whisper.cpp/examples/talk-llama/talk-llama.cpp

809 lines
33 KiB
C++
Raw Normal View History

// Talk with AI
//
#include "common-sdl.h"
#include "common.h"
#include "whisper.h"
#include "llama.h"
#include <cassert>
#include <cstdio>
#include <fstream>
#include <regex>
#include <string>
#include <thread>
#include <vector>
#include <regex>
#include <sstream>
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
auto * model = llama_get_model(ctx);
// upper limit for the number of tokens
int n_tokens = text.length() + add_bos;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, false);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, false);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
2024-05-12 17:12:46 +00:00
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
if (n_tokens < 0) {
result.resize(-n_tokens);
2024-05-12 17:12:46 +00:00
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), false);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return std::string(result.data(), result.size());
}
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t voice_ms = 10000;
int32_t capture_id = -1;
int32_t max_tokens = 32;
int32_t audio_ctx = 0;
2023-11-15 19:32:25 +00:00
int32_t n_gpu_layers = 999;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
bool speed_up = false;
bool translate = false;
bool print_special = false;
bool print_energy = false;
bool no_timestamps = true;
2023-03-29 20:01:14 +00:00
bool verbose_prompt = false;
bool use_gpu = true;
bool flash_attn = false;
std::string person = "Georgi";
std::string bot_name = "LLaMA";
std::string wake_cmd = "";
std::string heard_ok = "";
std::string language = "en";
std::string model_wsp = "models/ggml-base.en.bin";
std::string model_llama = "models/ggml-llama-7B.bin";
2023-06-01 12:45:00 +00:00
std::string speak = "./examples/talk-llama/speak";
talk, talk-llama : pass text_to_speak as a file (#1865) * talk-llama: pass file instead of arg it is too hard to quote text in a portable way * talk-llama: pass heard_ok as a file * talk-llama: let eleven-labs.py accept options Options: -v voice, -s savefile, -p (--play) * talk-llama: check installed commands in "speak" Pass "-q" to eleven-labs.py to skip checking whether elevenlabs is installed * talk-llama: pass voice_id again in order to sync talk with talk-llama * talk: sync with talk-llama Passing text_to_speak as a file is safer and more portable cf. https://stackoverflow.com/a/59036879/45375 * talk and talk-llama: get all installed voices in speak.ps1 * talk and talk-llama: get voices from api * talk and talk-llama: add more options to eleven-labs.py and remove DEFAULT_VOICE because it is deprecated (https://www.reddit.com/r/ElevenLabs/comments/1830abt/what_happened_to_bella/) ``` usage: eleven-labs.py [-q] [-l] [-h] [-n NAME | -v NUMBER] [-f KEY=VAL] [-s FILE | -p] [TEXTFILE] options: -q, --quick skip checking the required library action: TEXTFILE read the text file (default: stdin) -l, --list show the list of voices and exit -h, --help show this help and exit voice selection: -n NAME, --name NAME get a voice object by name (default: Arnold) -v NUMBER, --voice NUMBER get a voice object by number (see --list) -f KEY=VAL, --filter KEY=VAL filter voices by labels (default: "use case=narration") this option can be used multiple times filtering will be disabled if the first -f has no "=" (e.g. -f "any") output: -s FILE, --save FILE save the TTS to a file (default: audio.mp3) -p, --play play the TTS with ffplay ``` * examples: add speak_with_file() as suggested in the review * talk and talk-llama: ignore to_speak.txt
2024-02-24 07:24:47 +00:00
std::string speak_file = "./examples/talk-llama/to_speak.txt";
2023-03-29 20:01:14 +00:00
std::string prompt = "";
std::string fname_out;
std::string path_session = ""; // path to file for saving/loading model eval state
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-h" || arg == "--help") {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-ngl" || arg == "--n-gpu-layers") { params.n_gpu_layers = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
else if (arg == "-vp" || arg == "--verbose-prompt") { params.verbose_prompt = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else if (arg == "-fa" || arg == "--flash-attn") { params.flash_attn = true; }
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
else if (arg == "-bn" || arg == "--bot-name") { params.bot_name = argv[++i]; }
else if (arg == "--session") { params.path_session = argv[++i]; }
else if (arg == "-w" || arg == "--wake-command") { params.wake_cmd = argv[++i]; }
else if (arg == "-ho" || arg == "--heard-ok") { params.heard_ok = argv[++i]; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; }
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
talk, talk-llama : pass text_to_speak as a file (#1865) * talk-llama: pass file instead of arg it is too hard to quote text in a portable way * talk-llama: pass heard_ok as a file * talk-llama: let eleven-labs.py accept options Options: -v voice, -s savefile, -p (--play) * talk-llama: check installed commands in "speak" Pass "-q" to eleven-labs.py to skip checking whether elevenlabs is installed * talk-llama: pass voice_id again in order to sync talk with talk-llama * talk: sync with talk-llama Passing text_to_speak as a file is safer and more portable cf. https://stackoverflow.com/a/59036879/45375 * talk and talk-llama: get all installed voices in speak.ps1 * talk and talk-llama: get voices from api * talk and talk-llama: add more options to eleven-labs.py and remove DEFAULT_VOICE because it is deprecated (https://www.reddit.com/r/ElevenLabs/comments/1830abt/what_happened_to_bella/) ``` usage: eleven-labs.py [-q] [-l] [-h] [-n NAME | -v NUMBER] [-f KEY=VAL] [-s FILE | -p] [TEXTFILE] options: -q, --quick skip checking the required library action: TEXTFILE read the text file (default: stdin) -l, --list show the list of voices and exit -h, --help show this help and exit voice selection: -n NAME, --name NAME get a voice object by name (default: Arnold) -v NUMBER, --voice NUMBER get a voice object by number (see --list) -f KEY=VAL, --filter KEY=VAL filter voices by labels (default: "use case=narration") this option can be used multiple times filtering will be disabled if the first -f has no "=" (e.g. -f "any") output: -s FILE, --save FILE save the TTS to a file (default: audio.mp3) -p, --play play the TTS with ffplay ``` * examples: add speak_with_file() as suggested in the review * talk and talk-llama: ignore to_speak.txt
2024-02-24 07:24:47 +00:00
else if (arg == "-sf" || arg == "--speak-file") { params.speak_file = argv[++i]; }
else if (arg == "--prompt-file") {
2023-03-29 20:01:14 +00:00
std::ifstream file(argv[++i]);
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (params.prompt.back() == '\n') {
params.prompt.pop_back();
}
}
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms);
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
2023-11-15 19:32:25 +00:00
fprintf(stderr, " -ngl N, --n-gpu-layers N [%-7d] number of layers to store in VRAM\n", params.n_gpu_layers);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
fprintf(stderr, " -vp, --verbose-prompt [%-7s] print prompt at start\n", params.verbose_prompt ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU\n", params.use_gpu ? "false" : "true");
fprintf(stderr, " -fa, --flash-attn [%-7s] flash attention\n", params.flash_attn ? "true" : "false");
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
fprintf(stderr, " -bn NAME, --bot-name NAME [%-7s] bot name (to display)\n", params.bot_name.c_str());
fprintf(stderr, " -w TEXT, --wake-command T [%-7s] wake-up command to listen for\n", params.wake_cmd.c_str());
fprintf(stderr, " -ho TEXT, --heard-ok TEXT [%-7s] said by TTS before generating reply\n", params.heard_ok.c_str());
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
fprintf(stderr, " -ml FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str());
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
talk, talk-llama : pass text_to_speak as a file (#1865) * talk-llama: pass file instead of arg it is too hard to quote text in a portable way * talk-llama: pass heard_ok as a file * talk-llama: let eleven-labs.py accept options Options: -v voice, -s savefile, -p (--play) * talk-llama: check installed commands in "speak" Pass "-q" to eleven-labs.py to skip checking whether elevenlabs is installed * talk-llama: pass voice_id again in order to sync talk with talk-llama * talk: sync with talk-llama Passing text_to_speak as a file is safer and more portable cf. https://stackoverflow.com/a/59036879/45375 * talk and talk-llama: get all installed voices in speak.ps1 * talk and talk-llama: get voices from api * talk and talk-llama: add more options to eleven-labs.py and remove DEFAULT_VOICE because it is deprecated (https://www.reddit.com/r/ElevenLabs/comments/1830abt/what_happened_to_bella/) ``` usage: eleven-labs.py [-q] [-l] [-h] [-n NAME | -v NUMBER] [-f KEY=VAL] [-s FILE | -p] [TEXTFILE] options: -q, --quick skip checking the required library action: TEXTFILE read the text file (default: stdin) -l, --list show the list of voices and exit -h, --help show this help and exit voice selection: -n NAME, --name NAME get a voice object by name (default: Arnold) -v NUMBER, --voice NUMBER get a voice object by number (see --list) -f KEY=VAL, --filter KEY=VAL filter voices by labels (default: "use case=narration") this option can be used multiple times filtering will be disabled if the first -f has no "=" (e.g. -f "any") output: -s FILE, --save FILE save the TTS to a file (default: audio.mp3) -p, --play play the TTS with ffplay ``` * examples: add speak_with_file() as suggested in the review * talk and talk-llama: ignore to_speak.txt
2024-02-24 07:24:47 +00:00
fprintf(stderr, " -sf FILE, --speak-file [%-7s] file to pass to TTS\n", params.speak_file.c_str());
fprintf(stderr, " --prompt-file FNAME [%-7s] file with custom prompt to start dialog\n", "");
fprintf(stderr, " --session FNAME file to cache model state in (may be large!) (default: none)\n");
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, "\n");
}
std::string transcribe(
whisper_context * ctx,
const whisper_params & params,
const std::vector<float> & pcmf32,
const std::string prompt_text,
float & prob,
int64_t & t_ms) {
const auto t_start = std::chrono::high_resolution_clock::now();
prob = 0.0f;
t_ms = 0;
std::vector<whisper_token> prompt_tokens;
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
prompt_tokens.resize(1024);
prompt_tokens.resize(whisper_tokenize(ctx, prompt_text.c_str(), prompt_tokens.data(), prompt_tokens.size()));
wparams.print_progress = false;
wparams.print_special = params.print_special;
wparams.print_realtime = false;
wparams.print_timestamps = !params.no_timestamps;
wparams.translate = params.translate;
wparams.no_context = true;
wparams.single_segment = true;
wparams.max_tokens = params.max_tokens;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data();
wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size();
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
return "";
}
int prob_n = 0;
std::string result;
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
result += text;
const int n_tokens = whisper_full_n_tokens(ctx, i);
for (int j = 0; j < n_tokens; ++j) {
const auto token = whisper_full_get_token_data(ctx, i, j);
prob += token.p;
++prob_n;
}
}
if (prob_n > 0) {
prob /= prob_n;
}
const auto t_end = std::chrono::high_resolution_clock::now();
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
return result;
}
std::vector<std::string> get_words(const std::string &txt) {
std::vector<std::string> words;
std::istringstream iss(txt);
std::string word;
while (iss >> word) {
words.push_back(word);
}
return words;
}
const std::string k_prompt_whisper = R"(A conversation with a person called {1}.)";
2023-03-29 20:01:14 +00:00
const std::string k_prompt_llama = R"(Text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}.
{1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}s requests immediately and with details and precision.
There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other.
The transcript only includes text, it does not include markup like HTML and Markdown.
{1} responds with short and concise answers.
{0}{4} Hello, {1}!
{1}{4} Hello {0}! How may I help you today?
{0}{4} What time is it?
{1}{4} It is {2} o'clock.
{0}{4} What year is it?
{1}{4} We are in {3}.
{0}{4} What is a cat?
{1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
{0}{4} Name a color.
{1}{4} Blue
{0}{4})";
int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
return 1;
}
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1) {
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
// whisper init
struct whisper_context_params cparams = whisper_context_default_params();
cparams.use_gpu = params.use_gpu;
cparams.flash_attn = params.flash_attn;
struct whisper_context * ctx_wsp = whisper_init_from_file_with_params(params.model_wsp.c_str(), cparams);
if (!ctx_wsp) {
fprintf(stderr, "No whisper.cpp model specified. Please provide using -mw <modelfile>\n");
return 1;
}
// llama init
2024-02-20 10:09:57 +00:00
llama_backend_init();
auto lmparams = llama_model_default_params();
if (!params.use_gpu) {
lmparams.n_gpu_layers = 0;
} else {
lmparams.n_gpu_layers = params.n_gpu_layers;
}
struct llama_model * model_llama = llama_load_model_from_file(params.model_llama.c_str(), lmparams);
if (!model_llama) {
fprintf(stderr, "No llama.cpp model specified. Please provide using -ml <modelfile>\n");
return 1;
}
llama_context_params lcparams = llama_context_default_params();
// tune these to your liking
lcparams.n_ctx = 2048;
lcparams.seed = 1;
lcparams.n_threads = params.n_threads;
lcparams.flash_attn = params.flash_attn;
struct llama_context * ctx_llama = llama_new_context_with_model(model_llama, lcparams);
// print some info about the processing
{
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx_wsp)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
__func__,
params.n_threads,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1);
fprintf(stderr, "\n");
}
// init audio
audio_async audio(30*1000);
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
return 1;
}
audio.resume();
bool is_running = true;
bool force_speak = false;
float prob0 = 0.0f;
const std::string chat_symb = ":";
std::vector<float> pcmf32_cur;
std::vector<float> pcmf32_prompt;
const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", params.bot_name);
// construct the initial prompt for LLaMA inference
2023-03-29 20:01:14 +00:00
std::string prompt_llama = params.prompt.empty() ? k_prompt_llama : params.prompt;
// need to have leading ' '
prompt_llama.insert(0, 1, ' ');
prompt_llama = ::replace(prompt_llama, "{0}", params.person);
prompt_llama = ::replace(prompt_llama, "{1}", params.bot_name);
{
// get time string
std::string time_str;
{
time_t t = time(0);
struct tm * now = localtime(&t);
char buf[128];
strftime(buf, sizeof(buf), "%H:%M", now);
time_str = buf;
}
prompt_llama = ::replace(prompt_llama, "{2}", time_str);
}
{
// get year string
std::string year_str;
{
time_t t = time(0);
struct tm * now = localtime(&t);
char buf[128];
strftime(buf, sizeof(buf), "%Y", now);
year_str = buf;
}
prompt_llama = ::replace(prompt_llama, "{3}", year_str);
}
prompt_llama = ::replace(prompt_llama, "{4}", chat_symb);
llama_batch batch = llama_batch_init(llama_n_ctx(ctx_llama), 0, 1);
// init session
std::string path_session = params.path_session;
std::vector<llama_token> session_tokens;
auto embd_inp = ::llama_tokenize(ctx_llama, prompt_llama, true);
if (!path_session.empty()) {
fprintf(stderr, "%s: attempting to load saved session from %s\n", __func__, path_session.c_str());
// fopen to check for existing session
FILE * fp = std::fopen(path_session.c_str(), "rb");
if (fp != NULL) {
std::fclose(fp);
session_tokens.resize(llama_n_ctx(ctx_llama));
size_t n_token_count_out = 0;
if (!llama_load_session_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
return 1;
}
session_tokens.resize(n_token_count_out);
for (size_t i = 0; i < session_tokens.size(); i++) {
embd_inp[i] = session_tokens[i];
}
fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
} else {
fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
}
}
// evaluate the initial prompt
printf("\n");
printf("%s : initializing - please wait ...\n", __func__);
// prepare batch
{
batch.n_tokens = embd_inp.size();
for (int i = 0; i < batch.n_tokens; i++) {
batch.token[i] = embd_inp[i];
batch.pos[i] = i;
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0;
batch.logits[i] = i == batch.n_tokens - 1;
}
}
if (llama_decode(ctx_llama, batch)) {
fprintf(stderr, "%s : failed to decode\n", __func__);
return 1;
}
if (params.verbose_prompt) {
fprintf(stdout, "\n");
fprintf(stdout, "%s", prompt_llama.c_str());
fflush(stdout);
}
// debug message about similarity of saved session, if applicable
size_t n_matching_session_tokens = 0;
if (session_tokens.size()) {
for (llama_token id : session_tokens) {
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
break;
}
n_matching_session_tokens++;
}
if (n_matching_session_tokens >= embd_inp.size()) {
fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
__func__, n_matching_session_tokens, embd_inp.size());
} else {
fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
__func__, n_matching_session_tokens, embd_inp.size());
}
}
// HACK - because session saving incurs a non-negligible delay, for now skip re-saving session
// if we loaded a session with at least 75% similarity. It's currently just used to speed up the
// initial prompt so it doesn't need to be an exact match.
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < (embd_inp.size() * 3 / 4);
printf("%s : done! start speaking in the microphone\n", __func__);
// show wake command if enabled
const std::string wake_cmd = params.wake_cmd;
const int wake_cmd_length = get_words(wake_cmd).size();
const bool use_wake_cmd = wake_cmd_length > 0;
if (use_wake_cmd) {
printf("%s : the wake-up command is: '%s%s%s'\n", __func__, "\033[1m", wake_cmd.c_str(), "\033[0m");
}
printf("\n");
printf("%s%s", params.person.c_str(), chat_symb.c_str());
fflush(stdout);
// clear audio buffer
audio.clear();
// text inference variables
const int voice_id = 2;
const int n_keep = embd_inp.size();
const int n_ctx = llama_n_ctx(ctx_llama);
int n_past = n_keep;
int n_prev = 64; // TODO arg
int n_session_consumed = !path_session.empty() && session_tokens.size() > 0 ? session_tokens.size() : 0;
std::vector<llama_token> embd;
// reverse prompts for detecting when it's time to stop speaking
std::vector<std::string> antiprompts = {
params.person + chat_symb,
};
// main loop
while (is_running) {
// handle Ctrl + C
is_running = sdl_poll_events();
if (!is_running) {
break;
}
// delay
std::this_thread::sleep_for(std::chrono::milliseconds(100));
int64_t t_ms = 0;
{
audio.get(2000, pcmf32_cur);
if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
//fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
audio.get(params.voice_ms, pcmf32_cur);
std::string all_heard;
if (!force_speak) {
all_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prompt_whisper, prob0, t_ms));
}
const auto words = get_words(all_heard);
std::string wake_cmd_heard;
std::string text_heard;
for (int i = 0; i < (int) words.size(); ++i) {
if (i < wake_cmd_length) {
wake_cmd_heard += words[i] + " ";
} else {
text_heard += words[i] + " ";
}
}
// check if audio starts with the wake-up command if enabled
if (use_wake_cmd) {
const float sim = similarity(wake_cmd_heard, wake_cmd);
if ((sim < 0.7f) || (text_heard.empty())) {
audio.clear();
continue;
}
}
// optionally give audio feedback that the current text is being processed
if (!params.heard_ok.empty()) {
talk, talk-llama : pass text_to_speak as a file (#1865) * talk-llama: pass file instead of arg it is too hard to quote text in a portable way * talk-llama: pass heard_ok as a file * talk-llama: let eleven-labs.py accept options Options: -v voice, -s savefile, -p (--play) * talk-llama: check installed commands in "speak" Pass "-q" to eleven-labs.py to skip checking whether elevenlabs is installed * talk-llama: pass voice_id again in order to sync talk with talk-llama * talk: sync with talk-llama Passing text_to_speak as a file is safer and more portable cf. https://stackoverflow.com/a/59036879/45375 * talk and talk-llama: get all installed voices in speak.ps1 * talk and talk-llama: get voices from api * talk and talk-llama: add more options to eleven-labs.py and remove DEFAULT_VOICE because it is deprecated (https://www.reddit.com/r/ElevenLabs/comments/1830abt/what_happened_to_bella/) ``` usage: eleven-labs.py [-q] [-l] [-h] [-n NAME | -v NUMBER] [-f KEY=VAL] [-s FILE | -p] [TEXTFILE] options: -q, --quick skip checking the required library action: TEXTFILE read the text file (default: stdin) -l, --list show the list of voices and exit -h, --help show this help and exit voice selection: -n NAME, --name NAME get a voice object by name (default: Arnold) -v NUMBER, --voice NUMBER get a voice object by number (see --list) -f KEY=VAL, --filter KEY=VAL filter voices by labels (default: "use case=narration") this option can be used multiple times filtering will be disabled if the first -f has no "=" (e.g. -f "any") output: -s FILE, --save FILE save the TTS to a file (default: audio.mp3) -p, --play play the TTS with ffplay ``` * examples: add speak_with_file() as suggested in the review * talk and talk-llama: ignore to_speak.txt
2024-02-24 07:24:47 +00:00
speak_with_file(params.speak, params.heard_ok, params.speak_file, voice_id);
}
// remove text between brackets using regex
{
std::regex re("\\[.*?\\]");
text_heard = std::regex_replace(text_heard, re, "");
}
// remove text between brackets using regex
{
std::regex re("\\(.*?\\)");
text_heard = std::regex_replace(text_heard, re, "");
}
// remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' '
text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
// take first line
text_heard = text_heard.substr(0, text_heard.find_first_of('\n'));
// remove leading and trailing whitespace
text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), "");
text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), "");
const std::vector<llama_token> tokens = llama_tokenize(ctx_llama, text_heard.c_str(), false);
if (text_heard.empty() || tokens.empty() || force_speak) {
//fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__);
audio.clear();
continue;
}
force_speak = false;
text_heard.insert(0, 1, ' ');
text_heard += "\n" + params.bot_name + chat_symb;
fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m");
fflush(stdout);
embd = ::llama_tokenize(ctx_llama, text_heard, false);
// Append the new input tokens to the session_tokens vector
if (!path_session.empty()) {
session_tokens.insert(session_tokens.end(), tokens.begin(), tokens.end());
}
// text inference
bool done = false;
std::string text_to_speak;
while (true) {
// predict
if (embd.size() > 0) {
if (n_past + (int) embd.size() > n_ctx) {
n_past = n_keep;
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), embd_inp.begin() + embd_inp.size() - n_prev, embd_inp.end());
// stop saving session if we run out of context
path_session = "";
//printf("\n---\n");
//printf("resetting: '");
//for (int i = 0; i < (int) embd.size(); i++) {
// printf("%s", llama_token_to_piece(ctx_llama, embd[i]));
//}
//printf("'\n");
//printf("\n---\n");
}
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
// REVIEW
if (n_session_consumed < (int) session_tokens.size()) {
size_t i = 0;
for ( ; i < embd.size(); i++) {
if (embd[i] != session_tokens[n_session_consumed]) {
session_tokens.resize(n_session_consumed);
break;
}
n_past++;
n_session_consumed++;
if (n_session_consumed >= (int) session_tokens.size()) {
i++;
break;
}
}
if (i > 0) {
embd.erase(embd.begin(), embd.begin() + i);
}
}
if (embd.size() > 0 && !path_session.empty()) {
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
n_session_consumed = session_tokens.size();
}
// prepare batch
{
batch.n_tokens = embd.size();
for (int i = 0; i < batch.n_tokens; i++) {
batch.token[i] = embd[i];
batch.pos[i] = n_past + i;
batch.n_seq_id[i] = 1;
batch.seq_id[i][0] = 0;
batch.logits[i] = i == batch.n_tokens - 1;
}
}
if (llama_decode(ctx_llama, batch)) {
fprintf(stderr, "%s : failed to decode\n", __func__);
return 1;
}
}
embd_inp.insert(embd_inp.end(), embd.begin(), embd.end());
n_past += embd.size();
embd.clear();
if (done) break;
{
// out of user input, sample next token
const float top_k = 5;
const float top_p = 0.80f;
const float temp = 0.30f;
const float repeat_penalty = 1.1764f;
const int repeat_last_n = 256;
if (!path_session.empty() && need_to_save_session) {
need_to_save_session = false;
llama_save_session_file(ctx_llama, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
llama_token id = 0;
{
auto logits = llama_get_logits(ctx_llama);
auto n_vocab = llama_n_vocab(model_llama);
logits[llama_token_eos(model_llama)] = 0;
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// apply repeat penalty
const float nl_logit = logits[llama_token_nl(model_llama)];
llama_sample_repetition_penalties(ctx_llama, &candidates_p,
embd_inp.data() + std::max(0, n_past - repeat_last_n),
repeat_last_n, repeat_penalty, 0.0, 0.0f);
logits[llama_token_nl(model_llama)] = nl_logit;
if (temp <= 0) {
// Greedy sampling
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
} else {
// Temperature sampling
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
llama_sample_temp (ctx_llama, &candidates_p, temp);
id = llama_sample_token(ctx_llama, &candidates_p);
}
}
if (id != llama_token_eos(model_llama)) {
// add it to the context
embd.push_back(id);
text_to_speak += llama_token_to_piece(ctx_llama, id);
printf("%s", llama_token_to_piece(ctx_llama, id).c_str());
2024-02-06 17:56:12 +00:00
fflush(stdout);
}
}
{
std::string last_output;
for (int i = embd_inp.size() - 16; i < (int) embd_inp.size(); i++) {
last_output += llama_token_to_piece(ctx_llama, embd_inp[i]);
}
last_output += llama_token_to_piece(ctx_llama, embd[0]);
for (std::string & antiprompt : antiprompts) {
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
done = true;
text_to_speak = ::replace(text_to_speak, antiprompt, "");
fflush(stdout);
need_to_save_session = true;
break;
}
}
}
is_running = sdl_poll_events();
if (!is_running) {
break;
}
}
talk, talk-llama : pass text_to_speak as a file (#1865) * talk-llama: pass file instead of arg it is too hard to quote text in a portable way * talk-llama: pass heard_ok as a file * talk-llama: let eleven-labs.py accept options Options: -v voice, -s savefile, -p (--play) * talk-llama: check installed commands in "speak" Pass "-q" to eleven-labs.py to skip checking whether elevenlabs is installed * talk-llama: pass voice_id again in order to sync talk with talk-llama * talk: sync with talk-llama Passing text_to_speak as a file is safer and more portable cf. https://stackoverflow.com/a/59036879/45375 * talk and talk-llama: get all installed voices in speak.ps1 * talk and talk-llama: get voices from api * talk and talk-llama: add more options to eleven-labs.py and remove DEFAULT_VOICE because it is deprecated (https://www.reddit.com/r/ElevenLabs/comments/1830abt/what_happened_to_bella/) ``` usage: eleven-labs.py [-q] [-l] [-h] [-n NAME | -v NUMBER] [-f KEY=VAL] [-s FILE | -p] [TEXTFILE] options: -q, --quick skip checking the required library action: TEXTFILE read the text file (default: stdin) -l, --list show the list of voices and exit -h, --help show this help and exit voice selection: -n NAME, --name NAME get a voice object by name (default: Arnold) -v NUMBER, --voice NUMBER get a voice object by number (see --list) -f KEY=VAL, --filter KEY=VAL filter voices by labels (default: "use case=narration") this option can be used multiple times filtering will be disabled if the first -f has no "=" (e.g. -f "any") output: -s FILE, --save FILE save the TTS to a file (default: audio.mp3) -p, --play play the TTS with ffplay ``` * examples: add speak_with_file() as suggested in the review * talk and talk-llama: ignore to_speak.txt
2024-02-24 07:24:47 +00:00
speak_with_file(params.speak, text_to_speak, params.speak_file, voice_id);
audio.clear();
}
}
}
audio.pause();
whisper_print_timings(ctx_wsp);
whisper_free(ctx_wsp);
llama_print_timings(ctx_llama);
llama_free(ctx_llama);
return 0;
}