mat ( ctx0 , model . layers [ il ] . w3 , inpFF ) ;
offload_func ( cur ) ;
cur = ggml_gelu ( ctx0 , cur ) ;
offload_func ( cur ) ;
cur = ggml_mul_mat ( ctx0 , model . layers [ il ] . w2 , cur ) ;
offload_func ( cur ) ;
}
cur = ggml_add ( ctx0 , cur , attn_out ) ;
offload_func ( cur ) ;
cur = ggml_add ( ctx0 , cur , inpL ) ;
offload_func ( cur ) ;
// input for next layer
inpL = cur ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
cur = inpL ;
2023-03-27 18:00:32 +00:00
// norm
{
2023-09-15 17:06:31 +00:00
cur = ggml_norm ( ctx0 , cur , norm_eps ) ;
offload_func_nr ( cur ) ;
cur = ggml_add ( ctx0 ,
ggml_mul ( ctx0 , cur , model . output_norm ) ,
model . output_norm_b ) ;
ggml_set_name ( cur , " result_norm " ) ;
}
cur = ggml_mul_mat ( ctx0 , model . output , cur ) ;
ggml_set_name ( cur , " result_output " ) ;
ggml_build_forward_expand ( gf , cur ) ;
ggml_free ( ctx0 ) ;
return gf ;
}
static struct ggml_cgraph * llama_build_graph (
llama_context & lctx ,
const llama_token * tokens ,
const float * embd ,
int n_tokens ,
int n_past ) {
const auto & model = lctx . model ;
struct ggml_cgraph * result = NULL ;
switch ( model . arch ) {
case LLM_ARCH_LLAMA :
{
result = llm_build_llama ( lctx , tokens , embd , n_tokens , n_past ) ;
} break ;
case LLM_ARCH_BAICHUAN :
{
result = llm_build_baichaun ( lctx , tokens , embd , n_tokens , n_past ) ;
} break ;
case LLM_ARCH_FALCON :
{
result = llm_build_falcon ( lctx , tokens , embd , n_tokens , n_past ) ;
} break ;
default :
GGML_ASSERT ( false ) ;
} ;
return result ;
}
// evaluate the transformer
//
// - lctx: llama context
// - tokens: new batch of tokens to process
// - embd embeddings input
// - n_tokens number of tokens
// - n_past: the context size so far
// - n_threads: number of threads to use
//
static bool llama_eval_internal (
llama_context & lctx ,
const llama_token * tokens ,
const float * embd ,
int n_tokens ,
int n_past ,
int n_threads ,
const char * cgraph_fname ) {
GGML_ASSERT ( ( ! tokens & & embd ) | | ( tokens & & ! embd ) ) ; // NOLINT
GGML_ASSERT ( n_tokens > 0 ) ;
GGML_ASSERT ( n_past > = 0 ) ;
// TODO: keep the values of n_batch and n_ctx
// GGML_ASSERT(n_tokens <= n_batch);
// GGML_ASSERT(n_past + n_tokens <= n_ctx);
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
const int64_t t_start_us = ggml_time_us ( ) ;
# ifdef GGML_USE_MPI
ggml_mpi_eval_init ( lctx . ctx_mpi , & n_tokens , & n_past , & n_threads ) ;
# endif
GGML_ASSERT ( n_threads > 0 ) ;
const int N = n_tokens ;
const auto & model = lctx . model ;
const auto & hparams = model . hparams ;
const auto & kv_self = lctx . kv_self ;
GGML_ASSERT ( ! ! kv_self . ctx ) ;
const int64_t n_embd = hparams . n_embd ;
const int64_t n_vocab = hparams . n_vocab ;
ggml_allocr_reset ( lctx . alloc ) ;
ggml_cgraph * gf = llama_build_graph ( lctx , tokens , embd , n_tokens , n_past ) ;
ggml_allocr_alloc_graph ( lctx . alloc , gf ) ;
# ifdef GGML_USE_CUBLAS
for ( int i = 0 ; i < gf - > n_leafs ; i + + ) {
ggml_tensor * node = gf - > leafs [ i ] ;
if ( node - > backend = = GGML_BACKEND_GPU & & node - > extra = = NULL ) {
ggml_cuda_assign_scratch_offset ( node , ( char * ) node - > data - ( char * ) lctx . buf_alloc . data ) ;
}
}
for ( int i = 0 ; i < gf - > n_nodes ; i + + ) {
ggml_tensor * node = gf - > nodes [ i ] ;
if ( node - > backend = = GGML_BACKEND_GPU & & node - > extra = = NULL ) {
ggml_cuda_assign_scratch_offset ( node , ( char * ) node - > data - ( char * ) lctx . buf_alloc . data ) ;
}
}
# endif
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
// TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
// we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
// with the BLAS calls. need a better solution
if ( N > = 32 & & ggml_cpu_has_blas ( ) & & ! ggml_cpu_has_gpublas ( ) ) {
n_threads = std : : min ( 4 , n_threads ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
struct ggml_tensor * res = gf - > nodes [ gf - > n_nodes - 1 ] ;
struct ggml_tensor * embeddings = gf - > nodes [ gf - > n_nodes - 2 ] ;
GGML_ASSERT ( strcmp ( res - > name , " result_output " ) = = 0 ) ;
GGML_ASSERT ( strcmp ( embeddings - > name , " result_norm " ) = = 0 ) ;
# if GGML_USE_MPI
const int64_t n_layer = hparams . n_layer ;
ggml_mpi_graph_compute_pre ( lctx . ctx_mpi , gf , n_layer ) ;
# endif
# ifdef GGML_USE_METAL
if ( lctx . ctx_metal ) {
ggml_metal_set_n_cb ( lctx . ctx_metal , n_threads ) ;
ggml_metal_graph_compute ( lctx . ctx_metal , gf ) ;
} else {
ggml_graph_compute_helper ( lctx . work_buffer , gf , n_threads ) ;
}
# else
ggml_graph_compute_helper ( lctx . work_buffer , gf , n_threads ) ;
# endif
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
# if GGML_USE_MPI
ggml_mpi_graph_compute_post ( lctx . ctx_mpi , gf , n_layer ) ;
# endif
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// update kv token count
lctx . kv_self . n = n_past + N ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
if ( cgraph_fname ) {
ggml_graph_export ( gf , cgraph_fname ) ;
}
2023-03-27 18:00:32 +00:00
2023-04-30 15:51:57 +00:00
# ifdef GGML_PERF
2023-04-10 19:59:13 +00:00
// print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined
2023-09-15 17:06:31 +00:00
ggml_graph_print ( gf ) ;
2023-04-30 15:51:57 +00:00
# endif
2023-04-10 19:59:13 +00:00
// plot the computation graph in dot format (for debugging purposes)
2023-03-27 18:00:32 +00:00
//if (n_past%100 == 0) {
2023-09-15 17:06:31 +00:00
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
2023-03-27 18:00:32 +00:00
//}
// extract logits
{
auto & logits_out = lctx . logits ;
if ( lctx . logits_all ) {
logits_out . resize ( n_vocab * N ) ;
2023-09-15 17:06:31 +00:00
memcpy ( logits_out . data ( ) , ( float * ) ggml_get_data ( res ) , sizeof ( float ) * n_vocab * N ) ;
2023-03-27 18:00:32 +00:00
} else {
// return result for just the last token
logits_out . resize ( n_vocab ) ;
2023-09-15 17:06:31 +00:00
memcpy ( logits_out . data ( ) , ( float * ) ggml_get_data ( res ) + ( n_vocab * ( N - 1 ) ) , sizeof ( float ) * n_vocab ) ;
2023-03-27 18:00:32 +00:00
}
}
// extract embeddings
2023-05-14 15:46:19 +00:00
if ( ! lctx . embedding . empty ( ) ) {
2023-03-27 18:00:32 +00:00
auto & embedding_out = lctx . embedding ;
embedding_out . resize ( n_embd ) ;
memcpy ( embedding_out . data ( ) , ( float * ) ggml_get_data ( embeddings ) + ( n_embd * ( N - 1 ) ) , sizeof ( float ) * n_embd ) ;
}
// measure the performance only for the single-token evals
if ( N = = 1 ) {
lctx . t_eval_us + = ggml_time_us ( ) - t_start_us ;
lctx . n_eval + + ;
}
else if ( N > 1 ) {
lctx . t_p_eval_us + = ggml_time_us ( ) - t_start_us ;
lctx . n_p_eval + = N ;
}
2023-09-15 17:06:31 +00:00
return true ;
}
//
// tokenizer
//
static enum llama_vocab_type llama_vocab_get_type ( const llama_vocab & vocab ) {
return vocab . type ;
}
static bool llama_is_normal_token ( const llama_vocab & vocab , llama_token id ) {
return vocab . id_to_token [ id ] . type = = LLAMA_TOKEN_TYPE_NORMAL ;
}
static bool llama_is_unknown_token ( const llama_vocab & vocab , llama_token id ) {
return vocab . id_to_token [ id ] . type = = LLAMA_TOKEN_TYPE_UNKNOWN ;
}
static bool llama_is_control_token ( const llama_vocab & vocab , llama_token id ) {
return vocab . id_to_token [ id ] . type = = LLAMA_TOKEN_TYPE_CONTROL ;
}
static bool llama_is_byte_token ( const llama_vocab & vocab , llama_token id ) {
return vocab . id_to_token [ id ] . type = = LLAMA_TOKEN_TYPE_BYTE ;
}
static uint8_t llama_token_to_byte ( const llama_vocab & vocab , llama_token id ) {
GGML_ASSERT ( llama_is_byte_token ( vocab , id ) ) ;
const auto & token_data = vocab . id_to_token . at ( id ) ;
auto buf = token_data . text . substr ( 3 , 2 ) ;
return strtol ( buf . c_str ( ) , NULL , 16 ) ;
}
static llama_token llama_byte_to_token ( const llama_vocab & vocab , uint8_t ch ) {
char buf [ 7 ] ;
int result = snprintf ( buf , sizeof ( buf ) , " <0x%02X> " , ch ) ;
GGML_ASSERT ( 0 < = result & & result < 7 ) ;
return vocab . token_to_id . at ( buf ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
static void llama_escape_whitespace ( std : : string & text ) {
replace_all ( text , " " , " \xe2 \x96 \x81 " ) ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
static void llama_unescape_whitespace ( std : : string & word ) {
replace_all ( word , " \xe2 \x96 \x81 " , " " ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
struct llm_symbol {
2023-03-27 18:00:32 +00:00
using index = int ;
index prev ;
index next ;
const char * text ;
size_t n ;
} ;
2023-09-15 17:06:31 +00:00
static_assert ( std : : is_trivially_copyable < llm_symbol > : : value , " llm_symbol is not trivially copyable " ) ;
// SPM tokenizer
// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
2023-05-14 15:46:19 +00:00
2023-09-15 17:06:31 +00:00
struct llm_bigram_spm {
2023-03-27 18:00:32 +00:00
struct comparator {
2023-09-15 17:06:31 +00:00
bool operator ( ) ( llm_bigram_spm & l , llm_bigram_spm & r ) {
2023-03-27 18:00:32 +00:00
return ( l . score < r . score ) | | ( l . score = = r . score & & l . left > r . left ) ;
}
} ;
2023-09-15 17:06:31 +00:00
using queue_storage = std : : vector < llm_bigram_spm > ;
using queue = std : : priority_queue < llm_bigram_spm , queue_storage , comparator > ;
llm_symbol : : index left ;
llm_symbol : : index right ;
2023-03-27 18:00:32 +00:00
float score ;
size_t size ;
} ;
2023-09-15 17:06:31 +00:00
struct llm_tokenizer_spm {
llm_tokenizer_spm ( const llama_vocab & vocab ) : vocab ( vocab ) { }
2023-03-27 18:00:32 +00:00
void tokenize ( const std : : string & text , std : : vector < llama_vocab : : id > & output ) {
// split string into utf8 chars
int index = 0 ;
size_t offs = 0 ;
while ( offs < text . size ( ) ) {
2023-09-15 17:06:31 +00:00
llm_symbol sym ;
size_t len = utf8_len ( text [ offs ] ) ;
2023-03-27 18:00:32 +00:00
sym . text = text . c_str ( ) + offs ;
2023-09-15 17:06:31 +00:00
sym . n = std : : min ( len , text . size ( ) - offs ) ;
offs + = sym . n ;
2023-03-27 18:00:32 +00:00
sym . prev = index - 1 ;
sym . next = offs = = text . size ( ) ? - 1 : index + 1 ;
index + + ;
2023-09-15 17:06:31 +00:00
symbols . emplace_back ( sym ) ;
2023-03-27 18:00:32 +00:00
}
// seed the work queue with all possible 2-character tokens.
2023-09-15 17:06:31 +00:00
for ( size_t i = 1 ; i < symbols . size ( ) ; + + i ) {
2023-03-27 18:00:32 +00:00
try_add_bigram ( i - 1 , i ) ;
}
// keep substituting the highest frequency pairs for as long as we can.
2023-09-15 17:06:31 +00:00
while ( ! work_queue . empty ( ) ) {
auto bigram = work_queue . top ( ) ;
work_queue . pop ( ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
auto & left_sym = symbols [ bigram . left ] ;
auto & right_sym = symbols [ bigram . right ] ;
2023-03-27 18:00:32 +00:00
// if one of the symbols already got merged, skip it.
if ( left_sym . n = = 0 | | right_sym . n = = 0 | |
left_sym . n + right_sym . n ! = bigram . size ) {
continue ;
}
// merge the right sym into the left one
left_sym . n + = right_sym . n ;
right_sym . n = 0 ;
2023-09-15 17:06:31 +00:00
//LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
2023-03-27 18:00:32 +00:00
// remove the right sym from the chain
left_sym . next = right_sym . next ;
if ( right_sym . next > = 0 ) {
2023-09-15 17:06:31 +00:00
symbols [ right_sym . next ] . prev = bigram . left ;
2023-03-27 18:00:32 +00:00
}
// find more substitutions
try_add_bigram ( left_sym . prev , bigram . left ) ;
try_add_bigram ( bigram . left , left_sym . next ) ;
}
2023-09-15 17:06:31 +00:00
for ( int i = 0 ; i ! = - 1 ; i = symbols [ i ] . next ) {
auto & symbol = symbols [ i ] ;
resegment ( symbol , output ) ;
}
}
private :
void resegment ( llm_symbol & symbol , std : : vector < llama_vocab : : id > & output ) {
auto text = std : : string ( symbol . text , symbol . n ) ;
auto token = vocab . token_to_id . find ( text ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// Do we need to support is_unused?
if ( token ! = vocab . token_to_id . end ( ) ) {
output . push_back ( ( * token ) . second ) ;
return ;
}
const auto p = rev_merge . find ( text ) ;
if ( p = = rev_merge . end ( ) ) {
// output any symbols that did not form tokens as bytes.
for ( int j = 0 ; j < ( int ) symbol . n ; + + j ) {
llama_vocab : : id token_id = llama_byte_to_token ( vocab , symbol . text [ j ] ) ;
output . push_back ( token_id ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
return ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
resegment ( symbols [ p - > second . first ] , output ) ;
resegment ( symbols [ p - > second . second ] , output ) ;
2023-03-27 18:00:32 +00:00
}
void try_add_bigram ( int left , int right ) {
if ( left = = - 1 | | right = = - 1 ) {
return ;
}
2023-09-15 17:06:31 +00:00
const std : : string text = std : : string ( symbols [ left ] . text , symbols [ left ] . n + symbols [ right ] . n ) ;
auto token = vocab . token_to_id . find ( text ) ;
if ( token = = vocab . token_to_id . end ( ) ) {
return ;
}
if ( static_cast < size_t > ( ( * token ) . second ) > = vocab . id_to_token . size ( ) ) {
return ;
}
const auto & tok_data = vocab . id_to_token [ ( * token ) . second ] ;
llm_bigram_spm bigram ;
bigram . left = left ;
bigram . right = right ;
bigram . score = tok_data . score ;
bigram . size = text . size ( ) ;
work_queue . push ( bigram ) ;
// Do we need to support is_unused?
rev_merge [ text ] = std : : make_pair ( left , right ) ;
}
const llama_vocab & vocab ;
std : : vector < llm_symbol > symbols ;
llm_bigram_spm : : queue work_queue ;
std : : map < std : : string , std : : pair < int , int > > rev_merge ;
} ;
// BPE tokenizer
// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
// tried to simplify unicode stuff, so most likely does not work 100% correctly!
// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
struct llm_bigram_bpe {
struct comparator {
bool operator ( ) ( const llm_bigram_bpe & l , const llm_bigram_bpe & r ) const {
return l . rank > r . rank | | ( l . rank = = r . rank & & l . left > r . left ) ;
}
} ;
using queue_storage = std : : vector < llm_bigram_bpe > ;
using queue = std : : priority_queue < llm_bigram_bpe , queue_storage , comparator > ;
llm_symbol : : index left ;
llm_symbol : : index right ;
std : : string text ;
int rank ;
size_t size ;
} ;
struct llm_tokenizer_bpe {
llm_tokenizer_bpe ( const llama_vocab & vocab ) : vocab ( vocab ) { }
void tokenize ( const std : : string & text , std : : vector < llama_vocab : : id > & output ) {
int final_prev_index = - 1 ;
auto word_collection = bpe_gpt2_preprocess ( text ) ;
symbols_final . clear ( ) ;
for ( auto & word : word_collection ) {
work_queue = llm_bigram_bpe : : queue ( ) ;
symbols . clear ( ) ;
int index = 0 ;
size_t offset = 0 ;
while ( offset < word . size ( ) ) {
llm_symbol sym ;
size_t char_len = std : : min ( word . size ( ) - offset , ( size_t ) : : utf8_len ( word [ offset ] ) ) ;
sym . text = word . c_str ( ) + offset ;
sym . n = 1 ;
sym . n = char_len ;
offset + = sym . n ;
sym . prev = index - 1 ;
sym . next = offset = = word . size ( ) ? - 1 : index + 1 ;
index + + ;
symbols . emplace_back ( sym ) ;
}
for ( size_t i = 1 ; i < symbols . size ( ) ; + + i ) {
add_new_bigram ( i - 1 , i ) ;
}
// build token(s)
while ( ! work_queue . empty ( ) ) {
auto bigram = work_queue . top ( ) ;
work_queue . pop ( ) ;
auto & left_symbol = symbols [ bigram . left ] ;
auto & right_symbol = symbols [ bigram . right ] ;
if ( left_symbol . n = = 0 | | right_symbol . n = = 0 ) {
continue ;
}
std : : string left_token = std : : string ( left_symbol . text , left_symbol . n ) ;
std : : string right_token = std : : string ( right_symbol . text , right_symbol . n ) ;
if ( left_token + right_token ! = bigram . text ) {
continue ; // Skip this bigram if it's outdated
}
// merge the right sym into the left one
left_symbol . n + = right_symbol . n ;
right_symbol . n = 0 ;
// remove the right sym from the chain
left_symbol . next = right_symbol . next ;
if ( right_symbol . next > = 0 ) {
symbols [ right_symbol . next ] . prev = bigram . left ;
}
add_new_bigram ( left_symbol . prev , bigram . left ) ; // left side of current symbol
add_new_bigram ( bigram . left , left_symbol . next ) ; // right side of current symbol
}
// add the fnished tokens to the final list keeping correct order for next and prev
for ( auto & sym : symbols ) {
if ( sym . n > 0 ) {
sym . prev = final_prev_index ;
sym . next = - 1 ;
if ( final_prev_index ! = - 1 ) {
symbols_final [ final_prev_index ] . next = symbols_final . size ( ) ;
}
symbols_final . emplace_back ( sym ) ;
final_prev_index = symbols_final . size ( ) - 1 ;
}
}
}
symbols = symbols_final ;
if ( ! symbols . empty ( ) ) {
for ( int i = 0 ; i ! = - 1 ; i = symbols [ i ] . next ) {
auto & symbol = symbols [ i ] ;
if ( symbol . n = = 0 ) {
continue ;
}
const std : : string str = std : : string ( symbol . text , symbol . n ) ;
const auto token = vocab . token_to_id . find ( str ) ;
if ( token = = vocab . token_to_id . end ( ) ) {
for ( auto j = str . begin ( ) ; j ! = str . end ( ) ; + + j ) {
std : : string byte_str ( 1 , * j ) ;
auto token_multibyte = vocab . token_to_id . find ( byte_str ) ;
if ( token_multibyte = = vocab . token_to_id . end ( ) ) {
try {
llama_token token_byte = llama_byte_to_token ( vocab , * j ) ;
output . push_back ( token_byte ) ;
} catch ( const std : : out_of_range & err ) {
fprintf ( stderr , " ERROR: byte not found in vocab: '%s' \n " , byte_str . c_str ( ) ) ;
}
} else {
output . push_back ( ( * token_multibyte ) . second ) ;
}
}
} else {
output . push_back ( ( * token ) . second ) ;
}
}
}
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
private :
void add_new_bigram ( int left , int right ) {
if ( left = = - 1 | | right = = - 1 ) {
2023-03-27 18:00:32 +00:00
return ;
}
2023-09-15 17:06:31 +00:00
std : : string left_token = std : : string ( symbols [ left ] . text , symbols [ left ] . n ) ;
std : : string right_token = std : : string ( symbols [ right ] . text , symbols [ right ] . n ) ;
int rank_found = - 1 ;
rank_found = vocab . find_bpe_rank ( left_token , right_token ) ;
if ( rank_found < 0 ) {
2023-03-27 18:00:32 +00:00
return ;
}
2023-09-15 17:06:31 +00:00
llm_bigram_bpe bigram ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
bigram . left = left ;
2023-03-27 18:00:32 +00:00
bigram . right = right ;
2023-09-15 17:06:31 +00:00
bigram . text = left_token + right_token ;
bigram . size = left_token . size ( ) + right_token . size ( ) ;
bigram . rank = rank_found ;
work_queue . push ( bigram ) ;
}
// probably not 100% correct
static std : : vector < std : : string > bpe_gpt2_preprocess ( const std : : string & text ) {
std : : vector < std : : string > words ;
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
const std : : string pattern = R " ('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^ \ s[:alpha:][:digit:]]+| \ s+(?! \ S)| \ s+) " ;
const std : : regex re ( pattern ) ;
auto words_begin = std : : sregex_iterator ( text . begin ( ) , text . end ( ) , re ) ;
auto words_end = std : : sregex_iterator ( ) ;
auto n_words = std : : distance ( words_begin , words_end ) ;
words . reserve ( n_words ) ;
for ( auto it = words_begin ; it ! = words_end ; + + it ) {
words . push_back ( it - > str ( ) ) ;
}
return words ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
const llama_vocab & vocab ;
std : : vector < llm_symbol > symbols ;
std : : vector < llm_symbol > symbols_final ;
llm_bigram_bpe : : queue work_queue ;
2023-03-27 18:00:32 +00:00
} ;
2023-09-15 17:06:31 +00:00
static std : : vector < llama_vocab : : id > llama_tokenize_internal ( const llama_vocab & vocab , std : : string raw_text , bool bos ) {
2023-03-27 18:00:32 +00:00
std : : vector < llama_vocab : : id > output ;
2023-09-15 17:06:31 +00:00
// OG tokenizer behavior:
//
// tokenizer.encode('', add_bos=True) returns [1]
// tokenizer.encode('', add_bos=False) returns []
if ( bos & & vocab . special_bos_id ! = - 1 ) {
output . push_back ( vocab . special_bos_id ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
if ( raw_text . empty ( ) ) {
return output ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
switch ( vocab . type ) {
case LLAMA_VOCAB_TYPE_SPM :
{
// without adding this leading whitespace, we do not get the same results as the original tokenizer
raw_text = " " + raw_text ;
llm_tokenizer_spm tokenizer ( vocab ) ;
llama_escape_whitespace ( raw_text ) ;
tokenizer . tokenize ( raw_text , output ) ;
} break ;
case LLAMA_VOCAB_TYPE_BPE :
{
llm_tokenizer_bpe tokenizer ( vocab ) ;
tokenizer . tokenize ( raw_text , output ) ;
} break ;
} ;
2023-03-27 18:00:32 +00:00
return output ;
}
2023-09-15 17:06:31 +00:00
//
// grammar - internal
//
struct llama_partial_utf8 {
uint32_t value ; // bit value so far (unshifted)
int n_remain ; // num bytes remaining; -1 indicates invalid sequence
} ;
struct llama_grammar {
const std : : vector < std : : vector < llama_grammar_element > > rules ;
std : : vector < std : : vector < const llama_grammar_element * > > stacks ;
// buffer for partially generated UTF-8 sequence from accepted tokens
llama_partial_utf8 partial_utf8 ;
} ;
struct llama_grammar_candidate {
size_t index ;
const uint32_t * code_points ;
llama_partial_utf8 partial_utf8 ;
} ;
// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
std : : pair < std : : vector < uint32_t > , llama_partial_utf8 > decode_utf8 (
const char * src ,
llama_partial_utf8 partial_start ) {
static const int lookup [ ] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 2 , 2 , 3 , 4 } ;
const char * pos = src ;
std : : vector < uint32_t > code_points ;
uint32_t value = partial_start . value ;
int n_remain = partial_start . n_remain ;
// continue previous decode, if applicable
while ( * pos ! = 0 & & n_remain > 0 ) {
uint8_t next_byte = static_cast < uint8_t > ( * pos ) ;
if ( ( next_byte > > 6 ) ! = 2 ) {
// invalid sequence, abort
code_points . push_back ( 0 ) ;
return std : : make_pair ( std : : move ( code_points ) , llama_partial_utf8 { 0 , - 1 } ) ;
}
value = ( value < < 6 ) + ( next_byte & 0x3F ) ;
+ + pos ;
- - n_remain ;
}
if ( partial_start . n_remain > 0 & & n_remain = = 0 ) {
code_points . push_back ( value ) ;
}
// decode any subsequent utf-8 sequences, which may end in an incomplete one
while ( * pos ! = 0 ) {
uint8_t first_byte = static_cast < uint8_t > ( * pos ) ;
uint8_t highbits = first_byte > > 4 ;
n_remain = lookup [ highbits ] - 1 ;
if ( n_remain < 0 ) {
// invalid sequence, abort
code_points . clear ( ) ;
code_points . push_back ( 0 ) ;
return std : : make_pair ( std : : move ( code_points ) , llama_partial_utf8 { 0 , n_remain } ) ;
}
uint8_t mask = ( 1 < < ( 7 - n_remain ) ) - 1 ;
value = first_byte & mask ;
+ + pos ;
while ( * pos ! = 0 & & n_remain > 0 ) {
value = ( value < < 6 ) + ( static_cast < uint8_t > ( * pos ) & 0x3F ) ;
+ + pos ;
- - n_remain ;
}
if ( n_remain = = 0 ) {
code_points . push_back ( value ) ;
}
}
code_points . push_back ( 0 ) ;
return std : : make_pair ( std : : move ( code_points ) , llama_partial_utf8 { value , n_remain } ) ;
}
// returns true iff pos points to the end of one of the definitions of a rule
static bool llama_grammar_is_end_of_sequence ( const llama_grammar_element * pos ) {
switch ( pos - > type ) {
case LLAMA_GRETYPE_END : return true ; // NOLINT
case LLAMA_GRETYPE_ALT : return true ; // NOLINT
default : return false ;
}
}
// returns true iff chr satisfies the char range at pos (regular or inverse range)
// asserts that pos is pointing to a char range element
static std : : pair < bool , const llama_grammar_element * > llama_grammar_match_char (
const llama_grammar_element * pos ,
const uint32_t chr ) {
bool found = false ;
bool is_positive_char = pos - > type = = LLAMA_GRETYPE_CHAR ;
GGML_ASSERT ( is_positive_char | | pos - > type = = LLAMA_GRETYPE_CHAR_NOT ) ; // NOLINT
do {
if ( pos [ 1 ] . type = = LLAMA_GRETYPE_CHAR_RNG_UPPER ) {
// inclusive range, e.g. [a-z]
found = found | | ( pos - > value < = chr & & chr < = pos [ 1 ] . value ) ;
pos + = 2 ;
} else {
// exact char match, e.g. [a] or "a"
found = found | | pos - > value = = chr ;
pos + = 1 ;
}
} while ( pos - > type = = LLAMA_GRETYPE_CHAR_ALT ) ;
return std : : make_pair ( found = = is_positive_char , pos ) ;
}
// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
// range at pos (regular or inverse range)
// asserts that pos is pointing to a char range element
static bool llama_grammar_match_partial_char (
const llama_grammar_element * pos ,
const llama_partial_utf8 partial_utf8 ) {
bool is_positive_char = pos - > type = = LLAMA_GRETYPE_CHAR ;
GGML_ASSERT ( is_positive_char | | pos - > type = = LLAMA_GRETYPE_CHAR_NOT ) ;
uint32_t partial_value = partial_utf8 . value ;
int n_remain = partial_utf8 . n_remain ;
// invalid sequence or 7-bit char split across 2 bytes (overlong)
if ( n_remain < 0 | | ( n_remain = = 1 & & partial_value < 2 ) ) {
return false ;
}
// range of possible code points this partial UTF-8 sequence could complete to
uint32_t low = partial_value < < ( n_remain * 6 ) ;
uint32_t high = low | ( ( 1 < < ( n_remain * 6 ) ) - 1 ) ;
if ( low = = 0 ) {
if ( n_remain = = 2 ) {
low = 1 < < 11 ;
} else if ( n_remain = = 3 ) {
low = 1 < < 16 ;
}
}
do {
if ( pos [ 1 ] . type = = LLAMA_GRETYPE_CHAR_RNG_UPPER ) {
// inclusive range, e.g. [a-z]
if ( pos - > value < = high & & low < = pos [ 1 ] . value ) {
return is_positive_char ;
}
pos + = 2 ;
} else {
// exact char match, e.g. [a] or "a"
if ( low < = pos - > value & & pos - > value < = high ) {
return is_positive_char ;
}
pos + = 1 ;
}
} while ( pos - > type = = LLAMA_GRETYPE_CHAR_ALT ) ;
return ! is_positive_char ;
}
// transforms a grammar pushdown stack into N possible stacks, all ending
// at a character range (terminal element)
static void llama_grammar_advance_stack (
const std : : vector < std : : vector < llama_grammar_element > > & rules ,
const std : : vector < const llama_grammar_element * > & stack ,
std : : vector < std : : vector < const llama_grammar_element * > > & new_stacks ) {
if ( stack . empty ( ) ) {
new_stacks . emplace_back ( stack ) ;
return ;
}
const llama_grammar_element * pos = stack . back ( ) ;
switch ( pos - > type ) {
case LLAMA_GRETYPE_RULE_REF : {
const size_t rule_id = static_cast < size_t > ( pos - > value ) ;
const llama_grammar_element * subpos = rules [ rule_id ] . data ( ) ;
do {
// init new stack without the top (pos)
std : : vector < const llama_grammar_element * > new_stack ( stack . begin ( ) , stack . end ( ) - 1 ) ;
if ( ! llama_grammar_is_end_of_sequence ( pos + 1 ) ) {
// if this rule ref is followed by another element, add that to stack
new_stack . push_back ( pos + 1 ) ;
}
if ( ! llama_grammar_is_end_of_sequence ( subpos ) ) {
// if alternate is nonempty, add to stack
new_stack . push_back ( subpos ) ;
}
llama_grammar_advance_stack ( rules , new_stack , new_stacks ) ;
while ( ! llama_grammar_is_end_of_sequence ( subpos ) ) {
// scan to end of alternate def
subpos + + ;
}
if ( subpos - > type = = LLAMA_GRETYPE_ALT ) {
// there's another alternate def of this rule to process
subpos + + ;
} else {
break ;
}
} while ( true ) ;
break ;
}
case LLAMA_GRETYPE_CHAR :
case LLAMA_GRETYPE_CHAR_NOT :
new_stacks . emplace_back ( stack ) ;
break ;
default :
// end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
// (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
// those
GGML_ASSERT ( false ) ;
}
}
// takes a set of possible pushdown stacks on a grammar, which are required to
// be positioned at a character range (see `llama_grammar_advance_stack`), and
// produces the N possible stacks if the given char is accepted at those
// positions
static std : : vector < std : : vector < const llama_grammar_element * > > llama_grammar_accept (
const std : : vector < std : : vector < llama_grammar_element > > & rules ,
const std : : vector < std : : vector < const llama_grammar_element * > > & stacks ,
const uint32_t chr ) {
std : : vector < std : : vector < const llama_grammar_element * > > new_stacks ;
for ( const auto & stack : stacks ) {
if ( stack . empty ( ) ) {
continue ;
}
auto match = llama_grammar_match_char ( stack . back ( ) , chr ) ;
if ( match . first ) {
const llama_grammar_element * pos = match . second ;
// update top of stack to next element, if any
std : : vector < const llama_grammar_element * > new_stack ( stack . begin ( ) , stack . end ( ) - 1 ) ;
if ( ! llama_grammar_is_end_of_sequence ( pos ) ) {
new_stack . push_back ( pos ) ;
}
llama_grammar_advance_stack ( rules , new_stack , new_stacks ) ;
}
}
return new_stacks ;
}
static std : : vector < llama_grammar_candidate > llama_grammar_reject_candidates (
const std : : vector < std : : vector < llama_grammar_element > > & rules ,
const std : : vector < std : : vector < const llama_grammar_element * > > & stacks ,
const std : : vector < llama_grammar_candidate > & candidates ) ;
static std : : vector < llama_grammar_candidate > llama_grammar_reject_candidates_for_stack (
const std : : vector < std : : vector < llama_grammar_element > > & rules ,
const std : : vector < const llama_grammar_element * > & stack ,
const std : : vector < llama_grammar_candidate > & candidates ) {
std : : vector < llama_grammar_candidate > rejects ;
if ( stack . empty ( ) ) {
for ( auto tok : candidates ) {
if ( * tok . code_points ! = 0 | | tok . partial_utf8 . n_remain ! = 0 ) {
rejects . push_back ( tok ) ;
}
}
return rejects ;
}
const llama_grammar_element * stack_pos = stack . back ( ) ;
std : : vector < llama_grammar_candidate > next_candidates ;
for ( auto tok : candidates ) {
if ( * tok . code_points = = 0 ) {
// reached end of full codepoints in token, reject iff it ended in a partial sequence
// that cannot satisfy this position in grammar
if ( tok . partial_utf8 . n_remain ! = 0 & &
! llama_grammar_match_partial_char ( stack_pos , tok . partial_utf8 ) ) {
rejects . push_back ( tok ) ;
}
} else if ( llama_grammar_match_char ( stack_pos , * tok . code_points ) . first ) {
next_candidates . push_back ( { tok . index , tok . code_points + 1 , tok . partial_utf8 } ) ;
} else {
rejects . push_back ( tok ) ;
}
}
const auto * stack_pos_after = llama_grammar_match_char ( stack_pos , 0 ) . second ;
// update top of stack to next element, if any
std : : vector < const llama_grammar_element * > stack_after ( stack . begin ( ) , stack . end ( ) - 1 ) ;
if ( ! llama_grammar_is_end_of_sequence ( stack_pos_after ) ) {
stack_after . push_back ( stack_pos_after ) ;
}
std : : vector < std : : vector < const llama_grammar_element * > > next_stacks ;
llama_grammar_advance_stack ( rules , stack_after , next_stacks ) ;
auto next_rejects = llama_grammar_reject_candidates ( rules , next_stacks , next_candidates ) ;
for ( auto tok : next_rejects ) {
rejects . push_back ( { tok . index , tok . code_points - 1 , tok . partial_utf8 } ) ;
}
return rejects ;
}
static std : : vector < llama_grammar_candidate > llama_grammar_reject_candidates (
const std : : vector < std : : vector < llama_grammar_element > > & rules ,
const std : : vector < std : : vector < const llama_grammar_element * > > & stacks ,
const std : : vector < llama_grammar_candidate > & candidates ) {
GGML_ASSERT ( ! stacks . empty ( ) ) ; // REVIEW
if ( candidates . empty ( ) ) {
return std : : vector < llama_grammar_candidate > ( ) ;
}
auto rejects = llama_grammar_reject_candidates_for_stack ( rules , stacks . front ( ) , candidates ) ;
for ( size_t i = 1 , size = stacks . size ( ) ; i < size ; + + i ) {
rejects = llama_grammar_reject_candidates_for_stack ( rules , stacks [ i ] , rejects ) ;
}
return rejects ;
}
//
// grammar - external
//
struct llama_grammar * llama_grammar_init (
const llama_grammar_element * * rules ,
size_t n_rules ,
size_t start_rule_index ) {
const llama_grammar_element * pos ;
// copy rule definitions into vectors
std : : vector < std : : vector < llama_grammar_element > > vec_rules ( n_rules ) ;
for ( size_t i = 0 ; i < n_rules ; i + + ) {
for ( pos = rules [ i ] ; pos - > type ! = LLAMA_GRETYPE_END ; pos + + ) {
vec_rules [ i ] . push_back ( * pos ) ;
}
vec_rules [ i ] . push_back ( { LLAMA_GRETYPE_END , 0 } ) ;
}
// loop over alternates of start rule to build initial stacks
std : : vector < std : : vector < const llama_grammar_element * > > stacks ;
pos = rules [ start_rule_index ] ;
do {
std : : vector < const llama_grammar_element * > stack ;
if ( ! llama_grammar_is_end_of_sequence ( pos ) ) {
// if alternate is nonempty, add to stack
stack . push_back ( pos ) ;
}
llama_grammar_advance_stack ( vec_rules , stack , stacks ) ;
while ( ! llama_grammar_is_end_of_sequence ( pos ) ) {
// scan to end of alternate def
pos + + ;
}
if ( pos - > type = = LLAMA_GRETYPE_ALT ) {
// there's another alternate def of this rule to process
pos + + ;
} else {
break ;
}
} while ( true ) ;
return new llama_grammar { std : : move ( vec_rules ) , std : : move ( stacks ) , { } } ;
}
void llama_grammar_free ( struct llama_grammar * grammar ) {
delete grammar ;
}
struct llama_grammar * llama_grammar_copy ( const struct llama_grammar * grammar ) {
llama_grammar * result = new llama_grammar { grammar - > rules , grammar - > stacks , grammar - > partial_utf8 } ;
// redirect elements in stacks to point to new rules
for ( size_t is = 0 ; is < result - > stacks . size ( ) ; is + + ) {
for ( size_t ie = 0 ; ie < result - > stacks [ is ] . size ( ) ; ie + + ) {
for ( size_t ir0 = 0 ; ir0 < grammar - > rules . size ( ) ; ir0 + + ) {
for ( size_t ir1 = 0 ; ir1 < grammar - > rules [ ir0 ] . size ( ) ; ir1 + + ) {
if ( grammar - > stacks [ is ] [ ie ] = = & grammar - > rules [ ir0 ] [ ir1 ] ) {
result - > stacks [ is ] [ ie ] = & result - > rules [ ir0 ] [ ir1 ] ;
}
}
}
}
}
return result ;
}
2023-03-27 18:00:32 +00:00
//
// sampling
//
2023-04-30 15:51:57 +00:00
void llama_sample_softmax ( struct llama_context * ctx , llama_token_data_array * candidates ) {
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( candidates - > size > 0 ) ;
2023-04-30 15:51:57 +00:00
const int64_t t_start_sample_us = ggml_time_us ( ) ;
2023-03-27 18:00:32 +00:00
2023-04-30 15:51:57 +00:00
// Sort the logits in descending order
if ( ! candidates - > sorted ) {
std : : sort ( candidates - > data , candidates - > data + candidates - > size , [ ] ( const llama_token_data & a , const llama_token_data & b ) {
return a . logit > b . logit ;
} ) ;
candidates - > sorted = true ;
}
float max_l = candidates - > data [ 0 ] . logit ;
float cum_sum = 0.0f ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
float p = expf ( candidates - > data [ i ] . logit - max_l ) ;
candidates - > data [ i ] . p = p ;
cum_sum + = p ;
}
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
candidates - > data [ i ] . p / = cum_sum ;
}
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
2023-03-27 18:00:32 +00:00
}
2023-04-30 15:51:57 +00:00
void llama_sample_top_k ( struct llama_context * ctx , llama_token_data_array * candidates , int k , size_t min_keep ) {
const int64_t t_start_sample_us = ggml_time_us ( ) ;
k = std : : max ( k , ( int ) min_keep ) ;
k = std : : min ( k , ( int ) candidates - > size ) ;
// Sort scores in descending order
if ( ! candidates - > sorted ) {
auto comp = [ ] ( const llama_token_data & a , const llama_token_data & b ) {
return a . logit > b . logit ;
} ;
if ( k = = ( int ) candidates - > size ) {
std : : sort ( candidates - > data , candidates - > data + candidates - > size , comp ) ;
} else {
std : : partial_sort ( candidates - > data , candidates - > data + k , candidates - > data + candidates - > size , comp ) ;
2023-04-10 19:59:13 +00:00
}
2023-04-30 15:51:57 +00:00
candidates - > sorted = true ;
}
candidates - > size = k ;
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
2023-04-10 19:59:13 +00:00
}
2023-04-30 15:51:57 +00:00
}
2023-04-10 19:59:13 +00:00
2023-04-30 15:51:57 +00:00
void llama_sample_top_p ( struct llama_context * ctx , llama_token_data_array * candidates , float p , size_t min_keep ) {
if ( p > = 1.0f ) {
return ;
}
2023-03-27 18:00:32 +00:00
2023-04-30 15:51:57 +00:00
llama_sample_softmax ( ctx , candidates ) ;
2023-09-15 17:06:31 +00:00
const int64_t t_start_sample_us = ggml_time_us ( ) ;
2023-04-30 15:51:57 +00:00
// Compute the cumulative probabilities
float cum_sum = 0.0f ;
size_t last_idx = candidates - > size ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
cum_sum + = candidates - > data [ i ] . p ;
2023-09-15 17:06:31 +00:00
// Check if the running sum is at least p or if we have kept at least min_keep tokens
// we set the last index to i+1 to indicate that the current iterate should be included in the set
if ( cum_sum > = p & & i + 1 > = min_keep ) {
last_idx = i + 1 ;
2023-04-30 15:51:57 +00:00
break ;
2023-03-27 18:00:32 +00:00
}
}
2023-04-30 15:51:57 +00:00
// Resize the output vector to keep only the top-p tokens
candidates - > size = last_idx ;
2023-03-27 18:00:32 +00:00
2023-04-30 15:51:57 +00:00
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
2023-03-27 18:00:32 +00:00
2023-04-30 15:51:57 +00:00
void llama_sample_tail_free ( struct llama_context * ctx , llama_token_data_array * candidates , float z , size_t min_keep ) {
if ( z > = 1.0f | | candidates - > size < = 2 ) {
return ;
2023-03-27 18:00:32 +00:00
}
2023-04-30 15:51:57 +00:00
llama_sample_softmax ( nullptr , candidates ) ;
2023-09-15 17:06:31 +00:00
const int64_t t_start_sample_us = ggml_time_us ( ) ;
2023-04-30 15:51:57 +00:00
// Compute the first and second derivatives
std : : vector < float > first_derivatives ( candidates - > size - 1 ) ;
std : : vector < float > second_derivatives ( candidates - > size - 2 ) ;
for ( size_t i = 0 ; i < first_derivatives . size ( ) ; + + i ) {
first_derivatives [ i ] = candidates - > data [ i ] . p - candidates - > data [ i + 1 ] . p ;
}
for ( size_t i = 0 ; i < second_derivatives . size ( ) ; + + i ) {
second_derivatives [ i ] = first_derivatives [ i ] - first_derivatives [ i + 1 ] ;
2023-03-27 18:00:32 +00:00
}
2023-04-30 15:51:57 +00:00
// Calculate absolute value of second derivatives
for ( size_t i = 0 ; i < second_derivatives . size ( ) ; + + i ) {
2023-09-15 17:06:31 +00:00
second_derivatives [ i ] = std : : abs ( second_derivatives [ i ] ) ;
2023-04-30 15:51:57 +00:00
}
// Normalize the second derivatives
2023-09-15 17:06:31 +00:00
{
const float second_derivatives_sum = std : : accumulate ( second_derivatives . begin ( ) , second_derivatives . end ( ) , 0.0f ) ;
if ( second_derivatives_sum > 1e-6 f ) {
for ( float & value : second_derivatives ) {
value / = second_derivatives_sum ;
}
} else {
for ( float & value : second_derivatives ) {
value = 1.0f / second_derivatives . size ( ) ;
}
}
2023-04-30 15:51:57 +00:00
}
float cum_sum = 0.0f ;
size_t last_idx = candidates - > size ;
for ( size_t i = 0 ; i < second_derivatives . size ( ) ; + + i ) {
cum_sum + = second_derivatives [ i ] ;
// Check if the running sum is greater than z or if we have kept at least min_keep tokens
if ( cum_sum > z & & i > = min_keep ) {
last_idx = i ;
break ;
2023-03-27 18:00:32 +00:00
}
}
2023-04-30 15:51:57 +00:00
// Resize the output vector to keep only the tokens above the tail location
candidates - > size = last_idx ;
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_typical ( struct llama_context * ctx , llama_token_data_array * candidates , float p , size_t min_keep ) {
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
if ( p > = 1.0f ) {
return ;
}
// Compute the softmax of logits and calculate entropy
llama_sample_softmax ( nullptr , candidates ) ;
2023-09-15 17:06:31 +00:00
const int64_t t_start_sample_us = ggml_time_us ( ) ;
2023-04-30 15:51:57 +00:00
float entropy = 0.0f ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
entropy + = - candidates - > data [ i ] . p * logf ( candidates - > data [ i ] . p ) ;
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std : : vector < float > shifted_scores ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
float shifted_score = fabsf ( - logf ( candidates - > data [ i ] . p ) - entropy ) ;
shifted_scores . push_back ( shifted_score ) ;
}
// Sort tokens based on the shifted_scores and their corresponding indices
std : : vector < size_t > indices ( candidates - > size ) ;
std : : iota ( indices . begin ( ) , indices . end ( ) , 0 ) ;
std : : sort ( indices . begin ( ) , indices . end ( ) , [ & ] ( size_t a , size_t b ) {
return shifted_scores [ a ] < shifted_scores [ b ] ;
} ) ;
// Compute the cumulative probabilities
float cum_sum = 0.0f ;
size_t last_idx = indices . size ( ) ;
for ( size_t i = 0 ; i < indices . size ( ) ; + + i ) {
size_t idx = indices [ i ] ;
cum_sum + = candidates - > data [ idx ] . p ;
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
if ( cum_sum > p & & i > = min_keep - 1 ) {
last_idx = i + 1 ;
break ;
}
}
// Resize the output vector to keep only the locally typical tokens
std : : vector < llama_token_data > new_candidates ;
for ( size_t i = 0 ; i < last_idx ; + + i ) {
size_t idx = indices [ i ] ;
new_candidates . push_back ( candidates - > data [ idx ] ) ;
}
// Replace the data in candidates with the new_candidates data
std : : copy ( new_candidates . begin ( ) , new_candidates . end ( ) , candidates - > data ) ;
candidates - > size = new_candidates . size ( ) ;
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
void llama_sample_temperature ( struct llama_context * ctx , llama_token_data_array * candidates_p , float temp ) {
const int64_t t_start_sample_us = ggml_time_us ( ) ;
for ( size_t i = 0 ; i < candidates_p - > size ; + + i ) {
candidates_p - > data [ i ] . logit / = temp ;
}
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
2023-05-14 15:46:19 +00:00
void llama_sample_repetition_penalty ( struct llama_context * ctx , llama_token_data_array * candidates , const llama_token * last_tokens , size_t last_tokens_size , float penalty ) {
2023-04-30 15:51:57 +00:00
if ( last_tokens_size = = 0 | | penalty = = 1.0f ) {
return ;
}
const int64_t t_start_sample_us = ggml_time_us ( ) ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
2023-05-14 15:46:19 +00:00
const auto * token_iter = std : : find ( last_tokens , last_tokens + last_tokens_size , candidates - > data [ i ] . id ) ;
2023-04-30 15:51:57 +00:00
if ( token_iter = = last_tokens + last_tokens_size ) {
continue ;
}
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
if ( candidates - > data [ i ] . logit < = 0 ) {
candidates - > data [ i ] . logit * = penalty ;
} else {
candidates - > data [ i ] . logit / = penalty ;
}
}
candidates - > sorted = false ;
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
2023-05-14 15:46:19 +00:00
void llama_sample_frequency_and_presence_penalties ( struct llama_context * ctx , llama_token_data_array * candidates , const llama_token * last_tokens_p , size_t last_tokens_size , float alpha_frequency , float alpha_presence ) {
2023-04-30 15:51:57 +00:00
if ( last_tokens_size = = 0 | | ( alpha_frequency = = 0.0f & & alpha_presence = = 0.0f ) ) {
return ;
}
const int64_t t_start_sample_us = ggml_time_us ( ) ;
// Create a frequency map to count occurrences of each token in last_tokens
std : : unordered_map < llama_token , int > token_count ;
for ( size_t i = 0 ; i < last_tokens_size ; + + i ) {
token_count [ last_tokens_p [ i ] ] + + ;
}
// Apply frequency and presence penalties to the candidates
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
auto token_iter = token_count . find ( candidates - > data [ i ] . id ) ;
if ( token_iter = = token_count . end ( ) ) {
continue ;
}
int count = token_iter - > second ;
candidates - > data [ i ] . logit - = float ( count ) * alpha_frequency + float ( count > 0 ) * alpha_presence ;
}
candidates - > sorted = false ;
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
2023-09-15 17:06:31 +00:00
void llama_sample_grammar ( struct llama_context * ctx , llama_token_data_array * candidates , const struct llama_grammar * grammar ) {
GGML_ASSERT ( ctx ) ;
const int64_t t_start_sample_us = ggml_time_us ( ) ;
bool allow_eos = false ;
for ( const auto & stack : grammar - > stacks ) {
if ( stack . empty ( ) ) {
allow_eos = true ;
break ;
}
}
const llama_token eos = llama_token_eos ( ctx ) ;
std : : vector < std : : pair < std : : vector < uint32_t > , llama_partial_utf8 > > candidates_decoded ;
std : : vector < llama_grammar_candidate > candidates_grammar ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
const llama_token id = candidates - > data [ i ] . id ;
const std : : string piece = llama_token_to_str ( ctx , id ) ;
if ( id = = eos ) {
if ( ! allow_eos ) {
candidates - > data [ i ] . logit = - INFINITY ;
}
} else if ( piece . empty ( ) | | piece [ 0 ] = = 0 ) {
candidates - > data [ i ] . logit = - INFINITY ;
} else {
candidates_decoded . push_back ( decode_utf8 ( piece . c_str ( ) , grammar - > partial_utf8 ) ) ;
candidates_grammar . push_back ( { i , candidates_decoded . back ( ) . first . data ( ) , candidates_decoded . back ( ) . second } ) ;
}
}
const auto rejects = llama_grammar_reject_candidates ( grammar - > rules , grammar - > stacks , candidates_grammar ) ;
for ( const auto & reject : rejects ) {
candidates - > data [ reject . index ] . logit = - INFINITY ;
}
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
static void llama_log_softmax ( float * array , size_t size ) {
float max_l = * std : : max_element ( array , array + size ) ;
float sum = 0.f ;
for ( size_t i = 0 ; i < size ; + + i ) {
float p = expf ( array [ i ] - max_l ) ;
sum + = p ;
array [ i ] = p ;
}
for ( size_t i = 0 ; i < size ; + + i ) {
array [ i ] = logf ( array [ i ] / sum ) ;
}
}
void llama_sample_classifier_free_guidance (
struct llama_context * ctx ,
llama_token_data_array * candidates ,
struct llama_context * guidance_ctx ,
float scale ) {
int64_t t_start_sample_us = ggml_time_us ( ) ;
GGML_ASSERT ( ctx ) ;
auto n_vocab = llama_n_vocab ( ctx ) ;
GGML_ASSERT ( n_vocab = = ( int ) candidates - > size ) ;
GGML_ASSERT ( ! candidates - > sorted ) ;
std : : vector < float > logits_base ;
logits_base . reserve ( candidates - > size ) ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
logits_base . push_back ( candidates - > data [ i ] . logit ) ;
}
llama_log_softmax ( logits_base . data ( ) , candidates - > size ) ;
float * logits_guidance = llama_get_logits ( guidance_ctx ) ;
llama_log_softmax ( logits_guidance , n_vocab ) ;
for ( int i = 0 ; i < n_vocab ; + + i ) {
float logit_guidance = logits_guidance [ i ] ;
float logit_base = logits_base [ i ] ;
candidates - > data [ i ] . logit = scale * ( logit_base - logit_guidance ) + logit_guidance ;
}
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
}
2023-04-30 15:51:57 +00:00
llama_token llama_sample_token_mirostat ( struct llama_context * ctx , llama_token_data_array * candidates , float tau , float eta , int m , float * mu ) {
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( ctx ) ;
2023-04-30 15:51:57 +00:00
auto N = float ( llama_n_vocab ( ctx ) ) ;
int64_t t_start_sample_us ;
t_start_sample_us = ggml_time_us ( ) ;
llama_sample_softmax ( nullptr , candidates ) ;
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0 ;
float sum_ti_bi = 0.0 ;
float sum_ti_sq = 0.0 ;
for ( size_t i = 0 ; i < size_t ( m - 1 ) & & i < candidates - > size - 1 ; + + i ) {
float t_i = logf ( float ( i + 2 ) / float ( i + 1 ) ) ;
float b_i = logf ( candidates - > data [ i ] . p / candidates - > data [ i + 1 ] . p ) ;
sum_ti_bi + = t_i * b_i ;
sum_ti_sq + = t_i * t_i ;
}
s_hat = sum_ti_bi / sum_ti_sq ;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1 ;
float k = powf ( ( epsilon_hat * powf ( 2 , * mu ) ) / ( 1 - powf ( N , - epsilon_hat ) ) , 1 / s_hat ) ;
// Sample the next word X using top-k sampling
2023-05-14 15:46:19 +00:00
llama_sample_top_k ( nullptr , candidates , int ( k ) , 1 ) ;
2023-04-30 15:51:57 +00:00
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
llama_token X = llama_sample_token ( ctx , candidates ) ;
t_start_sample_us = ggml_time_us ( ) ;
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std : : distance ( candidates - > data , std : : find_if ( candidates - > data , candidates - > data + candidates - > size , [ & ] ( const llama_token_data & candidate ) {
return candidate . id = = X ;
} ) ) ;
float observed_surprise = - log2f ( candidates - > data [ X_idx ] . p ) ;
float e = observed_surprise - tau ;
// Update mu using the learning rate and error
* mu = * mu - eta * e ;
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
return X ;
}
llama_token llama_sample_token_mirostat_v2 ( struct llama_context * ctx , llama_token_data_array * candidates , float tau , float eta , float * mu ) {
int64_t t_start_sample_us ;
t_start_sample_us = ggml_time_us ( ) ;
llama_sample_softmax ( ctx , candidates ) ;
// Truncate the words with surprise values greater than mu
candidates - > size = std : : distance ( candidates - > data , std : : find_if ( candidates - > data , candidates - > data + candidates - > size , [ & ] ( const llama_token_data & candidate ) {
return - log2f ( candidate . p ) > * mu ;
} ) ) ;
2023-09-15 17:06:31 +00:00
if ( candidates - > size = = 0 ) {
candidates - > size = 1 ;
}
2023-04-30 15:51:57 +00:00
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
2023-09-15 17:06:31 +00:00
// Normalize the probabilities of the remaining words
llama_sample_softmax ( ctx , candidates ) ;
// Sample the next word X from the remaining words
2023-04-30 15:51:57 +00:00
llama_token X = llama_sample_token ( ctx , candidates ) ;
t_start_sample_us = ggml_time_us ( ) ;
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std : : distance ( candidates - > data , std : : find_if ( candidates - > data , candidates - > data + candidates - > size , [ & ] ( const llama_token_data & candidate ) {
return candidate . id = = X ;
} ) ) ;
float observed_surprise = - log2f ( candidates - > data [ X_idx ] . p ) ;
float e = observed_surprise - tau ;
// Update mu using the learning rate and error
* mu = * mu - eta * e ;
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
return X ;
}
llama_token llama_sample_token_greedy ( struct llama_context * ctx , llama_token_data_array * candidates ) {
const int64_t t_start_sample_us = ggml_time_us ( ) ;
// Find max element
2023-05-14 15:46:19 +00:00
auto * max_iter = std : : max_element ( candidates - > data , candidates - > data + candidates - > size , [ ] ( const llama_token_data & a , const llama_token_data & b ) {
2023-04-30 15:51:57 +00:00
return a . logit < b . logit ;
} ) ;
llama_token result = max_iter - > id ;
if ( ctx ) {
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
ctx - > n_sample + + ;
}
return result ;
}
llama_token llama_sample_token ( struct llama_context * ctx , llama_token_data_array * candidates ) {
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( ctx ) ;
2023-04-30 15:51:57 +00:00
const int64_t t_start_sample_us = ggml_time_us ( ) ;
llama_sample_softmax ( nullptr , candidates ) ;
std : : vector < float > probs ;
probs . reserve ( candidates - > size ) ;
for ( size_t i = 0 ; i < candidates - > size ; + + i ) {
probs . push_back ( candidates - > data [ i ] . p ) ;
}
2023-03-27 18:00:32 +00:00
std : : discrete_distribution < > dist ( probs . begin ( ) , probs . end ( ) ) ;
2023-04-30 15:51:57 +00:00
auto & rng = ctx - > rng ;
2023-03-27 18:00:32 +00:00
int idx = dist ( rng ) ;
2023-04-30 15:51:57 +00:00
llama_token result = candidates - > data [ idx ] . id ;
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
ctx - > n_sample + + ;
return result ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
void llama_grammar_accept_token ( struct llama_context * ctx , struct llama_grammar * grammar , llama_token token ) {
const int64_t t_start_sample_us = ggml_time_us ( ) ;
if ( token = = llama_token_eos ( ctx ) ) {
for ( const auto & stack : grammar - > stacks ) {
if ( stack . empty ( ) ) {
return ;
}
}
GGML_ASSERT ( false ) ;
}
const std : : string piece = llama_token_to_str ( ctx , token ) ;
// Note terminating 0 in decoded string
const auto decoded = decode_utf8 ( piece . c_str ( ) , grammar - > partial_utf8 ) ;
const auto & code_points = decoded . first ;
for ( auto it = code_points . begin ( ) , end = code_points . end ( ) - 1 ; it ! = end ; + + it ) {
grammar - > stacks = llama_grammar_accept ( grammar - > rules , grammar - > stacks , * it ) ;
}
grammar - > partial_utf8 = decoded . second ;
GGML_ASSERT ( ! grammar - > stacks . empty ( ) ) ;
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
}
//
// Beam search
//
struct llama_beam {
std : : vector < llama_token > tokens ;
float p ; // Cumulative beam probability (renormalized relative to all beams)
bool eob ; // Initialize end-of-beam to false. Callback sets this to true.
// Sort beams by probability. In case of ties, prefer beams at eob.
bool operator < ( const llama_beam & rhs ) const {
return std : : make_pair ( p , eob ) < std : : make_pair ( rhs . p , rhs . eob ) ;
}
// Shift off first n tokens and discard them.
void shift_tokens ( const size_t n ) {
if ( n ) {
std : : copy ( tokens . begin ( ) + n , tokens . end ( ) , tokens . begin ( ) ) ;
tokens . resize ( tokens . size ( ) - n ) ;
}
}
llama_beam_view view ( ) const { return { tokens . data ( ) , tokens . size ( ) , p , eob } ; }
} ;
// A struct for calculating logit-related info.
struct llama_logit_info {
const float * const logits ;
const int n_vocab ;
const float max_l ;
const float normalizer ;
struct sum_exp {
float max_l ;
float operator ( ) ( float sum , float l ) const { return sum + std : : exp ( l - max_l ) ; }
} ;
llama_logit_info ( llama_context * ctx )
: logits ( llama_get_logits ( ctx ) )
, n_vocab ( llama_n_vocab ( ctx ) )
, max_l ( * std : : max_element ( logits , logits + n_vocab ) )
, normalizer ( 1.0f / std : : accumulate ( logits , logits + n_vocab , 0.0f , sum_exp { max_l } ) )
{ }
llama_token_data get_token_data ( const llama_token token_id ) const {
constexpr auto p = std : : numeric_limits < float > : : quiet_NaN ( ) ; // never used
return { token_id , logits [ token_id ] , p } ;
}
// Return top k token_data by logit.
std : : vector < llama_token_data > top_k ( size_t k ) {
std : : vector < llama_token_data > min_heap ; // min-heap by logit
const llama_token k_min = std : : min ( static_cast < llama_token > ( k ) , n_vocab ) ;
min_heap . reserve ( k_min ) ;
for ( llama_token token_id = 0 ; token_id < k_min ; + + token_id ) {
min_heap . push_back ( get_token_data ( token_id ) ) ;
}
auto comp = [ ] ( const llama_token_data & a , const llama_token_data & b ) { return a . logit > b . logit ; } ;
std : : make_heap ( min_heap . begin ( ) , min_heap . end ( ) , comp ) ;
for ( llama_token token_id = k_min ; token_id < n_vocab ; + + token_id ) {
if ( min_heap . front ( ) . logit < logits [ token_id ] ) {
std : : pop_heap ( min_heap . begin ( ) , min_heap . end ( ) , comp ) ;
min_heap . back ( ) . id = token_id ;
min_heap . back ( ) . logit = logits [ token_id ] ;
std : : push_heap ( min_heap . begin ( ) , min_heap . end ( ) , comp ) ;
}
}
return min_heap ;
}
float probability_from_logit ( float logit ) const {
return normalizer * std : : exp ( logit - max_l ) ;
}
} ;
struct llama_beam_search_data {
llama_context * ctx ;
size_t n_beams ;
int n_past ;
int n_predict ;
int n_threads ;
std : : vector < llama_beam > beams ;
std : : vector < llama_beam > next_beams ;
// Re-calculated on each loop iteration
size_t common_prefix_length ;
// Used to communicate to/from callback on beams state.
std : : vector < llama_beam_view > beam_views ;
llama_beam_search_data ( llama_context * ctx , size_t n_beams , int n_past , int n_predict , int n_threads )
: ctx ( ctx )
, n_beams ( n_beams )
, n_past ( n_past )
, n_predict ( n_predict )
, n_threads ( n_threads )
, beam_views ( n_beams ) {
beams . reserve ( n_beams ) ;
next_beams . reserve ( n_beams ) ;
}
// Collapse beams to a single beam given by index.
void collapse_beams ( const size_t beam_idx ) {
if ( 0u < beam_idx ) {
std : : swap ( beams [ 0 ] , beams [ beam_idx ] ) ;
}
beams . resize ( 1 ) ;
}
// Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
// The repetative patterns below reflect the 2 stages of heaps:
// * Gather elements until the vector is full, then call std::make_heap() on it.
// * If the heap is full and a new element is found that should be included, pop the
// least element to the back(), replace it with the new, then push it into the heap.
void fill_next_beams_by_top_probabilities ( llama_beam & beam ) {
// Min-heaps use a greater-than comparator.
const auto comp = [ ] ( const llama_beam & a , const llama_beam & b ) { return a . p > b . p ; } ;
if ( beam . eob ) {
// beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
if ( next_beams . size ( ) < n_beams ) {
next_beams . push_back ( std : : move ( beam ) ) ;
if ( next_beams . size ( ) = = n_beams ) {
std : : make_heap ( next_beams . begin ( ) , next_beams . end ( ) , comp ) ;
}
} else if ( next_beams . front ( ) . p < beam . p ) {
std : : pop_heap ( next_beams . begin ( ) , next_beams . end ( ) , comp ) ;
next_beams . back ( ) = std : : move ( beam ) ;
std : : push_heap ( next_beams . begin ( ) , next_beams . end ( ) , comp ) ;
}
} else {
// beam is not at end-of-sentence, so branch with next top_k tokens.
if ( ! beam . tokens . empty ( ) ) {
llama_eval ( ctx , beam . tokens . data ( ) , beam . tokens . size ( ) , n_past , n_threads ) ;
}
llama_logit_info logit_info ( ctx ) ;
std : : vector < llama_token_data > next_tokens = logit_info . top_k ( n_beams ) ;
size_t i = 0 ;
if ( next_beams . size ( ) < n_beams ) {
for ( ; next_beams . size ( ) < n_beams ; + + i ) {
llama_beam next_beam = beam ;
next_beam . tokens . push_back ( next_tokens [ i ] . id ) ;
next_beam . p * = logit_info . probability_from_logit ( next_tokens [ i ] . logit ) ;
next_beams . push_back ( std : : move ( next_beam ) ) ;
}
std : : make_heap ( next_beams . begin ( ) , next_beams . end ( ) , comp ) ;
} else {
for ( ; next_beams . front ( ) . p = = 0.0f ; + + i ) {
std : : pop_heap ( next_beams . begin ( ) , next_beams . end ( ) , comp ) ;
next_beams . back ( ) = beam ;
next_beams . back ( ) . tokens . push_back ( next_tokens [ i ] . id ) ;
next_beams . back ( ) . p * = logit_info . probability_from_logit ( next_tokens [ i ] . logit ) ;
std : : push_heap ( next_beams . begin ( ) , next_beams . end ( ) , comp ) ;
}
}
for ( ; i < n_beams ; + + i ) {
const float next_p = beam . p * logit_info . probability_from_logit ( next_tokens [ i ] . logit ) ;
if ( next_beams . front ( ) . p < next_p ) {
std : : pop_heap ( next_beams . begin ( ) , next_beams . end ( ) , comp ) ;
next_beams . back ( ) = beam ;
next_beams . back ( ) . tokens . push_back ( next_tokens [ i ] . id ) ;
next_beams . back ( ) . p = next_p ;
std : : push_heap ( next_beams . begin ( ) , next_beams . end ( ) , comp ) ;
}
}
}
}
// Find common_prefix_length based on beams.
// Requires beams is not empty.
size_t find_common_prefix_length ( ) {
size_t common_prefix_length = beams [ 0 ] . tokens . size ( ) ;
for ( size_t i = 1 ; i < beams . size ( ) ; + + i ) {
common_prefix_length = std : : min ( common_prefix_length , beams [ i ] . tokens . size ( ) ) ;
for ( size_t j = 0 ; j < common_prefix_length ; + + j ) {
if ( beams [ 0 ] . tokens [ j ] ! = beams [ i ] . tokens [ j ] ) {
common_prefix_length = j ;
break ;
}
}
}
return common_prefix_length ;
}
// Construct beams_state to send back to caller via the callback function.
// Side effect: set common_prefix_length = find_common_prefix_length();
llama_beams_state get_beams_state ( const bool last_call ) {
for ( size_t i = 0 ; i < beams . size ( ) ; + + i ) {
beam_views [ i ] = beams [ i ] . view ( ) ;
}
common_prefix_length = find_common_prefix_length ( ) ;
return { beam_views . data ( ) , beams . size ( ) , common_prefix_length , last_call } ;
}
// Loop:
// * while i < n_predict, AND
// * any of the beams have not yet reached end-of-beam (eob), AND
// * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
// (since all other beam probabilities can only decrease)
void loop ( const llama_beam_search_callback_fn_t callback , void * const callback_data ) {
beams . push_back ( { { } , 1.0f , false } ) ; // Start with one empty beam w/ probability = 1.0 and !eob.
const auto not_eob = [ ] ( const llama_beam & beam ) { return ! beam . eob ; } ;
for ( int i = 0 ; i < n_predict & & std : : any_of ( beams . begin ( ) , beams . end ( ) , not_eob ) & &
! beams [ top_beam_index ( ) ] . eob ; + + i ) {
callback ( callback_data , get_beams_state ( false ) ) ; // Sets common_prefix_length
update_beams_from_beam_views ( ) ; // Update values (p,eob) that callback may have changed.
if ( common_prefix_length ) {
llama_eval ( ctx , beams [ 0 ] . tokens . data ( ) , common_prefix_length , n_past , n_threads ) ;
n_past + = common_prefix_length ;
}
// Zero-out next_beam probabilities to place them last in following min-heap.
std : : for_each ( next_beams . begin ( ) , next_beams . end ( ) , [ ] ( llama_beam & beam ) { beam . p = 0.0f ; } ) ;
for ( llama_beam & beam : beams ) {
beam . shift_tokens ( common_prefix_length ) ;
fill_next_beams_by_top_probabilities ( beam ) ;
}
// next_beams become the beams of next/final iteration. Swap them to re-use memory.
beams . swap ( next_beams ) ;
renormalize_beam_probabilities ( beams ) ;
}
collapse_beams ( top_beam_index ( ) ) ;
callback ( callback_data , get_beams_state ( true ) ) ;
}
// As beams grow, the cumulative probabilities decrease.
// Renormalize them to avoid floating point underflow.
static void renormalize_beam_probabilities ( std : : vector < llama_beam > & beams ) {
const auto sum_p = [ ] ( float sum , llama_beam & beam ) { return sum + beam . p ; } ;
const float inv_sum = 1.0f / std : : accumulate ( beams . begin ( ) , beams . end ( ) , 0.0f , sum_p ) ;
std : : for_each ( beams . begin ( ) , beams . end ( ) , [ = ] ( llama_beam & beam ) { beam . p * = inv_sum ; } ) ;
}
// Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
size_t top_beam_index ( ) {
return std : : max_element ( beams . begin ( ) , beams . end ( ) ) - beams . begin ( ) ;
}
// Copy (p,eob) for each beam which may have been changed by the callback.
void update_beams_from_beam_views ( ) {
for ( size_t i = 0 ; i < beams . size ( ) ; + + i ) {
beams [ i ] . p = beam_views [ i ] . p ;
beams [ i ] . eob = beam_views [ i ] . eob ;
}
}
} ;
void llama_beam_search ( llama_context * ctx ,
llama_beam_search_callback_fn_t callback , void * callback_data ,
size_t n_beams , int n_past , int n_predict , int n_threads ) {
assert ( ctx ) ;
const int64_t t_start_sample_us = ggml_time_us ( ) ;
llama_beam_search_data beam_search_data ( ctx , n_beams , n_past , n_predict , n_threads ) ;
beam_search_data . loop ( callback , callback_data ) ;
ctx - > t_sample_us + = ggml_time_us ( ) - t_start_sample_us ;
ctx - > n_sample + + ;
}
2023-03-27 18:00:32 +00:00
//
// quantization
//
2023-09-15 17:06:31 +00:00
template < typename T >
struct no_init {
T value ;
no_init ( ) { /* do nothing */ }
} ;
static void llama_convert_tensor_internal (
struct ggml_tensor * tensor , std : : vector < no_init < float > > & output , std : : vector < std : : thread > & workers ,
const size_t nelements , const int nthread
) {
if ( output . size ( ) < nelements ) {
output . resize ( nelements ) ;
}
float * f32_output = ( float * ) output . data ( ) ;
ggml_type_traits_t qtype ;
if ( ggml_is_quantized ( tensor - > type ) ) {
qtype = ggml_internal_get_type_traits ( tensor - > type ) ;
if ( qtype . to_float = = NULL ) {
throw std : : runtime_error ( format ( " type %s unsupported for integer quantization: no dequantization available " , ggml_type_name ( tensor - > type ) ) ) ;
}
} else if ( tensor - > type ! = GGML_TYPE_F16 ) {
throw std : : runtime_error ( format ( " cannot dequantize/convert tensor type %s " , ggml_type_name ( tensor - > type ) ) ) ;
}
if ( nthread < 2 ) {
if ( tensor - > type = = GGML_TYPE_F16 ) {
ggml_fp16_to_fp32_row ( ( ggml_fp16_t * ) tensor - > data , f32_output , nelements ) ;
} else if ( ggml_is_quantized ( tensor - > type ) ) {
qtype . to_float ( tensor - > data , f32_output , nelements ) ;
} else {
GGML_ASSERT ( false ) ; // unreachable
}
return ;
}
auto block_size = tensor - > type = = GGML_TYPE_F16 ? 1 : ( size_t ) ggml_blck_size ( tensor - > type ) ;
auto block_size_bytes = ggml_type_size ( tensor - > type ) ;
GGML_ASSERT ( nelements % block_size = = 0 ) ;
auto nblocks = nelements / block_size ;
auto blocks_per_thread = nblocks / nthread ;
auto spare_blocks = nblocks - ( blocks_per_thread * nthread ) ; // if blocks aren't divisible by thread count
for ( auto tnum = 0 , in_buff_offs = 0 , out_buff_offs = 0 ; tnum < nthread ; tnum + + ) {
auto thr_blocks = blocks_per_thread + ( tnum = = nthread - 1 ? spare_blocks : 0 ) ; // num blocks for this thread
auto thr_elems = thr_blocks * block_size ; // number of elements for this thread
auto thr_block_bytes = thr_blocks * block_size_bytes ; // number of input bytes for this thread
auto compute = [ qtype ] ( ggml_type typ , uint8_t * inbuf , float * outbuf , int nels ) {
if ( typ = = GGML_TYPE_F16 ) {
ggml_fp16_to_fp32_row ( ( ggml_fp16_t * ) inbuf , outbuf , nels ) ;
} else {
qtype . to_float ( inbuf , outbuf , nels ) ;
}
} ;
workers . emplace_back ( compute , tensor - > type , ( uint8_t * ) tensor - > data + in_buff_offs , f32_output + out_buff_offs , thr_elems ) ;
in_buff_offs + = thr_block_bytes ;
out_buff_offs + = thr_elems ;
}
for ( auto & w : workers ) { w . join ( ) ; }
workers . clear ( ) ;
}
# ifdef GGML_USE_K_QUANTS
static ggml_type get_k_quant_type (
ggml_type new_type , const ggml_tensor * tensor , const llama_model & model , llama_ftype ftype , int * i_attention_wv ,
int n_attention_wv , int * i_feed_forward_w2 , int n_feed_forward_w2
) {
const std : : string name = ggml_get_name ( tensor ) ;
// TODO: avoid hardcoded tensor names - use the TN_* constants
const auto tn = LLM_TN ( model . arch ) ;
auto use_more_bits = [ ] ( int i_layer , int num_layers ) - > bool {
return i_layer < num_layers / 8 | | i_layer > = 7 * num_layers / 8 | | ( i_layer - num_layers / 8 ) % 3 = = 2 ;
} ;
if ( name = = tn ( LLM_TENSOR_OUTPUT , " weight " ) ) {
int nx = tensor - > ne [ 0 ] ;
if ( model . arch = = LLM_ARCH_FALCON | | nx % QK_K ! = 0 ) {
new_type = GGML_TYPE_Q8_0 ;
}
else if ( new_type ! = GGML_TYPE_Q8_0 ) {
new_type = GGML_TYPE_Q6_K ;
}
} else if ( name . find ( " attn_v.weight " ) ! = std : : string : : npos ) {
if ( ftype = = LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K ;
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q3_K_M ) {
new_type = * i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K ;
}
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K ;
else if ( ( ftype = = LLAMA_FTYPE_MOSTLY_Q4_K_M | | ftype = = LLAMA_FTYPE_MOSTLY_Q5_K_M ) & &
use_more_bits ( * i_attention_wv , n_attention_wv ) ) new_type = GGML_TYPE_Q6_K ;
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q4_K_S & & * i_attention_wv < 4 ) new_type = GGML_TYPE_Q5_K ;
else if ( QK_K = = 64 & & ( ftype = = LLAMA_FTYPE_MOSTLY_Q4_K_S | | ftype = = LLAMA_FTYPE_MOSTLY_Q3_K_S ) & &
( * i_attention_wv < n_attention_wv / 8 | | * i_attention_wv > = 7 * n_attention_wv / 8 ) ) new_type = GGML_TYPE_Q6_K ;
if ( model . type = = MODEL_70B ) {
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
// nearly negligible increase in model size by quantizing this tensor with more bits:
if ( new_type = = GGML_TYPE_Q3_K | | new_type = = GGML_TYPE_Q4_K ) new_type = GGML_TYPE_Q5_K ;
}
+ + * i_attention_wv ;
} else if ( name . find ( " ffn_down.weight " ) ! = std : : string : : npos ) {
if ( ftype = = LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K ;
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q3_K_M ) {
new_type = * i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
: model . arch ! = LLM_ARCH_FALCON | | use_more_bits ( * i_feed_forward_w2 , n_feed_forward_w2 ) ? GGML_TYPE_Q4_K
: GGML_TYPE_Q3_K ;
}
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q3_K_L ) {
new_type = model . arch = = LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K ;
}
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q4_K_M ) {
if ( model . arch = = LLM_ARCH_FALCON ) {
new_type = * i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
use_more_bits ( * i_feed_forward_w2 , n_feed_forward_w2 ) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K ;
} else {
if ( use_more_bits ( * i_feed_forward_w2 , n_feed_forward_w2 ) ) new_type = GGML_TYPE_Q6_K ;
}
}
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q5_K_M & & use_more_bits ( * i_feed_forward_w2 , n_feed_forward_w2 ) ) new_type = GGML_TYPE_Q6_K ;
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q4_K_S & & model . arch ! = LLM_ARCH_FALCON & & * i_feed_forward_w2 < 4 ) {
new_type = GGML_TYPE_Q5_K ;
}
+ + * i_feed_forward_w2 ;
} else if ( name . find ( " attn_output.weight " ) ! = std : : string : : npos ) {
if ( model . arch ! = LLM_ARCH_FALCON ) {
if ( ftype = = LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K ;
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K ;
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K ;
} else {
if ( ftype = = LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q4_K ;
}
}
else if ( name . find ( " attn_qkv.weight " ) ! = std : : string : : npos ) {
if ( ftype = = LLAMA_FTYPE_MOSTLY_Q3_K_M | | ftype = = LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q4_K ;
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q4_K_M ) new_type = GGML_TYPE_Q5_K ;
else if ( ftype = = LLAMA_FTYPE_MOSTLY_Q5_K_M ) new_type = GGML_TYPE_Q6_K ;
}
else if ( name . find ( " ffn_gate.weight " ) ! = std : : string : : npos | | name . find ( " ffn_up.weight " ) ! = std : : string : : npos ) {
if ( ftype = = LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K ;
}
// This can be used to reduce the size of the Q5_K_S model.
// The associated PPL increase is fully in line with the size reduction
//else {
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
//}
bool convert_incompatible_tensor = false ;
if ( new_type = = GGML_TYPE_Q2_K | | new_type = = GGML_TYPE_Q3_K | | new_type = = GGML_TYPE_Q4_K | |
new_type = = GGML_TYPE_Q5_K | | new_type = = GGML_TYPE_Q6_K ) {
int nx = tensor - > ne [ 0 ] ;
int ny = tensor - > ne [ 1 ] ;
if ( nx % QK_K ! = 0 ) {
LLAMA_LOG_WARN ( " \n \n %s : tensor cols %d x %d are not divisible by %d, required for k-quants \n " , __func__ , nx , ny , QK_K ) ;
convert_incompatible_tensor = true ;
}
}
if ( convert_incompatible_tensor ) {
if ( name = = tn ( LLM_TENSOR_OUTPUT , " weight " ) ) {
new_type = GGML_TYPE_F16 ; //fall back to F16 instead of just failing.
LLAMA_LOG_WARN ( " F16 will be used for this tensor instead. \n " ) ;
} else if ( name = = tn ( LLM_TENSOR_TOKEN_EMBD , " weight " ) ) {
new_type = GGML_TYPE_Q4_0 ; //fall back to Q4_0 instead of just failing.
LLAMA_LOG_WARN ( " Q4_0 will be used for this tensor instead. \n " ) ;
} else {
throw std : : runtime_error ( " Unsupported tensor size encountered \n " ) ;
}
}
return new_type ;
}
# endif
static void llama_model_quantize_internal ( const std : : string & fname_inp , const std : : string & fname_out , const llama_model_quantize_params * params ) {
2023-04-10 19:59:13 +00:00
ggml_type quantized_type ;
2023-09-15 17:06:31 +00:00
llama_ftype ftype = params - > ftype ;
switch ( params - > ftype ) {
2023-04-30 15:51:57 +00:00
case LLAMA_FTYPE_MOSTLY_Q4_0 : quantized_type = GGML_TYPE_Q4_0 ; break ;
case LLAMA_FTYPE_MOSTLY_Q4_1 : quantized_type = GGML_TYPE_Q4_1 ; break ;
case LLAMA_FTYPE_MOSTLY_Q5_0 : quantized_type = GGML_TYPE_Q5_0 ; break ;
case LLAMA_FTYPE_MOSTLY_Q5_1 : quantized_type = GGML_TYPE_Q5_1 ; break ;
case LLAMA_FTYPE_MOSTLY_Q8_0 : quantized_type = GGML_TYPE_Q8_0 ; break ;
2023-09-15 17:06:31 +00:00
case LLAMA_FTYPE_MOSTLY_F16 : quantized_type = GGML_TYPE_F16 ; break ;
case LLAMA_FTYPE_ALL_F32 : quantized_type = GGML_TYPE_F32 ; break ;
# ifdef GGML_USE_K_QUANTS
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K : quantized_type = GGML_TYPE_Q2_K ; break ;
case LLAMA_FTYPE_MOSTLY_Q3_K_S :
case LLAMA_FTYPE_MOSTLY_Q3_K_M :
case LLAMA_FTYPE_MOSTLY_Q3_K_L : quantized_type = GGML_TYPE_Q3_K ; break ;
case LLAMA_FTYPE_MOSTLY_Q4_K_S :
case LLAMA_FTYPE_MOSTLY_Q4_K_M : quantized_type = GGML_TYPE_Q4_K ; break ;
case LLAMA_FTYPE_MOSTLY_Q5_K_S :
case LLAMA_FTYPE_MOSTLY_Q5_K_M : quantized_type = GGML_TYPE_Q5_K ; break ;
case LLAMA_FTYPE_MOSTLY_Q6_K : quantized_type = GGML_TYPE_Q6_K ; break ;
# endif
default : throw std : : runtime_error ( format ( " invalid output file type %d \n " , ftype ) ) ;
}
int nthread = params - > nthread ;
2023-03-27 18:00:32 +00:00
2023-04-30 15:51:57 +00:00
if ( nthread < = 0 ) {
nthread = std : : thread : : hardware_concurrency ( ) ;
}
2023-09-15 17:06:31 +00:00
std : : unique_ptr < llama_model_loader > ml ( new llama_model_loader ( fname_inp , /*use_mmap*/ false ) ) ;
llama_model model ;
llm_load_arch ( * ml , model ) ;
llm_load_hparams ( * ml , model , 0 , 0 , 0 ) ;
if ( params - > only_copy ) {
ftype = model . ftype ;
}
const size_t align = GGUF_DEFAULT_ALIGNMENT ;
struct gguf_context * ctx_out = gguf_init_empty ( ) ;
// copy the KV pairs from the input file
gguf_set_kv ( ctx_out , ml - > ctx_gguf ) ;
gguf_set_val_u32 ( ctx_out , " general.quantization_version " , GGML_QNT_VERSION ) ;
gguf_set_val_u32 ( ctx_out , " general.file_type " , ftype ) ;
# ifdef GGML_USE_K_QUANTS
int n_attention_wv = 0 ;
int n_feed_forward_w2 = 0 ;
for ( int i = 0 ; i < ml - > n_tensors ; + + i ) {
struct ggml_tensor * meta = ml - > get_tensor_meta ( i ) ;
const std : : string name = ggml_get_name ( meta ) ;
// TODO: avoid hardcoded tensor names - use the TN_* constants
if ( name . find ( " attn_v.weight " ) ! = std : : string : : npos ) {
+ + n_attention_wv ;
}
else if ( name . find ( " ffn_down.weight " ) ! = std : : string : : npos ) {
+ + n_feed_forward_w2 ;
}
}
if ( n_attention_wv ! = n_feed_forward_w2 | | ( uint32_t ) n_attention_wv ! = model . hparams . n_layer ) {
LLAMA_LOG_WARN ( " %s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d \n " ,
__func__ , n_attention_wv , n_feed_forward_w2 , model . hparams . n_layer ) ;
}
int i_attention_wv = 0 ;
int i_feed_forward_w2 = 0 ;
# endif
2023-04-10 19:59:13 +00:00
size_t total_size_org = 0 ;
size_t total_size_new = 0 ;
std : : vector < int64_t > hist_all ( 1 < < 4 , 0 ) ;
2023-04-30 15:51:57 +00:00
std : : vector < std : : thread > workers ;
2023-09-15 17:06:31 +00:00
workers . reserve ( nthread ) ;
2023-04-30 15:51:57 +00:00
std : : mutex mutex ;
2023-09-15 17:06:31 +00:00
int idx = 0 ;
std : : vector < no_init < uint8_t > > read_data ;
std : : vector < no_init < uint8_t > > work ;
std : : vector < no_init < float > > f32_conv_buf ;
// populate the original tensors so we get an initial meta data
for ( int i = 0 ; i < ml - > n_tensors ; + + i ) {
struct ggml_tensor * meta = ml - > get_tensor_meta ( i ) ;
gguf_add_tensor ( ctx_out , meta ) ;
}
std : : ofstream fout ( fname_out , std : : ios : : binary ) ;
const size_t meta_size = gguf_get_meta_size ( ctx_out ) ;
LLAMA_LOG_INFO ( " %s: meta size = %zu bytes \n " , __func__ , meta_size ) ;
// placeholder for the meta data
: : zeros ( fout , meta_size ) ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
for ( int i = 0 ; i < ml - > n_tensors ; + + i ) {
struct ggml_tensor * tensor = ml - > get_tensor_meta ( i ) ;
const std : : string name = ggml_get_name ( tensor ) ;
if ( read_data . size ( ) < ggml_nbytes ( tensor ) ) {
read_data . resize ( ggml_nbytes ( tensor ) ) ;
}
tensor - > data = read_data . data ( ) ;
ml - > load_data_for ( tensor ) ;
LLAMA_LOG_INFO ( " [%4d/%4d] %36s - [%s], type = %6s, " ,
+ + idx , ml - > n_tensors ,
ggml_get_name ( tensor ) ,
llama_format_tensor_shape ( tensor ) . c_str ( ) ,
ggml_type_name ( tensor - > type ) ) ;
2023-04-10 19:59:13 +00:00
// This used to be a regex, but <regex> has an extreme cost to compile times.
2023-09-15 17:06:31 +00:00
bool quantize = name . rfind ( " weight " ) = = name . size ( ) - 6 ; // ends with 'weight'?
2023-04-10 19:59:13 +00:00
// quantize only 2D tensors
2023-09-15 17:06:31 +00:00
quantize & = ( tensor - > n_dims = = 2 ) ;
quantize & = params - > quantize_output_tensor | | name ! = " output.weight " ;
quantize & = ! params - > only_copy ;
2023-04-30 15:51:57 +00:00
2023-04-10 19:59:13 +00:00
enum ggml_type new_type ;
void * new_data ;
size_t new_size ;
2023-09-15 17:06:31 +00:00
if ( quantize ) {
new_type = quantized_type ;
# ifdef GGML_USE_K_QUANTS
new_type = get_k_quant_type (
new_type , tensor , model , ftype , & i_attention_wv , n_attention_wv , & i_feed_forward_w2 , n_feed_forward_w2
) ;
# endif
// If we've decided to quantize to the same type the tensor is already
// in then there's nothing to do.
quantize = tensor - > type ! = new_type ;
}
2023-04-10 19:59:13 +00:00
if ( ! quantize ) {
2023-09-15 17:06:31 +00:00
new_type = tensor - > type ;
new_data = tensor - > data ;
new_size = ggml_nbytes ( tensor ) ;
LLAMA_LOG_INFO ( " size = %8.3f MB \n " , ggml_nbytes ( tensor ) / 1024.0 / 1024.0 ) ;
2023-04-10 19:59:13 +00:00
} else {
2023-09-15 17:06:31 +00:00
const size_t nelements = ggml_nelements ( tensor ) ;
2023-04-10 19:59:13 +00:00
float * f32_data ;
2023-09-15 17:06:31 +00:00
if ( tensor - > type = = GGML_TYPE_F32 ) {
f32_data = ( float * ) tensor - > data ;
} else if ( ggml_is_quantized ( tensor - > type ) & & ! params - > allow_requantize ) {
throw std : : runtime_error ( format ( " requantizing from type %s is disabled " , ggml_type_name ( tensor - > type ) ) ) ;
2023-03-27 18:00:32 +00:00
} else {
2023-09-15 17:06:31 +00:00
llama_convert_tensor_internal ( tensor , f32_conv_buf , workers , nelements , nthread ) ;
f32_data = ( float * ) f32_conv_buf . data ( ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
LLAMA_LOG_INFO ( " quantizing to %s .. " , ggml_type_name ( new_type ) ) ;
2023-04-10 19:59:13 +00:00
fflush ( stdout ) ;
2023-09-15 17:06:31 +00:00
if ( work . size ( ) < nelements * 4 ) {
work . resize ( nelements * 4 ) ; // upper bound on size
}
new_data = work . data ( ) ;
std : : array < int64_t , 1 < < 4 > hist_cur = { } ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
static const int chunk_size = 32 * 512 ;
2023-04-30 15:51:57 +00:00
const int nchunk = ( nelements + chunk_size - 1 ) / chunk_size ;
const int nthread_use = nthread > 1 ? std : : max ( 1 , std : : min ( nthread , nchunk ) ) : 1 ;
if ( nthread_use < 2 ) {
new_size = ggml_quantize_chunk ( new_type , f32_data , new_data , 0 , nelements , hist_cur . data ( ) ) ;
} else {
size_t counter = 0 ;
new_size = 0 ;
2023-09-15 17:06:31 +00:00
auto compute = [ & mutex , & counter , & hist_cur , & new_size , new_type , f32_data , new_data , nelements ] ( ) {
std : : array < int64_t , 1 < < 4 > local_hist = { } ;
2023-04-30 15:51:57 +00:00
size_t local_size = 0 ;
while ( true ) {
std : : unique_lock < std : : mutex > lock ( mutex ) ;
size_t first = counter ; counter + = chunk_size ;
if ( first > = nelements ) {
2023-09-15 17:06:31 +00:00
if ( local_size > 0 ) {
2023-05-14 15:46:19 +00:00
for ( int j = 0 ; j < int ( local_hist . size ( ) ) ; + + j ) {
hist_cur [ j ] + = local_hist [ j ] ;
}
2023-04-30 15:51:57 +00:00
new_size + = local_size ;
}
break ;
}
lock . unlock ( ) ;
size_t last = std : : min ( nelements , first + chunk_size ) ;
local_size + = ggml_quantize_chunk ( new_type , f32_data , new_data , first , last - first , local_hist . data ( ) ) ;
}
} ;
2023-05-14 15:46:19 +00:00
for ( int it = 0 ; it < nthread_use - 1 ; + + it ) {
2023-09-15 17:06:31 +00:00
workers . emplace_back ( compute ) ;
2023-05-14 15:46:19 +00:00
}
2023-04-30 15:51:57 +00:00
compute ( ) ;
2023-09-15 17:06:31 +00:00
for ( auto & w : workers ) { w . join ( ) ; }
workers . clear ( ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
LLAMA_LOG_INFO ( " size = %8.2f MB -> %8.2f MB | hist: " , ggml_nbytes ( tensor ) / 1024.0 / 1024.0 , new_size / 1024.0 / 1024.0 ) ;
int64_t tot_count = 0 ;
2023-04-10 19:59:13 +00:00
for ( size_t i = 0 ; i < hist_cur . size ( ) ; i + + ) {
hist_all [ i ] + = hist_cur [ i ] ;
2023-09-15 17:06:31 +00:00
tot_count + = hist_cur [ i ] ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
if ( tot_count > 0 ) {
for ( size_t i = 0 ; i < hist_cur . size ( ) ; i + + ) {
LLAMA_LOG_INFO ( " %5.3f " , hist_cur [ i ] / float ( nelements ) ) ;
2023-04-10 19:59:13 +00:00
}
}
2023-09-15 17:06:31 +00:00
LLAMA_LOG_INFO ( " \n " ) ;
}
total_size_org + = ggml_nbytes ( tensor ) ;
total_size_new + = new_size ;
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
// update the gguf meta data as we go
gguf_set_tensor_type ( ctx_out , name . c_str ( ) , new_type ) ;
gguf_set_tensor_data ( ctx_out , name . c_str ( ) , new_data , new_size ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// write tensor data + padding
fout . write ( ( const char * ) new_data , new_size ) ;
zeros ( fout , GGML_PAD ( new_size , align ) - new_size ) ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// go back to beginning of file and write the updated meta data
{
fout . seekp ( 0 ) ;
std : : vector < uint8_t > data ( gguf_get_meta_size ( ctx_out ) ) ;
gguf_get_meta_data ( ctx_out , data . data ( ) ) ;
fout . write ( ( const char * ) data . data ( ) , data . size ( ) ) ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
fout . close ( ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
gguf_free ( ctx_out ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
LLAMA_LOG_INFO ( " %s: model size = %8.2f MB \n " , __func__ , total_size_org / 1024.0 / 1024.0 ) ;
LLAMA_LOG_INFO ( " %s: quant size = %8.2f MB \n " , __func__ , total_size_new / 1024.0 / 1024.0 ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// print histogram for all tensors
{
int64_t sum_all = 0 ;
for ( size_t i = 0 ; i < hist_all . size ( ) ; i + + ) {
sum_all + = hist_all [ i ] ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
if ( sum_all > 0 ) {
LLAMA_LOG_INFO ( " %s: hist: " , __func__ ) ;
for ( size_t i = 0 ; i < hist_all . size ( ) ; i + + ) {
LLAMA_LOG_INFO ( " %5.3f " , hist_all [ i ] / float ( sum_all ) ) ;
}
LLAMA_LOG_INFO ( " \n " ) ;
2023-03-27 18:00:32 +00:00
}
}
2023-04-10 19:59:13 +00:00
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
// TODO: after the GGUF PR, this likely won't work and needs to be updated
int llama_apply_lora_from_file_internal ( const struct llama_model & model , const char * path_lora , const char * path_base_model , int n_threads ) {
LLAMA_LOG_INFO ( " %s: applying lora adapter from '%s' - please wait ... \n " , __func__ , path_lora ) ;
2023-04-30 15:51:57 +00:00
const int64_t t_start_lora_us = ggml_time_us ( ) ;
auto fin = std : : ifstream ( path_lora , std : : ios : : binary ) ;
if ( ! fin ) {
2023-09-15 17:06:31 +00:00
LLAMA_LOG_ERROR ( " %s: failed to open '%s' \n " , __func__ , path_lora ) ;
2023-04-30 15:51:57 +00:00
return 1 ;
}
// verify magic and version
{
uint32_t magic ;
fin . read ( ( char * ) & magic , sizeof ( magic ) ) ;
uint32_t format_version ;
fin . read ( ( char * ) & format_version , sizeof ( format_version ) ) ;
if ( format_version ! = 1 ) {
2023-09-15 17:06:31 +00:00
LLAMA_LOG_ERROR ( " %s: unsupported file version \n " , __func__ ) ;
2023-04-30 15:51:57 +00:00
return 1 ;
}
}
int32_t lora_r ;
int32_t lora_alpha ;
fin . read ( ( char * ) & lora_r , sizeof ( lora_r ) ) ;
fin . read ( ( char * ) & lora_alpha , sizeof ( lora_alpha ) ) ;
float scaling = ( float ) lora_alpha / ( float ) lora_r ;
2023-09-15 17:06:31 +00:00
LLAMA_LOG_INFO ( " %s: r = %d, alpha = %d, scaling = %.2f \n " , __func__ , lora_r , lora_alpha , scaling ) ;
2023-04-30 15:51:57 +00:00
// create a temporary ggml context to store the lora tensors
// todo: calculate size from biggest possible tensor
std : : vector < uint8_t > lora_buf ( 1024ull * 1024ull * 1024ull ) ;
struct ggml_init_params params ;
params . mem_size = lora_buf . size ( ) ;
params . mem_buffer = lora_buf . data ( ) ;
params . no_alloc = false ;
ggml_context * lora_ctx = ggml_init ( params ) ;
std : : unordered_map < std : : string , struct ggml_tensor * > lora_tensors ;
// create a name -> tensor map of the model to accelerate lookups
std : : unordered_map < std : : string , struct ggml_tensor * > model_tensors ;
2023-09-15 17:06:31 +00:00
for ( const auto & kv : model . tensors_by_name ) {
2023-04-30 15:51:57 +00:00
model_tensors . insert ( kv ) ;
}
// load base model
2023-09-15 17:06:31 +00:00
std : : unique_ptr < llama_model_loader > ml ;
2023-04-30 15:51:57 +00:00
ggml_context * base_ctx = NULL ;
2023-09-15 17:06:31 +00:00
std : : vector < uint8_t > base_buf ;
2023-04-30 15:51:57 +00:00
if ( path_base_model ) {
2023-09-15 17:06:31 +00:00
LLAMA_LOG_INFO ( " %s: loading base model from '%s' \n " , __func__ , path_base_model ) ;
ml . reset ( new llama_model_loader ( path_base_model , /*use_mmap*/ true ) ) ;
2023-04-30 15:51:57 +00:00
2023-05-14 15:46:19 +00:00
size_t ctx_size ;
size_t mmapped_size ;
2023-09-15 17:06:31 +00:00
ml - > calc_sizes ( ctx_size , mmapped_size ) ;
2023-04-30 15:51:57 +00:00
base_buf . resize ( ctx_size ) ;
ggml_init_params base_params ;
2023-09-15 17:06:31 +00:00
base_params . mem_size = base_buf . size ( ) ;
base_params . mem_buffer = base_buf . data ( ) ;
base_params . no_alloc = ml - > use_mmap ;
2023-04-30 15:51:57 +00:00
base_ctx = ggml_init ( base_params ) ;
// maybe this should in llama_model_loader
2023-09-15 17:06:31 +00:00
if ( ml - > use_mmap ) {
ml - > mapping . reset ( new llama_mmap ( & ml - > file , /* prefetch */ 0 , ggml_is_numa ( ) ) ) ;
2023-04-30 15:51:57 +00:00
}
}
// read tensors and apply
bool warned = false ;
int n_tensors = 0 ;
2023-09-15 17:06:31 +00:00
std : : vector < uint8_t > work_buffer ;
2023-04-30 15:51:57 +00:00
while ( true ) {
int32_t n_dims ;
int32_t length ;
int32_t ftype ;
fin . read ( reinterpret_cast < char * > ( & n_dims ) , sizeof ( n_dims ) ) ;
fin . read ( reinterpret_cast < char * > ( & length ) , sizeof ( length ) ) ;
fin . read ( reinterpret_cast < char * > ( & ftype ) , sizeof ( ftype ) ) ;
if ( fin . eof ( ) ) {
break ;
}
int32_t ne [ 2 ] = { 1 , 1 } ;
for ( int i = 0 ; i < n_dims ; + + i ) {
fin . read ( reinterpret_cast < char * > ( & ne [ i ] ) , sizeof ( ne [ i ] ) ) ;
}
2023-05-14 15:46:19 +00:00
std : : string name ;
{
char buf [ 1024 ] ;
fin . read ( buf , length ) ;
name = std : : string ( buf , length ) ;
}
2023-04-30 15:51:57 +00:00
// check for lora suffix and get the type of tensor
const std : : string lora_suffix = " .lora " ;
size_t pos = name . rfind ( lora_suffix ) ;
if ( pos = = std : : string : : npos ) {
2023-09-15 17:06:31 +00:00
LLAMA_LOG_ERROR ( " %s: error: '%s' is not a lora tensor \n " , __func__ , name . c_str ( ) ) ;
2023-04-30 15:51:57 +00:00
return 1 ;
}
std : : string lora_type = name . substr ( pos + lora_suffix . length ( ) ) ;
std : : string base_name = name ;
base_name . erase ( pos ) ;
2023-09-15 17:06:31 +00:00
// LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
2023-04-30 15:51:57 +00:00
2023-05-14 15:46:19 +00:00
if ( model_tensors . find ( base_name ) = = model_tensors . end ( ) ) {
2023-09-15 17:06:31 +00:00
LLAMA_LOG_ERROR ( " %s: unknown tensor '%s' in lora adapter \n " , __func__ , name . data ( ) ) ;
2023-04-30 15:51:57 +00:00
return 1 ;
}
// create ggml tensor
ggml_type wtype ;
switch ( ftype ) {
case 0 : wtype = GGML_TYPE_F32 ; break ;
case 1 : wtype = GGML_TYPE_F16 ; break ;
default :
{
2023-09-15 17:06:31 +00:00
LLAMA_LOG_ERROR ( " %s: invalid tensor data type '%d' \n " ,
2023-04-30 15:51:57 +00:00
__func__ , ftype ) ;
return false ;
}
}
2023-09-15 17:06:31 +00:00
ggml_tensor * lora_tensor ;
2023-04-30 15:51:57 +00:00
if ( n_dims = = 2 ) {
lora_tensor = ggml_new_tensor_2d ( lora_ctx , wtype , ne [ 0 ] , ne [ 1 ] ) ;
}
else {
2023-09-15 17:06:31 +00:00
LLAMA_LOG_ERROR ( " %s: unsupported tensor dimension %d \n " , __func__ , n_dims ) ;
2023-04-30 15:51:57 +00:00
return 1 ;
}
2023-09-15 17:06:31 +00:00
ggml_set_name ( lora_tensor , " lora_tensor " ) ;
// load tensor data
size_t offset = fin . tellg ( ) ;
size_t tensor_data_size = ggml_nbytes ( lora_tensor ) ;
offset = ( offset + 31 ) & - 32 ;
fin . seekg ( offset ) ;
fin . read ( ( char * ) lora_tensor - > data , tensor_data_size ) ;
lora_tensors [ name ] = lora_tensor ;
// check if we have both A and B tensors and apply
if ( lora_tensors . find ( base_name + " .loraA " ) ! = lora_tensors . end ( ) & &
lora_tensors . find ( base_name + " .loraB " ) ! = lora_tensors . end ( ) ) {
ggml_tensor * dest_t = model_tensors [ base_name ] ;
offload_func_t offload_func = llama_nop ;
offload_func_t offload_func_force_inplace = llama_nop ;
# ifdef GGML_USE_CUBLAS
if ( dest_t - > backend = = GGML_BACKEND_GPU | | dest_t - > backend = = GGML_BACKEND_GPU_SPLIT ) {
if ( dest_t - > type ! = GGML_TYPE_F16 ) {
throw std : : runtime_error ( format (
" %s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models " , __func__ ) ) ;
}
offload_func = ggml_cuda_assign_buffers ;
offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace ;
}
# endif // GGML_USE_CUBLAS
ggml_tensor * base_t ;
if ( ml ) {
struct gguf_context * ctx_gguf = ml - > ctx_gguf ;
// load from base model
if ( gguf_find_tensor ( ctx_gguf , base_name . c_str ( ) ) < 0 ) {
// TODO: throw
LLAMA_LOG_ERROR ( " %s: error: tensor '%s' not found in base model \n " , __func__ , base_name . c_str ( ) ) ;
return 1 ;
}
// TODO: not tested!! maybe not working!
base_t = ml - > create_tensor ( base_ctx , base_name , { ( uint32_t ) dest_t - > ne [ 0 ] , ( uint32_t ) dest_t - > ne [ 1 ] } , GGML_BACKEND_CPU ) ;
ml - > load_data_for ( base_t ) ;
} else {
base_t = dest_t ;
}
if ( ggml_is_quantized ( base_t - > type ) ) {
if ( ! warned ) {
LLAMA_LOG_WARN ( " %s: warning: using a lora adapter with a quantized model may result in poor quality, "
" use a f16 or f32 base model with --lora-base \n " , __func__ ) ;
warned = true ;
}
}
ggml_tensor * loraA = lora_tensors [ base_name + " .loraA " ] ;
GGML_ASSERT ( loraA - > type = = GGML_TYPE_F32 ) ;
ggml_set_name ( loraA , " loraA " ) ;
ggml_tensor * loraB = lora_tensors [ base_name + " .loraB " ] ;
GGML_ASSERT ( loraB - > type = = GGML_TYPE_F32 ) ;
ggml_set_name ( loraB , " loraB " ) ;
if ( base_t - > ne [ 0 ] ! = loraA - > ne [ 1 ] | | base_t - > ne [ 1 ] ! = loraB - > ne [ 1 ] ) {
LLAMA_LOG_ERROR ( " %s: incompatible tensor dimensions (% " PRId64 " and % " PRId64 " ); "
" are you sure that this adapter is for this model? \n " , __func__ , base_t - > ne [ 0 ] , loraA - > ne [ 1 ] ) ;
return 1 ;
}
// w = w + BA*s
ggml_tensor * BA = ggml_mul_mat ( lora_ctx , loraA , loraB ) ;
offload_func ( BA ) ;
ggml_set_name ( BA , " BA " ) ;
if ( scaling ! = 1.0f ) {
ggml_tensor * scale_tensor = ggml_new_f32 ( lora_ctx , scaling ) ;
ggml_set_name ( scale_tensor , " scale_tensor " ) ;
BA = ggml_scale_inplace ( lora_ctx , BA , scale_tensor ) ;
offload_func ( BA ) ;
ggml_set_name ( BA , " BA_scaled " ) ;
}
ggml_tensor * r ;
if ( base_t = = dest_t ) {
r = ggml_add_inplace ( lora_ctx , dest_t , BA ) ;
offload_func_force_inplace ( r ) ;
ggml_set_name ( r , " r_add_inplace " ) ;
}
else {
r = ggml_add ( lora_ctx , base_t , BA ) ;
offload_func ( r ) ;
ggml_set_name ( r , " r_add " ) ;
r = ggml_cpy ( lora_ctx , r , dest_t ) ;
offload_func ( r ) ;
ggml_set_name ( r , " r_cpy " ) ;
}
struct ggml_cgraph gf = ggml_build_forward ( r ) ;
ggml_graph_compute_helper ( work_buffer , & gf , n_threads ) ;
// we won't need these tensors again, reset the context to save memory
ggml_free ( lora_ctx ) ;
lora_ctx = ggml_init ( params ) ;
lora_tensors . clear ( ) ;
n_tensors + + ;
if ( n_tensors % 4 = = 0 ) {
LLAMA_LOG_INFO ( " . " ) ;
}
}
}
// TODO: this should be in a destructor, it will leak on failure
ggml_free ( lora_ctx ) ;
if ( base_ctx ) {
ggml_free ( base_ctx ) ;
}
const int64_t t_lora_us = ggml_time_us ( ) - t_start_lora_us ;
LLAMA_LOG_INFO ( " done (%.2f ms) \n " , t_lora_us / 1000.0 ) ;
return 0 ;
}
//
// interface implementation
//
struct llama_context_params llama_context_default_params ( ) {
struct llama_context_params result = {
/*.seed =*/ LLAMA_DEFAULT_SEED ,
/*.n_ctx =*/ 512 ,
/*.n_batch =*/ 512 ,
/*.n_gpu_layers =*/ 0 ,
/*.main_gpu =*/ 0 ,
/*.tensor_split =*/ nullptr ,
/*.rope_freq_base =*/ 10000.0f ,
/*.rope_freq_scale =*/ 1.0f ,
/*.progress_callback =*/ nullptr ,
/*.progress_callback_user_data =*/ nullptr ,
/*.low_vram =*/ false ,
/*.mul_mat_q =*/ true ,
/*.f16_kv =*/ true ,
/*.logits_all =*/ false ,
/*.vocab_only =*/ false ,
/*.use_mmap =*/ true ,
/*.use_mlock =*/ false ,
/*.embedding =*/ false ,
} ;
# ifdef GGML_USE_METAL
result . n_gpu_layers = 1 ;
# endif
return result ;
}
struct llama_model_quantize_params llama_model_quantize_default_params ( ) {
struct llama_model_quantize_params result = {
/*.nthread =*/ 0 ,
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1 ,
/*.allow_requantize =*/ false ,
/*.quantize_output_tensor =*/ true ,
/*.only_copy =*/ false ,
} ;
return result ;
}
int llama_max_devices ( void ) {
return LLAMA_MAX_DEVICES ;
}
bool llama_mmap_supported ( void ) {
return llama_mmap : : SUPPORTED ;
}
bool llama_mlock_supported ( void ) {
return llama_mlock : : SUPPORTED ;
}
void llama_backend_init ( bool numa ) {
ggml_time_init ( ) ;
// needed to initialize f16 tables
{
struct ggml_init_params params = { 0 , NULL , false } ;
struct ggml_context * ctx = ggml_init ( params ) ;
ggml_free ( ctx ) ;
}
if ( numa ) {
ggml_numa_init ( ) ;
}
# ifdef GGML_USE_MPI
ggml_mpi_backend_init ( ) ;
# endif
}
void llama_backend_free ( void ) {
# ifdef GGML_USE_MPI
ggml_mpi_backend_free ( ) ;
# endif
}
int64_t llama_time_us ( void ) {
return ggml_time_us ( ) ;
}
struct llama_model * llama_load_model_from_file (
const char * path_model ,
struct llama_context_params params ) {
ggml_time_init ( ) ;
llama_model * model = new llama_model ;
ggml_type memory_type = params . f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32 ;
unsigned cur_percentage = 0 ;
if ( params . progress_callback = = NULL ) {
params . progress_callback_user_data = & cur_percentage ;
params . progress_callback = [ ] ( float progress , void * ctx ) {
unsigned * cur_percentage_p = ( unsigned * ) ctx ;
unsigned percentage = ( unsigned ) ( 100 * progress ) ;
while ( percentage > * cur_percentage_p ) {
* cur_percentage_p = percentage ;
LLAMA_LOG_INFO ( " . " ) ;
if ( percentage > = 100 ) {
LLAMA_LOG_INFO ( " \n " ) ;
}
}
} ;
}
if ( ! llama_model_load ( path_model , * model , params . n_ctx , params . n_batch , params . n_gpu_layers ,
params . main_gpu , params . tensor_split , params . mul_mat_q , params . rope_freq_base , params . rope_freq_scale ,
params . low_vram , memory_type , params . use_mmap , params . use_mlock , params . vocab_only ,
params . progress_callback , params . progress_callback_user_data ) ) {
LLAMA_LOG_ERROR ( " %s: failed to load model \n " , __func__ ) ;
delete model ;
return nullptr ;
}
return model ;
}
void llama_free_model ( struct llama_model * model ) {
delete model ;
}
struct llama_context * llama_new_context_with_model (
struct llama_model * model ,
struct llama_context_params params ) {
if ( ! model ) {
return nullptr ;
}
llama_context * ctx = new llama_context ( * model ) ;
if ( params . seed = = LLAMA_DEFAULT_SEED ) {
params . seed = time ( NULL ) ;
}
ctx - > rng = std : : mt19937 ( params . seed ) ;
ctx - > logits_all = params . logits_all ;
ggml_type memory_type = params . f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32 ;
// reserve memory for context buffers
if ( ! params . vocab_only ) {
if ( ! llama_kv_cache_init ( ctx - > model . hparams , ctx - > kv_self , memory_type , ctx - > model . hparams . n_ctx , params . n_gpu_layers ) ) {
LLAMA_LOG_ERROR ( " %s: llama_kv_cache_init() failed for self-attention cache \n " , __func__ ) ;
llama_free ( ctx ) ;
return nullptr ;
}
{
const size_t memory_size = ggml_nbytes ( ctx - > kv_self . k ) + ggml_nbytes ( ctx - > kv_self . v ) ;
LLAMA_LOG_INFO ( " %s: kv self size = %7.2f MB \n " , __func__ , memory_size / 1024.0 / 1024.0 ) ;
}
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
const auto & hparams = ctx - > model . hparams ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
// resized during inference
if ( params . logits_all ) {
ctx - > logits . reserve ( hparams . n_ctx * hparams . n_vocab ) ;
} else {
ctx - > logits . reserve ( hparams . n_vocab ) ;
}
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
if ( params . embedding ) {
ctx - > embedding . resize ( hparams . n_embd ) ;
}
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
{
static const size_t tensor_alignment = 32 ;
// the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
ctx - > buf_compute . resize ( ggml_tensor_overhead ( ) * GGML_MAX_NODES + ggml_graph_overhead ( ) ) ;
// create measure allocator
ctx - > alloc = ggml_allocr_new_measure ( tensor_alignment ) ;
// build worst-case graph
int n_tokens = std : : min ( ( int ) hparams . n_ctx , params . n_batch ) ;
int n_past = hparams . n_ctx - n_tokens ;
llama_token token = llama_token_bos ( ctx ) ; // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
ggml_cgraph * gf = llama_build_graph ( * ctx , & token , NULL , n_tokens , n_past ) ;
# ifdef GGML_USE_METAL
if ( params . n_gpu_layers > 0 ) {
ctx - > ctx_metal = ggml_metal_init ( 1 ) ;
if ( ! ctx - > ctx_metal ) {
LLAMA_LOG_ERROR ( " %s: ggml_metal_init() failed \n " , __func__ ) ;
llama_free ( ctx ) ;
return NULL ;
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
ggml_metal_graph_find_concurrency ( ctx - > ctx_metal , gf , false ) ;
ggml_allocr_set_parse_seq ( ctx - > alloc , ggml_metal_get_concur_list ( ctx - > ctx_metal ) , ggml_metal_if_optimized ( ctx - > ctx_metal ) ) ;
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
# endif
// measure memory requirements for the graph
size_t alloc_size = ggml_allocr_alloc_graph ( ctx - > alloc , gf ) + tensor_alignment ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
LLAMA_LOG_INFO ( " %s: compute buffer total size = %7.2f MB \n " , __func__ , ( ctx - > buf_compute . size + alloc_size ) / 1024.0 / 1024.0 ) ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
// recreate allocator with exact memory requirements
ggml_allocr_free ( ctx - > alloc ) ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
ctx - > buf_alloc . resize ( alloc_size ) ;
ctx - > alloc = ggml_allocr_new ( ctx - > buf_alloc . data , ctx - > buf_alloc . size , tensor_alignment ) ;
# ifdef GGML_USE_METAL
if ( ctx - > ctx_metal ) {
ggml_allocr_set_parse_seq ( ctx - > alloc , ggml_metal_get_concur_list ( ctx - > ctx_metal ) , ggml_metal_if_optimized ( ctx - > ctx_metal ) ) ;
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
# endif
# ifdef GGML_USE_CUBLAS
if ( params . low_vram ) {
LLAMA_LOG_INFO ( " %s: not allocating a VRAM scratch buffer due to low VRAM option \n " , __func__ ) ;
ggml_cuda_set_scratch_size ( 0 ) ; // disable scratch
} else {
ggml_cuda_set_scratch_size ( alloc_size ) ;
LLAMA_LOG_INFO ( " %s: VRAM scratch buffer: %.2f MB \n " , __func__ , alloc_size / 1024.0 / 1024.0 ) ;
}
# endif
}
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
# ifdef GGML_USE_METAL
if ( params . n_gpu_layers > 0 ) {
// this allocates all Metal resources and memory buffers
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
void * data_ptr = NULL ;
size_t data_size = 0 ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
if ( params . use_mmap ) {
data_ptr = ctx - > model . mapping - > addr ;
data_size = ctx - > model . mapping - > size ;
} else {
data_ptr = ggml_get_mem_buffer ( ctx - > model . ctx ) ;
data_size = ggml_get_mem_size ( ctx - > model . ctx ) ;
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
const size_t max_size = ggml_get_max_tensor_size ( ctx - > model . ctx ) ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
LLAMA_LOG_INFO ( " %s: max tensor size = %8.2f MB \n " , __func__ , max_size / 1024.0 / 1024.0 ) ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
# define LLAMA_METAL_CHECK_BUF(result) \
if ( ! ( result ) ) { \
LLAMA_LOG_ERROR ( " %s: failed to add buffer \n " , __func__ ) ; \
llama_free ( ctx ) ; \
return NULL ; \
2023-05-14 15:46:19 +00:00
}
2023-09-15 17:06:31 +00:00
LLAMA_METAL_CHECK_BUF ( ggml_metal_add_buffer ( ctx - > ctx_metal , " data " , data_ptr , data_size , max_size ) ) ;
LLAMA_METAL_CHECK_BUF ( ggml_metal_add_buffer ( ctx - > ctx_metal , " eval " , ctx - > buf_compute . data , ctx - > buf_compute . size , 0 ) ) ;
LLAMA_METAL_CHECK_BUF ( ggml_metal_add_buffer ( ctx - > ctx_metal , " kv " , ctx - > kv_self . buf . data , ctx - > kv_self . buf . size , 0 ) ) ;
LLAMA_METAL_CHECK_BUF ( ggml_metal_add_buffer ( ctx - > ctx_metal , " alloc " , ctx - > buf_alloc . data , ctx - > buf_alloc . size , 0 ) ) ;
# undef LLAMA_METAL_CHECK_BUF
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
# endif
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
# ifdef GGML_USE_MPI
ctx - > ctx_mpi = ggml_mpi_init ( ) ;
if ( ggml_mpi_rank ( ctx - > ctx_mpi ) > 0 ) {
// Enter a blocking eval loop with dummy input, letting rank=0 drive the process
const std : : vector < llama_token > tmp ( ctx - > model . hparams . n_ctx , llama_token_bos ( ctx ) ) ;
while ( ! llama_eval ( ctx , tmp . data ( ) , tmp . size ( ) , 0 , 0 ) ) { } ;
llama_backend_free ( ) ;
exit ( 1 ) ;
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
# endif
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
return ctx ;
}
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
struct llama_context * llama_init_from_file (
const char * path_model ,
struct llama_context_params params ) {
struct llama_model * model = llama_load_model_from_file ( path_model , params ) ;
if ( ! model ) {
return nullptr ;
}
struct llama_context * ctx = llama_new_context_with_model ( model , params ) ;
ctx - > model_owner = true ;
return ctx ;
}
void llama_free ( struct llama_context * ctx ) {
delete ctx ;
}
int llama_n_vocab ( const struct llama_context * ctx ) {
return llama_model_n_vocab ( & ctx - > model ) ;
}
int llama_n_ctx ( const struct llama_context * ctx ) {
return llama_model_n_ctx ( & ctx - > model ) ;
}
int llama_n_ctx_train ( const struct llama_context * ctx ) {
return llama_model_n_ctx_train ( & ctx - > model ) ;
}
int llama_n_embd ( const struct llama_context * ctx ) {
return llama_model_n_embd ( & ctx - > model ) ;
}
enum llama_vocab_type llama_vocab_type ( const struct llama_context * ctx ) {
return ctx - > model . vocab . type ;
}
int llama_model_n_vocab ( const struct llama_model * model ) {
return model - > vocab . id_to_token . size ( ) ;
}
int llama_model_n_ctx ( const struct llama_model * model ) {
return model - > hparams . n_ctx ;
}
int llama_model_n_ctx_train ( const struct llama_model * model ) {
return model - > hparams . n_ctx_train ;
}
int llama_model_n_embd ( const struct llama_model * model ) {
return model - > hparams . n_embd ;
}
int llama_model_desc ( const struct llama_model * model , char * buf , size_t buf_size ) {
return snprintf ( buf , buf_size , " %s %s %s " ,
model - > name . c_str ( ) ,
llama_model_type_name ( model - > type ) ,
llama_model_ftype_name ( model - > ftype ) . c_str ( ) ) ;
}
uint64_t llama_model_size ( const struct llama_model * model ) {
uint64_t size = 0 ;
for ( const auto & it : model - > tensors_by_name ) {
size + = ggml_nbytes ( it . second ) ;
}
return size ;
}
uint64_t llama_model_n_params ( const struct llama_model * model ) {
uint64_t nparams = 0 ;
for ( const auto & it : model - > tensors_by_name ) {
nparams + = ggml_nelements ( it . second ) ;
}
return nparams ;
}
int llama_model_quantize (
const char * fname_inp ,
const char * fname_out ,
const llama_model_quantize_params * params ) {
try {
llama_model_quantize_internal ( fname_inp , fname_out , params ) ;
return 0 ;
} catch ( const std : : exception & err ) {
LLAMA_LOG_ERROR ( " %s: failed to quantize: %s \n " , __func__ , err . what ( ) ) ;
return 1 ;
}
2023-04-10 19:59:13 +00:00
}
2023-04-30 15:51:57 +00:00
int llama_apply_lora_from_file ( struct llama_context * ctx , const char * path_lora , const char * path_base_model , int n_threads ) {
try {
2023-09-15 17:06:31 +00:00
return llama_apply_lora_from_file_internal ( ctx - > model , path_lora , path_base_model , n_threads ) ;
} catch ( const std : : exception & err ) {
LLAMA_LOG_ERROR ( " %s: failed to apply lora adapter: %s \n " , __func__ , err . what ( ) ) ;
return 1 ;
}
}
int llama_model_apply_lora_from_file ( const struct llama_model * model , const char * path_lora , const char * path_base_model , int n_threads ) {
try {
return llama_apply_lora_from_file_internal ( * model , path_lora , path_base_model , n_threads ) ;
} catch ( const std : : exception & err ) {
LLAMA_LOG_ERROR ( " %s: failed to apply lora adapter: %s \n " , __func__ , err . what ( ) ) ;
2023-04-30 15:51:57 +00:00
return 1 ;
}
2023-04-10 19:59:13 +00:00
}
2023-05-14 15:46:19 +00:00
int llama_get_kv_cache_token_count ( const struct llama_context * ctx ) {
2023-09-15 17:06:31 +00:00
return ctx - > kv_self . n ;
2023-04-10 19:59:13 +00:00
}
2023-05-14 15:46:19 +00:00
# define LLAMA_MAX_RNG_STATE (64*1024)
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
void llama_set_rng_seed ( struct llama_context * ctx , uint32_t seed ) {
if ( seed = = LLAMA_DEFAULT_SEED ) {
2023-04-30 15:51:57 +00:00
seed = time ( NULL ) ;
}
ctx - > rng . seed ( seed ) ;
}
2023-05-08 17:59:21 +00:00
// Returns the *maximum* size of the state
2023-05-14 15:46:19 +00:00
size_t llama_get_state_size ( const struct llama_context * ctx ) {
2023-04-30 15:51:57 +00:00
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
// for reference, std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof ( size_t ) ;
const size_t s_rng = LLAMA_MAX_RNG_STATE ;
const size_t s_logits_capacity = sizeof ( size_t ) ;
const size_t s_logits_size = sizeof ( size_t ) ;
const size_t s_logits = ctx - > logits . capacity ( ) * sizeof ( float ) ;
const size_t s_embedding_size = sizeof ( size_t ) ;
const size_t s_embedding = ctx - > embedding . size ( ) * sizeof ( float ) ;
const size_t s_kv_size = sizeof ( size_t ) ;
const size_t s_kv_ntok = sizeof ( int ) ;
2023-09-15 17:06:31 +00:00
const size_t s_kv = ctx - > kv_self . buf . size ;
2023-04-30 15:51:57 +00:00
const size_t s_total = (
+ s_rng_size
+ s_rng
+ s_logits_capacity
+ s_logits_size
+ s_logits
+ s_embedding_size
+ s_embedding
+ s_kv_size
+ s_kv_ntok
+ s_kv
) ;
return s_total ;
}
2023-09-15 17:06:31 +00:00
// llama_context_data
struct llama_data_context {
virtual void write ( const void * src , size_t size ) = 0 ;
virtual size_t get_size_written ( ) = 0 ;
virtual ~ llama_data_context ( ) = default ;
} ;
struct llama_data_buffer_context : llama_data_context {
uint8_t * ptr ;
size_t size_written = 0 ;
llama_data_buffer_context ( uint8_t * p ) : ptr ( p ) { }
void write ( const void * src , size_t size ) override {
memcpy ( ptr , src , size ) ;
ptr + = size ;
size_written + = size ;
}
size_t get_size_written ( ) override {
return size_written ;
}
} ;
struct llama_data_file_context : llama_data_context {
llama_file * file ;
size_t size_written = 0 ;
llama_data_file_context ( llama_file * f ) : file ( f ) { }
void write ( const void * src , size_t size ) override {
file - > write_raw ( src , size ) ;
size_written + = size ;
}
size_t get_size_written ( ) override {
return size_written ;
}
} ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
/** copy state data into either a buffer or file depending on the passed in context
*
* file context :
* llama_file file ( " /path " , " wb " ) ;
* llama_data_file_context data_ctx ( & file ) ;
* llama_copy_state_data ( ctx , & data_ctx ) ;
*
* buffer context :
* std : : vector < uint8_t > buf ( max_size , 0 ) ;
* llama_data_buffer_context data_ctx ( & buf . data ( ) ) ;
* llama_copy_state_data ( ctx , & data_ctx ) ;
*
*/
void llama_copy_state_data_internal ( struct llama_context * ctx , llama_data_context * data_ctx ) {
2023-04-30 15:51:57 +00:00
// copy rng
{
std : : stringstream rng_ss ;
rng_ss < < ctx - > rng ;
const size_t rng_size = rng_ss . str ( ) . size ( ) ;
char rng_buf [ LLAMA_MAX_RNG_STATE ] ;
memset ( & rng_buf [ 0 ] , 0 , LLAMA_MAX_RNG_STATE ) ;
memcpy ( & rng_buf [ 0 ] , rng_ss . str ( ) . data ( ) , rng_ss . str ( ) . size ( ) ) ;
2023-09-15 17:06:31 +00:00
data_ctx - > write ( & rng_size , sizeof ( rng_size ) ) ;
data_ctx - > write ( & rng_buf [ 0 ] , LLAMA_MAX_RNG_STATE ) ;
2023-04-30 15:51:57 +00:00
}
// copy logits
{
const size_t logits_cap = ctx - > logits . capacity ( ) ;
const size_t logits_size = ctx - > logits . size ( ) ;
2023-09-15 17:06:31 +00:00
data_ctx - > write ( & logits_cap , sizeof ( logits_cap ) ) ;
data_ctx - > write ( & logits_size , sizeof ( logits_size ) ) ;
2023-04-30 15:51:57 +00:00
if ( logits_size ) {
2023-09-15 17:06:31 +00:00
data_ctx - > write ( ctx - > logits . data ( ) , logits_size * sizeof ( float ) ) ;
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
// If there is a gap between the size and the capacity, write padding
size_t padding_size = ( logits_cap - logits_size ) * sizeof ( float ) ;
if ( padding_size > 0 ) {
std : : vector < uint8_t > padding ( padding_size , 0 ) ; // Create a buffer filled with zeros
data_ctx - > write ( padding . data ( ) , padding_size ) ;
}
2023-04-30 15:51:57 +00:00
}
// copy embeddings
{
const size_t embedding_size = ctx - > embedding . size ( ) ;
2023-09-15 17:06:31 +00:00
data_ctx - > write ( & embedding_size , sizeof ( embedding_size ) ) ;
2023-04-30 15:51:57 +00:00
if ( embedding_size ) {
2023-09-15 17:06:31 +00:00
data_ctx - > write ( ctx - > embedding . data ( ) , embedding_size * sizeof ( float ) ) ;
2023-04-30 15:51:57 +00:00
}
}
// copy kv cache
{
2023-09-15 17:06:31 +00:00
const auto & kv_self = ctx - > kv_self ;
2023-05-08 17:59:21 +00:00
const auto & hparams = ctx - > model . hparams ;
const int n_layer = hparams . n_layer ;
2023-09-15 17:06:31 +00:00
const int n_embd = hparams . n_embd_gqa ( ) ;
2023-05-08 17:59:21 +00:00
const int n_ctx = hparams . n_ctx ;
const size_t kv_size = kv_self . buf . size ;
2023-04-30 15:51:57 +00:00
const int kv_ntok = llama_get_kv_cache_token_count ( ctx ) ;
2023-09-15 17:06:31 +00:00
data_ctx - > write ( & kv_size , sizeof ( kv_size ) ) ;
data_ctx - > write ( & kv_ntok , sizeof ( kv_ntok ) ) ;
2023-04-30 15:51:57 +00:00
if ( kv_size ) {
2023-05-08 17:59:21 +00:00
const size_t elt_size = ggml_element_size ( kv_self . k ) ;
2023-05-14 15:46:19 +00:00
2023-09-15 17:06:31 +00:00
ggml_context * cpy_ctx = ggml_init ( { 4096 , NULL , /* no_alloc */ true } ) ;
2023-05-08 17:59:21 +00:00
ggml_cgraph gf { } ;
ggml_tensor * kout3d = ggml_new_tensor_3d ( cpy_ctx , kv_self . k - > type , n_embd , kv_ntok , n_layer ) ;
2023-09-15 17:06:31 +00:00
std : : vector < uint8_t > kout3d_data ( ggml_nbytes ( kout3d ) , 0 ) ;
kout3d - > data = kout3d_data . data ( ) ;
2023-05-08 17:59:21 +00:00
ggml_tensor * vout3d = ggml_new_tensor_3d ( cpy_ctx , kv_self . v - > type , kv_ntok , n_embd , n_layer ) ;
2023-09-15 17:06:31 +00:00
std : : vector < uint8_t > vout3d_data ( ggml_nbytes ( vout3d ) , 0 ) ;
vout3d - > data = vout3d_data . data ( ) ;
2023-05-08 17:59:21 +00:00
ggml_tensor * k3d = ggml_view_3d ( cpy_ctx , kv_self . k ,
n_embd , kv_ntok , n_layer ,
elt_size * n_embd , elt_size * n_embd * n_ctx , 0 ) ;
ggml_tensor * v3d = ggml_view_3d ( cpy_ctx , kv_self . v ,
kv_ntok , n_embd , n_layer ,
elt_size * n_ctx , elt_size * n_ctx * n_embd , 0 ) ;
ggml_build_forward_expand ( & gf , ggml_cpy ( cpy_ctx , k3d , kout3d ) ) ;
ggml_build_forward_expand ( & gf , ggml_cpy ( cpy_ctx , v3d , vout3d ) ) ;
2023-09-15 17:06:31 +00:00
ggml_graph_compute_helper ( ctx - > work_buffer , & gf , /*n_threads*/ 1 ) ;
2023-05-14 15:46:19 +00:00
ggml_free ( cpy_ctx ) ;
2023-09-15 17:06:31 +00:00
// our data is now in the kout3d_data and vout3d_data buffers
// write them to file
data_ctx - > write ( kout3d_data . data ( ) , kout3d_data . size ( ) ) ;
data_ctx - > write ( vout3d_data . data ( ) , vout3d_data . size ( ) ) ;
2023-04-30 15:51:57 +00:00
}
}
2023-09-15 17:06:31 +00:00
}
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
size_t llama_copy_state_data ( struct llama_context * ctx , uint8_t * dst ) {
llama_data_buffer_context data_ctx ( dst ) ;
llama_copy_state_data_internal ( ctx , & data_ctx ) ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
return data_ctx . get_size_written ( ) ;
2023-04-30 15:51:57 +00:00
}
// Sets the state reading from the specified source address
2023-05-23 11:04:39 +00:00
size_t llama_set_state_data ( struct llama_context * ctx , uint8_t * src ) {
uint8_t * inp = src ;
2023-04-30 15:51:57 +00:00
// set rng
{
size_t rng_size ;
char rng_buf [ LLAMA_MAX_RNG_STATE ] ;
2023-05-14 15:46:19 +00:00
memcpy ( & rng_size , inp , sizeof ( rng_size ) ) ; inp + = sizeof ( rng_size ) ;
memcpy ( & rng_buf [ 0 ] , inp , LLAMA_MAX_RNG_STATE ) ; inp + = LLAMA_MAX_RNG_STATE ;
2023-04-30 15:51:57 +00:00
std : : stringstream rng_ss ;
rng_ss . str ( std : : string ( & rng_buf [ 0 ] , rng_size ) ) ;
rng_ss > > ctx - > rng ;
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( ! rng_ss . fail ( ) ) ;
2023-04-30 15:51:57 +00:00
}
// set logits
{
size_t logits_cap ;
size_t logits_size ;
2023-05-14 15:46:19 +00:00
memcpy ( & logits_cap , inp , sizeof ( logits_cap ) ) ; inp + = sizeof ( logits_cap ) ;
memcpy ( & logits_size , inp , sizeof ( logits_size ) ) ; inp + = sizeof ( logits_size ) ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( ctx - > logits . capacity ( ) = = logits_cap ) ;
2023-04-30 15:51:57 +00:00
if ( logits_size ) {
ctx - > logits . resize ( logits_size ) ;
2023-05-14 15:46:19 +00:00
memcpy ( ctx - > logits . data ( ) , inp , logits_size * sizeof ( float ) ) ;
2023-04-30 15:51:57 +00:00
}
2023-05-14 15:46:19 +00:00
inp + = logits_cap * sizeof ( float ) ;
2023-04-30 15:51:57 +00:00
}
// set embeddings
{
size_t embedding_size ;
2023-05-14 15:46:19 +00:00
memcpy ( & embedding_size , inp , sizeof ( embedding_size ) ) ; inp + = sizeof ( embedding_size ) ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( ctx - > embedding . capacity ( ) = = embedding_size ) ;
2023-04-30 15:51:57 +00:00
if ( embedding_size ) {
2023-05-14 15:46:19 +00:00
memcpy ( ctx - > embedding . data ( ) , inp , embedding_size * sizeof ( float ) ) ;
inp + = embedding_size * sizeof ( float ) ;
2023-04-30 15:51:57 +00:00
}
}
// set kv cache
{
2023-09-15 17:06:31 +00:00
const auto & kv_self = ctx - > kv_self ;
2023-05-08 17:59:21 +00:00
const auto & hparams = ctx - > model . hparams ;
const int n_layer = hparams . n_layer ;
2023-09-15 17:06:31 +00:00
const int n_embd = hparams . n_embd_gqa ( ) ;
2023-05-08 17:59:21 +00:00
const int n_ctx = hparams . n_ctx ;
2023-04-30 15:51:57 +00:00
size_t kv_size ;
int kv_ntok ;
2023-05-14 15:46:19 +00:00
memcpy ( & kv_size , inp , sizeof ( kv_size ) ) ; inp + = sizeof ( kv_size ) ;
memcpy ( & kv_ntok , inp , sizeof ( kv_ntok ) ) ; inp + = sizeof ( kv_ntok ) ;
2023-04-30 15:51:57 +00:00
if ( kv_size ) {
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( kv_self . buf . size = = kv_size ) ;
2023-05-08 17:59:21 +00:00
const size_t elt_size = ggml_element_size ( kv_self . k ) ;
2023-05-14 15:46:19 +00:00
2023-09-15 17:06:31 +00:00
ggml_context * cpy_ctx = ggml_init ( { 4096 , NULL , /* no_alloc */ true } ) ;
2023-05-08 17:59:21 +00:00
ggml_cgraph gf { } ;
ggml_tensor * kin3d = ggml_new_tensor_3d ( cpy_ctx , kv_self . k - > type , n_embd , kv_ntok , n_layer ) ;
2023-05-14 15:46:19 +00:00
kin3d - > data = ( void * ) inp ;
inp + = ggml_nbytes ( kin3d ) ;
2023-05-08 17:59:21 +00:00
ggml_tensor * vin3d = ggml_new_tensor_3d ( cpy_ctx , kv_self . v - > type , kv_ntok , n_embd , n_layer ) ;
2023-05-14 15:46:19 +00:00
vin3d - > data = ( void * ) inp ;
inp + = ggml_nbytes ( vin3d ) ;
2023-04-30 15:51:57 +00:00
2023-05-08 17:59:21 +00:00
ggml_tensor * k3d = ggml_view_3d ( cpy_ctx , kv_self . k ,
n_embd , kv_ntok , n_layer ,
elt_size * n_embd , elt_size * n_embd * n_ctx , 0 ) ;
2023-04-30 15:51:57 +00:00
2023-05-08 17:59:21 +00:00
ggml_tensor * v3d = ggml_view_3d ( cpy_ctx , kv_self . v ,
kv_ntok , n_embd , n_layer ,
elt_size * n_ctx , elt_size * n_ctx * n_embd , 0 ) ;
2023-04-30 15:51:57 +00:00
2023-05-08 17:59:21 +00:00
ggml_build_forward_expand ( & gf , ggml_cpy ( cpy_ctx , kin3d , k3d ) ) ;
ggml_build_forward_expand ( & gf , ggml_cpy ( cpy_ctx , vin3d , v3d ) ) ;
2023-09-15 17:06:31 +00:00
ggml_graph_compute_helper ( ctx - > work_buffer , & gf , /*n_threads*/ 1 ) ;
2023-04-30 15:51:57 +00:00
2023-05-14 15:46:19 +00:00
ggml_free ( cpy_ctx ) ;
2023-04-30 15:51:57 +00:00
}
2023-09-15 17:06:31 +00:00
ctx - > kv_self . n = kv_ntok ;
2023-04-30 15:51:57 +00:00
}
2023-05-14 15:46:19 +00:00
const size_t nread = inp - src ;
2023-05-08 17:59:21 +00:00
const size_t max_size = llama_get_state_size ( ctx ) ;
2023-04-30 15:51:57 +00:00
2023-09-15 17:06:31 +00:00
GGML_ASSERT ( nread < = max_size ) ;
2023-04-30 15:51:57 +00:00
return nread ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
static bool llama_load_session_file_internal ( struct llama_context * ctx , const char * path_session , llama_token * tokens_out , size_t n_token_capacity , size_t * n_token_count_out ) {
2023-05-14 15:46:19 +00:00
llama_file file ( path_session , " rb " ) ;
// sanity checks
{
const uint32_t magic = file . read_u32 ( ) ;
const uint32_t version = file . read_u32 ( ) ;
if ( magic ! = LLAMA_SESSION_MAGIC | | version ! = LLAMA_SESSION_VERSION ) {
2023-09-15 17:06:31 +00:00
LLAMA_LOG_ERROR ( " %s : unknown (magic, version) for session file: %08x, %08x \n " , __func__ , magic , version ) ;
2023-05-14 15:46:19 +00:00
return false ;
}
llama_hparams session_hparams ;
file . read_raw ( & session_hparams , sizeof ( llama_hparams ) ) ;
if ( session_hparams ! = ctx - > model . hparams ) {
2023-09-15 17:06:31 +00:00
LLAMA_LOG_INFO ( " %s : model hparams didn't match from session file! \n " , __func__ ) ;
2023-05-14 15:46:19 +00:00
return false ;
}
}
// load the prompt
{
const uint32_t n_token_count = file . read_u32 ( ) ;
if ( n_token_count > n_token_capacity ) {
2023-09-15 17:06:31 +00:00
LLAMA_LOG_ERROR ( " %s : token count in session file exceeded capacity! %u > %zu \n " , __func__ , n_token_count , n_token_capacity ) ;
2023-05-14 15:46:19 +00:00
return false ;
}
file . read_raw ( tokens_out , sizeof ( llama_token ) * n_token_count ) ;
* n_token_count_out = n_token_count ;
}
// restore the context state
{
const size_t n_state_size_cur = file . size - file . tell ( ) ;
const size_t n_state_size_max = llama_get_state_size ( ctx ) ;
if ( n_state_size_cur > n_state_size_max ) {
2023-09-15 17:06:31 +00:00
LLAMA_LOG_ERROR ( " %s : the state size in session file is too big! max %zu, got %zu \n " , __func__ , n_state_size_max , n_state_size_cur ) ;
2023-05-14 15:46:19 +00:00
return false ;
}
std : : vector < uint8_t > state_data ( n_state_size_max ) ;
file . read_raw ( state_data . data ( ) , n_state_size_cur ) ;
llama_set_state_data ( ctx , state_data . data ( ) ) ;
}
return true ;
}
2023-09-15 17:06:31 +00:00
bool llama_load_session_file ( struct llama_context * ctx , const char * path_session , llama_token * tokens_out , size_t n_token_capacity , size_t * n_token_count_out ) {
try {
return llama_load_session_file_internal ( ctx , path_session , tokens_out , n_token_capacity , n_token_count_out ) ;
} catch ( const std : : exception & err ) {
LLAMA_LOG_ERROR ( " error loading session file: %s \n " , err . what ( ) ) ;
return false ;
}
}
2023-05-14 15:46:19 +00:00
bool llama_save_session_file ( struct llama_context * ctx , const char * path_session , const llama_token * tokens , size_t n_token_count ) {
llama_file file ( path_session , " wb " ) ;
file . write_u32 ( LLAMA_SESSION_MAGIC ) ;
file . write_u32 ( LLAMA_SESSION_VERSION ) ;
file . write_raw ( & ctx - > model . hparams , sizeof ( llama_hparams ) ) ;
// save the prompt
file . write_u32 ( ( uint32_t ) n_token_count ) ;
file . write_raw ( tokens , sizeof ( llama_token ) * n_token_count ) ;
2023-09-15 17:06:31 +00:00
// save the context state using stream saving
llama_data_file_context data_ctx ( & file ) ;
llama_copy_state_data_internal ( ctx , & data_ctx ) ;
2023-05-14 15:46:19 +00:00
return true ;
}
2023-03-27 18:00:32 +00:00
int llama_eval (
struct llama_context * ctx ,
const llama_token * tokens ,
int n_tokens ,
int n_past ,
int n_threads ) {
2023-09-15 17:06:31 +00:00
if ( ! llama_eval_internal ( * ctx , tokens , nullptr , n_tokens , n_past , n_threads , nullptr ) ) {
LLAMA_LOG_ERROR ( " %s: failed to eval \n " , __func__ ) ;
2023-03-27 18:00:32 +00:00
return 1 ;
}
2023-05-14 15:46:19 +00:00
2023-04-10 19:59:13 +00:00
// get a more accurate load time, upon first eval
2023-05-14 15:46:19 +00:00
// TODO: fix this
2023-04-10 19:59:13 +00:00
if ( ! ctx - > has_evaluated_once ) {
ctx - > t_load_us = ggml_time_us ( ) - ctx - > t_start_us ;
ctx - > has_evaluated_once = true ;
}
2023-05-14 15:46:19 +00:00
2023-03-27 18:00:32 +00:00
return 0 ;
}
2023-09-15 17:06:31 +00:00
int llama_eval_embd (
struct llama_context * ctx ,
const float * embd ,
int n_tokens ,
int n_past ,
int n_threads ) {
if ( ! llama_eval_internal ( * ctx , nullptr , embd , n_tokens , n_past , n_threads , nullptr ) ) {
LLAMA_LOG_ERROR ( " %s: failed to eval \n " , __func__ ) ;
return 1 ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
// get a more accurate load time, upon first eval
// TODO: fix this
if ( ! ctx - > has_evaluated_once ) {
ctx - > t_load_us = ggml_time_us ( ) - ctx - > t_start_us ;
ctx - > has_evaluated_once = true ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
return 0 ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
int llama_eval_export ( struct llama_context * ctx , const char * fname ) {
const int n_batch = 1 ;
const int n_ctx = 512 - n_batch ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
const std : : vector < llama_token > tmp ( n_batch , llama_token_bos ( ctx ) ) ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
if ( ! llama_eval_internal ( * ctx , tmp . data ( ) , nullptr , tmp . size ( ) , n_ctx , 1 , fname ) ) {
LLAMA_LOG_ERROR ( " %s: failed to eval \n " , __func__ ) ;
return 1 ;
}
return 0 ;
2023-03-27 18:00:32 +00:00
}
float * llama_get_logits ( struct llama_context * ctx ) {
return ctx - > logits . data ( ) ;
}
float * llama_get_embeddings ( struct llama_context * ctx ) {
return ctx - > embedding . data ( ) ;
}
2023-09-15 17:06:31 +00:00
const char * llama_token_get_text ( const struct llama_context * ctx , llama_token token ) {
return ctx - > model . vocab . id_to_token [ token ] . text . c_str ( ) ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
float llama_token_get_score ( const struct llama_context * ctx , llama_token token ) {
return ctx - > model . vocab . id_to_token [ token ] . score ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
llama_token_type llama_token_get_type ( const struct llama_context * ctx , llama_token token ) {
return ctx - > model . vocab . id_to_token [ token ] . type ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
llama_token llama_token_bos ( const struct llama_context * ctx ) {
return ctx - > model . vocab . special_bos_id ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
llama_token llama_token_eos ( const struct llama_context * ctx ) {
return ctx - > model . vocab . special_eos_id ;
2023-03-27 18:00:32 +00:00
}
2023-09-15 17:06:31 +00:00
llama_token llama_token_nl ( const struct llama_context * ctx ) {
return ctx - > model . vocab . linefeed_id ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
int llama_tokenize (
struct llama_context * ctx ,
const char * text ,
llama_token * tokens ,
int n_max_tokens ,
bool add_bos ) {
return llama_tokenize_with_model ( & ctx - > model , text , tokens , n_max_tokens , add_bos ) ;
}
int llama_tokenize_with_model (
const struct llama_model * model ,
const char * text ,
llama_token * tokens ,
int n_max_tokens ,
bool add_bos ) {
auto res = llama_tokenize_internal ( model - > vocab , text , add_bos ) ;
if ( n_max_tokens < ( int ) res . size ( ) ) {
// LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
return - ( ( int ) res . size ( ) ) ;
}
for ( size_t i = 0 ; i < res . size ( ) ; i + + ) {
tokens [ i ] = res [ i ] ;
}
return res . size ( ) ;
}
int llama_token_to_piece ( const struct llama_context * ctx , llama_token token , char * buf , int length ) {
return llama_token_to_piece_with_model ( & ctx - > model , token , buf , length ) ;
}
// does not write null-terminator to buf
int llama_token_to_piece_with_model ( const struct llama_model * model , llama_token token , char * buf , int length ) {
if ( 0 < = token & & token < llama_model_n_vocab ( model ) ) {
if ( llama_is_normal_token ( model - > vocab , token ) ) {
std : : string result = model - > vocab . id_to_token [ token ] . text ;
if ( llama_vocab_get_type ( model - > vocab ) = = LLAMA_VOCAB_TYPE_SPM ) {
llama_unescape_whitespace ( result ) ;
}
if ( length < ( int ) result . length ( ) ) {
return - result . length ( ) ;
}
memcpy ( buf , result . c_str ( ) , result . length ( ) ) ;
return result . length ( ) ;
} else if ( llama_is_unknown_token ( model - > vocab , token ) ) { // NOLINT
if ( length < 3 ) {
return - 3 ;
}
buf [ 0 ] = ' \xe2 ' ;
buf [ 1 ] = ' \x96 ' ;
buf [ 2 ] = ' \x85 ' ;
return 3 ;
} else if ( llama_is_control_token ( model - > vocab , token ) ) {
;
} else if ( llama_is_byte_token ( model - > vocab , token ) ) {
if ( length < 1 ) {
return - 1 ;
}
buf [ 0 ] = llama_token_to_byte ( model - > vocab , token ) ;
return 1 ;
}
}
return 0 ;
}
struct llama_timings llama_get_timings ( struct llama_context * ctx ) {
struct llama_timings result = {
/*.t_start_ms =*/ 1e-3 * ctx - > t_start_us ,
/*.t_end_ms =*/ 1.00 * ggml_time_ms ( ) ,
/*.t_load_ms =*/ 1e-3 * ctx - > t_load_us ,
/*.t_sample_ms =*/ 1e-3 * ctx - > t_sample_us ,
/*.t_p_eval_ms =*/ 1e-3 * ctx - > t_p_eval_us ,
/*.t_eval_ms =*/ 1e-3 * ctx - > t_eval_us ,
/*.n_sample =*/ std : : max ( 1 , ctx - > n_sample ) ,
/*.n_p_eval =*/ std : : max ( 1 , ctx - > n_p_eval ) ,
/*.n_eval =*/ std : : max ( 1 , ctx - > n_eval ) ,
} ;
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
return result ;
}
2023-03-27 18:00:32 +00:00
2023-09-15 17:06:31 +00:00
void llama_print_timings ( struct llama_context * ctx ) {
const llama_timings timings = llama_get_timings ( ctx ) ;
LLAMA_LOG_INFO ( " \n " ) ;
LLAMA_LOG_INFO ( " %s: load time = %8.2f ms \n " , __func__ , timings . t_load_ms ) ;
LLAMA_LOG_INFO ( " %s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second) \n " ,
__func__ , timings . t_sample_ms , timings . n_sample , timings . t_sample_ms / timings . n_sample , 1e3 / timings . t_sample_ms * timings . n_sample ) ;
LLAMA_LOG_INFO ( " %s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second) \n " ,
__func__ , timings . t_p_eval_ms , timings . n_p_eval , timings . t_p_eval_ms / timings . n_p_eval , 1e3 / timings . t_p_eval_ms * timings . n_p_eval ) ;
LLAMA_LOG_INFO ( " %s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second) \n " ,
__func__ , timings . t_eval_ms , timings . n_eval , timings . t_eval_ms / timings . n_eval , 1e3 / timings . t_eval_ms * timings . n_eval ) ;
LLAMA_LOG_INFO ( " %s: total time = %8.2f ms \n " , __func__ , ( timings . t_end_ms - timings . t_start_ms ) ) ;
2023-03-27 18:00:32 +00:00
}
void llama_reset_timings ( struct llama_context * ctx ) {
ctx - > t_start_us = ggml_time_us ( ) ;
ctx - > t_sample_us = ctx - > n_sample = 0 ;
ctx - > t_eval_us = ctx - > n_eval = 0 ;
ctx - > t_p_eval_us = ctx - > n_p_eval = 0 ;
}
const char * llama_print_system_info ( void ) {
static std : : string s ;
s = " " ;
2023-04-30 15:51:57 +00:00
s + = " AVX = " + std : : to_string ( ggml_cpu_has_avx ( ) ) + " | " ;
s + = " AVX2 = " + std : : to_string ( ggml_cpu_has_avx2 ( ) ) + " | " ;
s + = " AVX512 = " + std : : to_string ( ggml_cpu_has_avx512 ( ) ) + " | " ;
s + = " AVX512_VBMI = " + std : : to_string ( ggml_cpu_has_avx512_vbmi ( ) ) + " | " ;
s + = " AVX512_VNNI = " + std : : to_string ( ggml_cpu_has_avx512_vnni ( ) ) + " | " ;
s + = " FMA = " + std : : to_string ( ggml_cpu_has_fma ( ) ) + " | " ;
s + = " NEON = " + std : : to_string ( ggml_cpu_has_neon ( ) ) + " | " ;
s + = " ARM_FMA = " + std : : to_string ( ggml_cpu_has_arm_fma ( ) ) + " | " ;
s + = " F16C = " + std : : to_string ( ggml_cpu_has_f16c ( ) ) + " | " ;
s + = " FP16_VA = " + std : : to_string ( ggml_cpu_has_fp16_va ( ) ) + " | " ;
s + = " WASM_SIMD = " + std : : to_string ( ggml_cpu_has_wasm_simd ( ) ) + " | " ;
s + = " BLAS = " + std : : to_string ( ggml_cpu_has_blas ( ) ) + " | " ;
s + = " SSE3 = " + std : : to_string ( ggml_cpu_has_sse3 ( ) ) + " | " ;
2023-09-15 17:06:31 +00:00
s + = " SSSE3 = " + std : : to_string ( ggml_cpu_has_ssse3 ( ) ) + " | " ;
2023-04-30 15:51:57 +00:00
s + = " VSX = " + std : : to_string ( ggml_cpu_has_vsx ( ) ) + " | " ;
2023-03-27 18:00:32 +00:00
return s . c_str ( ) ;
}
2023-04-10 19:59:13 +00:00
2023-09-15 17:06:31 +00:00
void llama_dump_timing_info_yaml ( FILE * stream , const llama_context * ctx ) {
fprintf ( stream , " \n " ) ;
fprintf ( stream , " ########### \n " ) ;
fprintf ( stream , " # Timings # \n " ) ;
fprintf ( stream , " ########### \n " ) ;
fprintf ( stream , " \n " ) ;
fprintf ( stream , " mst_eval: %.2f # ms / token during generation \n " ,
1.0e-3 * ctx - > t_eval_us / ctx - > n_eval ) ;
fprintf ( stream , " mst_p_eval: %.2f # ms / token during prompt processing \n " ,
1.0e-3 * ctx - > t_p_eval_us / ctx - > n_p_eval ) ;
fprintf ( stream , " mst_sample: %.2f # ms / token during sampling \n " ,
1.0e-3 * ctx - > t_sample_us / ctx - > n_sample ) ;
fprintf ( stream , " n_eval: %d # number of tokens generated (excluding the first one) \n " , ctx - > n_eval ) ;
fprintf ( stream , " n_p_eval: %d # number of tokens processed in batches at the beginning \n " , ctx - > n_p_eval ) ;
fprintf ( stream , " n_sample: %d # number of sampled tokens \n " , ctx - > n_sample ) ;
fprintf ( stream , " t_eval_us: % " PRId64 " # total microseconds spent generating tokens \n " , ctx - > t_eval_us ) ;
fprintf ( stream , " t_load_us: % " PRId64 " # total microseconds spent loading the model \n " , ctx - > t_load_us ) ;
fprintf ( stream , " t_p_eval_us: % " PRId64 " # total microseconds spent prompt processing \n " , ctx - > t_p_eval_us ) ;
fprintf ( stream , " t_sample_us: % " PRId64 " # total microseconds spent sampling \n " , ctx - > t_sample_us ) ;
fprintf ( stream , " ts_eval: %.2f # tokens / second during generation \n " ,
1.0e6 * ctx - > n_eval / ctx - > t_eval_us ) ;
fprintf ( stream , " ts_p_eval: %.2f # tokens / second during prompt processing \n " ,
1.0e6 * ctx - > n_p_eval / ctx - > t_p_eval_us ) ;
fprintf ( stream , " ts_sample: %.2f # tokens / second during sampling \n " ,
1.0e6 * ctx - > n_sample / ctx - > t_sample_us ) ;
}
2023-04-10 19:59:13 +00:00
// For internal test use
2023-09-15 17:06:31 +00:00
const std : : vector < std : : pair < std : : string , struct ggml_tensor * > > & llama_internal_get_tensor_map ( struct llama_context * ctx ) {
2023-04-10 19:59:13 +00:00
return ctx - > model . tensors_by_name ;
}
2023-09-15 17:06:31 +00:00
void llama_log_set ( llama_log_callback log_callback , void * user_data ) {
g_state . log_callback = log_callback ? log_callback : llama_log_callback_default ;
g_state . log_callback_user_data = user_data ;
}
static void llama_log_internal_v ( llama_log_level level , const char * format , va_list args ) {
va_list args_copy ;
va_copy ( args_copy , args ) ;
char buffer [ 128 ] ;
int len = vsnprintf ( buffer , 128 , format , args ) ;
if ( len < 128 ) {
g_state . log_callback ( level , buffer , g_state . log_callback_user_data ) ;
} else {
char * buffer2 = new char [ len + 1 ] ;
vsnprintf ( buffer2 , len + 1 , format , args_copy ) ;
buffer2 [ len ] = 0 ;
g_state . log_callback ( level , buffer2 , g_state . log_callback_user_data ) ;
delete [ ] buffer2 ;
}
va_end ( args_copy ) ;
}
static void llama_log_internal ( llama_log_level level , const char * format , . . . ) {
va_list args ;
va_start ( args , format ) ;
llama_log_internal_v ( level , format , args ) ;
va_end ( args ) ;
}
static void llama_log_callback_default ( llama_log_level level , const char * text , void * user_data ) {
( void ) level ;
( void ) user_data ;
fputs ( text , stderr ) ;
fflush ( stderr ) ;
}