2024-08-08 11:16:50 +00:00
# include "llama-sampling.h"
2024-09-24 10:22:55 +00:00
# include "llama-vocab.h"
# include "llama-grammar.h"
2024-08-08 11:16:50 +00:00
# include <algorithm>
2024-09-24 10:22:55 +00:00
# include <cassert>
# include <cfloat>
# include <chrono>
# include <cmath>
# include <cstdlib>
2024-08-08 11:16:50 +00:00
# include <cstring>
# include <ctime>
# include <numeric>
2024-09-24 10:22:55 +00:00
# include <random>
2024-08-08 11:16:50 +00:00
# include <unordered_map>
2024-09-24 10:22:55 +00:00
static int llama_sample_dist ( llama_token_data_array * cur_p , std : : mt19937 & rng ) {
// iterator for the probabilities
# ifdef __GNUC__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wunused-local-typedefs"
# endif
struct probs_iterator {
typedef std : : input_iterator_tag iterator_category ;
typedef float value_type ;
typedef float * pointer ;
typedef float & reference ;
typedef ptrdiff_t difference_type ;
const llama_token_data * data ;
bool operator = = ( const probs_iterator & other ) const { return data = = other . data ; }
bool operator ! = ( const probs_iterator & other ) const { return data ! = other . data ; }
const float & operator * ( ) const { return data - > p ; }
probs_iterator & operator + + ( ) { + + data ; return * this ; }
probs_iterator operator + + ( int ) { probs_iterator tmp = * this ; + + data ; return tmp ; }
} ;
# ifdef __GNUC__
# pragma GCC diagnostic pop
# endif
std : : discrete_distribution < int > dist ( probs_iterator { cur_p - > data } , probs_iterator { cur_p - > data + cur_p - > size } ) ;
return dist ( rng ) ;
}
/*
2024-08-08 11:16:50 +00:00
static void llama_log_softmax ( float * array , size_t size ) {
float max_l = * std : : max_element ( array , array + size ) ;
float sum = 0.f ;
for ( size_t i = 0 ; i < size ; + + i ) {
float p = expf ( array [ i ] - max_l ) ;
sum + = p ;
array [ i ] = p ;
}
for ( size_t i = 0 ; i < size ; + + i ) {
array [ i ] = logf ( array [ i ] / sum ) ;
}
}
2024-09-24 10:22:55 +00:00
*/
2024-08-08 11:16:50 +00:00
2024-10-31 20:29:22 +00:00
static void llama_sampler_temp_impl ( llama_token_data_array * cur_p , float temp ) {
if ( temp < = 0.0f ) {
// find the token with the highest logit and set the rest to -inf
size_t max_i = 0 ;
float max_l = cur_p - > data [ 0 ] . logit ;
for ( size_t i = 1 ; i < cur_p - > size ; + + i ) {
if ( cur_p - > data [ i ] . logit > max_l ) {
cur_p - > data [ max_i ] . logit = - INFINITY ;
max_i = i ;
max_l = cur_p - > data [ i ] . logit ;
} else {
cur_p - > data [ i ] . logit = - INFINITY ;
}
}
return ;
}
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cur_p - > data [ i ] . logit / = temp ;
}
}
2024-09-24 10:22:55 +00:00
static void llama_sampler_softmax_impl ( llama_token_data_array * cur_p ) {
GGML_ASSERT ( cur_p - > size > 0 ) ;
2024-08-08 11:16:50 +00:00
// Sort the logits in descending order
2024-09-24 10:22:55 +00:00
if ( ! cur_p - > sorted ) {
std : : sort ( cur_p - > data , cur_p - > data + cur_p - > size , [ ] ( const llama_token_data & a , const llama_token_data & b ) {
2024-08-08 11:16:50 +00:00
return a . logit > b . logit ;
} ) ;
2024-09-24 10:22:55 +00:00
cur_p - > sorted = true ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
float max_l = cur_p - > data [ 0 ] . logit ;
2024-08-08 11:16:50 +00:00
float cum_sum = 0.0f ;
2024-09-24 10:22:55 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
float p = expf ( cur_p - > data [ i ] . logit - max_l ) ;
cur_p - > data [ i ] . p = p ;
2024-08-08 11:16:50 +00:00
cum_sum + = p ;
}
2024-09-24 10:22:55 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cur_p - > data [ i ] . p / = cum_sum ;
2024-08-08 11:16:50 +00:00
}
}
2024-09-24 10:22:55 +00:00
static void llama_sampler_top_k_impl ( llama_token_data_array * cur_p , int32_t k ) {
2024-11-15 06:41:06 +00:00
// TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast
2024-09-24 10:22:55 +00:00
// if (k >= (int32_t)cur_p->size) {
2024-08-08 11:16:50 +00:00
// return;
// }
if ( k < = 0 ) {
2024-09-24 10:22:55 +00:00
k = cur_p - > size ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
k = std : : min ( k , ( int ) cur_p - > size ) ;
2024-08-08 11:16:50 +00:00
// Sort scores in descending order
2024-09-24 10:22:55 +00:00
if ( ! cur_p - > sorted ) {
2024-08-08 11:16:50 +00:00
auto comp = [ ] ( const llama_token_data & a , const llama_token_data & b ) {
return a . logit > b . logit ;
} ;
if ( k < = 128 ) {
2024-09-24 10:22:55 +00:00
std : : partial_sort ( cur_p - > data , cur_p - > data + k , cur_p - > data + cur_p - > size , comp ) ;
2024-08-08 11:16:50 +00:00
} else {
constexpr int nbuckets = 128 ;
constexpr float bucket_low = - 10.0f ;
constexpr float bucket_high = 10.0f ;
constexpr float bucket_scale = nbuckets / ( bucket_high - bucket_low ) ;
2024-08-28 08:04:02 +00:00
constexpr float bucket_inter = - bucket_low * bucket_scale ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
std : : vector < int > bucket_idx ( cur_p - > size ) ;
2024-08-08 11:16:50 +00:00
std : : vector < int > histo ( nbuckets , 0 ) ;
2024-09-24 10:22:55 +00:00
for ( int i = 0 ; i < ( int ) cur_p - > size ; + + i ) {
const float val = cur_p - > data [ i ] . logit ;
2024-08-28 08:04:02 +00:00
int ib = int ( bucket_scale * val + bucket_inter ) ; //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
2024-08-08 11:16:50 +00:00
ib = std : : max ( 0 , std : : min ( nbuckets - 1 , ib ) ) ;
bucket_idx [ i ] = ib ;
+ + histo [ ib ] ;
}
int nhave = 0 ;
int ib = nbuckets - 1 ;
for ( ; ib > = 0 ; - - ib ) {
nhave + = histo [ ib ] ;
2024-09-24 10:22:55 +00:00
if ( nhave > = k ) {
break ;
}
2024-08-08 11:16:50 +00:00
}
std : : vector < llama_token_data > tmp_tokens ( nhave ) ;
2024-09-24 10:22:55 +00:00
auto * ptr = tmp_tokens . data ( ) ;
2024-08-08 11:16:50 +00:00
std : : vector < llama_token_data * > bucket_ptrs ;
bucket_ptrs . reserve ( nbuckets - ib ) ;
for ( int j = nbuckets - 1 ; j > = ib ; - - j ) {
bucket_ptrs . push_back ( ptr ) ;
ptr + = histo [ j ] ;
}
2024-09-24 10:22:55 +00:00
for ( int i = 0 ; i < ( int ) cur_p - > size ; + + i ) {
2024-08-08 11:16:50 +00:00
int j = bucket_idx [ i ] ;
if ( j > = ib ) {
2024-09-24 10:22:55 +00:00
* bucket_ptrs [ nbuckets - 1 - j ] + + = cur_p - > data [ i ] ;
2024-08-08 11:16:50 +00:00
}
}
ptr = tmp_tokens . data ( ) ;
int ndone = 0 ;
for ( int j = nbuckets - 1 ; j > ib ; - - j ) {
std : : sort ( ptr , ptr + histo [ j ] , comp ) ;
ptr + = histo [ j ] ;
ndone + = histo [ j ] ;
}
std : : partial_sort ( ptr , ptr + k - ndone , ptr + histo [ ib ] , comp ) ;
2024-09-24 10:22:55 +00:00
std : : memcpy ( cur_p - > data , tmp_tokens . data ( ) , k * sizeof ( llama_token_data ) ) ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
cur_p - > sorted = true ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
cur_p - > size = k ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static uint32_t get_rng_seed ( uint32_t seed ) {
if ( seed = = LLAMA_DEFAULT_SEED ) {
// use system clock if std::random_device is not a true RNG
static bool is_rd_prng = std : : random_device ( ) . entropy ( ) = = 0 ;
if ( is_rd_prng ) {
return ( uint32_t ) std : : chrono : : system_clock : : now ( ) . time_since_epoch ( ) . count ( ) ;
}
std : : random_device rd ;
return rd ( ) ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
return seed ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
// llama_sampler API
const char * llama_sampler_name ( const struct llama_sampler * smpl ) {
if ( ! smpl - > iface ) {
return " (null) " ;
}
return smpl - > iface - > name ( smpl ) ;
}
void llama_sampler_accept ( struct llama_sampler * smpl , llama_token token ) {
if ( smpl - > iface - > accept ) {
smpl - > iface - > accept ( smpl , token ) ;
}
}
void llama_sampler_apply ( struct llama_sampler * smpl , struct llama_token_data_array * cur_p ) {
GGML_ASSERT ( smpl - > iface - > apply ) ;
smpl - > iface - > apply ( smpl , cur_p ) ;
}
void llama_sampler_reset ( struct llama_sampler * smpl ) {
if ( smpl - > iface - > reset ) {
smpl - > iface - > reset ( smpl ) ;
}
}
struct llama_sampler * llama_sampler_clone ( const struct llama_sampler * smpl ) {
if ( smpl - > iface - > clone ) {
return smpl - > iface - > clone ( smpl ) ;
}
if ( smpl - > ctx = = nullptr ) {
return new llama_sampler {
/* .iface = */ smpl - > iface ,
/* .ctx = */ nullptr ,
} ;
}
GGML_ABORT ( " the sampler does not support cloning " ) ;
}
void llama_sampler_free ( struct llama_sampler * smpl ) {
if ( smpl = = nullptr ) {
2024-08-08 11:16:50 +00:00
return ;
}
2024-09-24 10:22:55 +00:00
if ( smpl - > iface - > free ) {
smpl - > iface - > free ( smpl ) ;
}
delete smpl ;
}
llama_token llama_sampler_sample ( struct llama_sampler * smpl , struct llama_context * ctx , int32_t idx ) {
const auto * logits = llama_get_logits_ith ( ctx , idx ) ;
const int n_vocab = llama_n_vocab ( llama_get_model ( ctx ) ) ;
// TODO: do not allocate each time
std : : vector < llama_token_data > cur ;
cur . reserve ( n_vocab ) ;
for ( llama_token token_id = 0 ; token_id < n_vocab ; token_id + + ) {
cur . emplace_back ( llama_token_data { token_id , logits [ token_id ] , 0.0f } ) ;
}
llama_token_data_array cur_p = {
/* .data = */ cur . data ( ) ,
/* .size = */ cur . size ( ) ,
/* .selected = */ - 1 ,
/* .sorted = */ false ,
} ;
llama_sampler_apply ( smpl , & cur_p ) ;
GGML_ASSERT ( cur_p . selected > = 0 & & cur_p . selected < ( int32_t ) cur_p . size ) ;
auto token = cur_p . data [ cur_p . selected ] . id ;
llama_sampler_accept ( smpl , token ) ;
return token ;
}
// sampler chain
static const char * llama_sampler_chain_name ( const struct llama_sampler * /*smpl*/ ) {
return " chain " ;
}
static void llama_sampler_chain_accept ( struct llama_sampler * smpl , llama_token token ) {
auto * chain = ( llama_sampler_chain * ) smpl - > ctx ;
time_meas tm ( chain - > t_sample_us , chain - > params . no_perf ) ;
for ( auto * smpl : chain - > samplers ) {
llama_sampler_accept ( smpl , token ) ;
}
chain - > n_sample + + ;
}
static void llama_sampler_chain_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * chain = ( llama_sampler_chain * ) smpl - > ctx ;
time_meas tm ( chain - > t_sample_us , chain - > params . no_perf ) ;
for ( auto * smpl : chain - > samplers ) {
llama_sampler_apply ( smpl , cur_p ) ;
}
}
static void llama_sampler_chain_reset ( struct llama_sampler * smpl ) {
auto * chain = ( llama_sampler_chain * ) smpl - > ctx ;
for ( auto * smpl : chain - > samplers ) {
llama_sampler_reset ( smpl ) ;
}
chain - > t_sample_us = 0 ;
chain - > n_sample = 0 ;
}
static struct llama_sampler * llama_sampler_chain_clone ( const struct llama_sampler * smpl ) {
const auto * chain_src = ( const llama_sampler_chain * ) smpl - > ctx ;
auto * result = llama_sampler_chain_init ( chain_src - > params ) ;
for ( auto * smpl : chain_src - > samplers ) {
llama_sampler_chain_add ( result , llama_sampler_clone ( smpl ) ) ;
}
return result ;
}
static void llama_sampler_chain_free ( struct llama_sampler * smpl ) {
auto * chain = ( llama_sampler_chain * ) smpl - > ctx ;
for ( auto * smpl : chain - > samplers ) {
llama_sampler_free ( smpl ) ;
}
delete chain ;
}
static struct llama_sampler_i llama_sampler_chain_i = {
/* .name = */ llama_sampler_chain_name ,
/* .accept = */ llama_sampler_chain_accept ,
/* .apply = */ llama_sampler_chain_apply ,
/* .reset = */ llama_sampler_chain_reset ,
/* .clone = */ llama_sampler_chain_clone ,
/* .free = */ llama_sampler_chain_free ,
} ;
struct llama_sampler * llama_sampler_chain_init ( struct llama_sampler_chain_params params ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_chain_i ,
/* .ctx = */ new llama_sampler_chain {
/* .params = */ params ,
/* .samplers = */ { } ,
/* .t_sample_us = */ 0 ,
/* .n_sample = */ 0 ,
} ,
} ;
}
void llama_sampler_chain_add ( struct llama_sampler * chain , struct llama_sampler * smpl ) {
auto * p = ( llama_sampler_chain * ) chain - > ctx ;
p - > samplers . push_back ( smpl ) ;
}
struct llama_sampler * llama_sampler_chain_get ( const struct llama_sampler * chain , int32_t i ) {
const auto * p = ( const llama_sampler_chain * ) chain - > ctx ;
if ( i < 0 | | ( size_t ) i > = p - > samplers . size ( ) ) {
return nullptr ;
}
return p - > samplers [ i ] ;
}
struct llama_sampler * llama_sampler_chain_remove ( struct llama_sampler * chain , int32_t i ) {
auto * p = ( llama_sampler_chain * ) chain - > ctx ;
if ( i < 0 | | ( size_t ) i > = p - > samplers . size ( ) ) {
return nullptr ;
}
auto * result = p - > samplers [ i ] ;
p - > samplers . erase ( p - > samplers . begin ( ) + i ) ;
return result ;
}
int llama_sampler_chain_n ( const struct llama_sampler * chain ) {
const auto * p = ( const llama_sampler_chain * ) chain - > ctx ;
return p - > samplers . size ( ) ;
}
//
// samplers
//
// greedy
static const char * llama_sampler_greedy_name ( const struct llama_sampler * /*smpl*/ ) {
return " greedy " ;
}
static void llama_sampler_greedy_apply ( struct llama_sampler * /*smpl*/ , llama_token_data_array * cur_p ) {
cur_p - > selected = 0 ;
for ( size_t i = 1 ; i < cur_p - > size ; + + i ) {
if ( cur_p - > data [ i ] . logit > cur_p - > data [ cur_p - > selected ] . logit ) {
cur_p - > selected = i ;
}
}
}
static struct llama_sampler_i llama_sampler_greedy_i = {
/* .name = */ llama_sampler_greedy_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_greedy_apply ,
/* .reset = */ nullptr ,
/* .clone = */ nullptr ,
/* .free = */ nullptr ,
} ;
struct llama_sampler * llama_sampler_init_greedy ( ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_greedy_i ,
/* .ctx = */ nullptr ,
} ;
}
// dist
struct llama_sampler_dist {
const uint32_t seed ;
uint32_t seed_cur ;
std : : mt19937 rng ;
} ;
static const char * llama_sampler_dist_name ( const struct llama_sampler * /*smpl*/ ) {
return " dist " ;
}
static void llama_sampler_dist_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_dist * ) smpl - > ctx ;
2024-10-31 20:29:22 +00:00
llama_sampler_softmax_impl ( cur_p ) ;
2024-09-24 10:22:55 +00:00
cur_p - > selected = llama_sample_dist ( cur_p , ctx - > rng ) ;
}
static struct llama_sampler * llama_sampler_dist_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_dist * ) smpl - > ctx ;
auto * result = llama_sampler_init_dist ( ctx - > seed ) ;
// copy the state
{
auto * result_ctx = ( llama_sampler_dist * ) result - > ctx ;
result_ctx - > rng = ctx - > rng ;
}
return result ;
}
static void llama_sampler_dist_reset ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_dist * ) smpl - > ctx ;
ctx - > seed_cur = get_rng_seed ( ctx - > seed ) ;
ctx - > rng . seed ( ctx - > seed_cur ) ;
}
static void llama_sampler_dist_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_dist * ) smpl - > ctx ;
}
static struct llama_sampler_i llama_sampler_dist_i = {
/* .name = */ llama_sampler_dist_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_dist_apply ,
/* .reset = */ llama_sampler_dist_reset ,
/* .clone = */ llama_sampler_dist_clone ,
/* .free = */ llama_sampler_dist_free ,
} ;
struct llama_sampler * llama_sampler_init_dist ( uint32_t seed ) {
auto seed_cur = get_rng_seed ( seed ) ;
return new llama_sampler {
/* .iface = */ & llama_sampler_dist_i ,
/* .ctx = */ new llama_sampler_dist {
/* .seed = */ seed ,
/* .seed_cur = */ seed_cur ,
/* .rng = */ std : : mt19937 ( seed_cur ) ,
} ,
} ;
}
// softmax
static const char * llama_sampler_softmax_name ( const struct llama_sampler * /*smpl*/ ) {
return " softmax " ;
}
static void llama_sampler_softmax_apply ( struct llama_sampler * /*smpl*/ , llama_token_data_array * cur_p ) {
llama_sampler_softmax_impl ( cur_p ) ;
}
static struct llama_sampler_i llama_sampler_softmax_i = {
/* .name = */ llama_sampler_softmax_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_softmax_apply ,
/* .reset = */ nullptr ,
/* .clone = */ nullptr ,
/* .free = */ nullptr ,
} ;
struct llama_sampler * llama_sampler_init_softmax ( ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_softmax_i ,
/* .ctx = */ nullptr ,
} ;
}
// top-k
struct llama_sampler_top_k {
const int32_t k ;
} ;
static const char * llama_sampler_top_k_name ( const struct llama_sampler * /*smpl*/ ) {
return " top-k " ;
}
static void llama_sampler_top_k_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_top_k * ) smpl - > ctx ;
llama_sampler_top_k_impl ( cur_p , ctx - > k ) ;
}
static struct llama_sampler * llama_sampler_top_k_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_top_k * ) smpl - > ctx ;
return llama_sampler_init_top_k ( ctx - > k ) ;
}
static void llama_sampler_top_k_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_top_k * ) smpl - > ctx ;
}
static struct llama_sampler_i llama_sampler_top_k_i = {
/* .name = */ llama_sampler_top_k_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_top_k_apply ,
/* .reset = */ nullptr ,
/* .clone = */ llama_sampler_top_k_clone ,
/* .free = */ llama_sampler_top_k_free ,
} ;
struct llama_sampler * llama_sampler_init_top_k ( int32_t k ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_top_k_i ,
/* .ctx = */ new llama_sampler_top_k {
/* .k = */ k ,
} ,
} ;
}
// top-p
struct llama_sampler_top_p {
const float p ;
const size_t min_keep ;
} ;
static const char * llama_sampler_top_p_name ( const struct llama_sampler * /*smpl*/ ) {
return " top-p " ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static void llama_sampler_top_p_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_top_p * ) smpl - > ctx ;
if ( ctx - > p > = 1.0f ) {
return ;
}
llama_sampler_softmax_impl ( cur_p ) ;
2024-08-08 11:16:50 +00:00
// Compute the cumulative probabilities
float cum_sum = 0.0f ;
2024-09-24 10:22:55 +00:00
size_t last_idx = cur_p - > size ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cum_sum + = cur_p - > data [ i ] . p ;
2024-08-08 11:16:50 +00:00
// Check if the running sum is at least p or if we have kept at least min_keep tokens
// we set the last index to i+1 to indicate that the current iterate should be included in the set
2024-09-24 10:22:55 +00:00
if ( cum_sum > = ctx - > p & & i + 1 > = ctx - > min_keep ) {
2024-08-08 11:16:50 +00:00
last_idx = i + 1 ;
break ;
}
}
// Resize the output vector to keep only the top-p tokens
2024-09-24 10:22:55 +00:00
cur_p - > size = last_idx ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler * llama_sampler_top_p_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_top_p * ) smpl - > ctx ;
return llama_sampler_init_top_p ( ctx - > p , ctx - > min_keep ) ;
}
static void llama_sampler_top_p_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_top_p * ) smpl - > ctx ;
}
static struct llama_sampler_i llama_sampler_top_p_i = {
/* .name = */ llama_sampler_top_p_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_top_p_apply ,
/* .reset = */ nullptr ,
/* .clone = */ llama_sampler_top_p_clone ,
/* .free = */ llama_sampler_top_p_free ,
} ;
struct llama_sampler * llama_sampler_init_top_p ( float p , size_t min_keep ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_top_p_i ,
/* .ctx = */ new llama_sampler_top_p {
/* .p = */ p ,
/* .min_keep = */ min_keep ,
} ,
} ;
}
// min-p
struct llama_sampler_min_p {
const float p ;
const size_t min_keep ;
} ;
static const char * llama_sampler_min_p_name ( const struct llama_sampler * /*smpl*/ ) {
return " min-p " ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
static void llama_sampler_min_p_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_min_p * ) smpl - > ctx ;
if ( ctx - > p < = 0.0f | | ! cur_p - > size ) {
2024-08-08 11:16:50 +00:00
return ;
}
bool min_p_applied = false ;
2024-09-24 10:22:55 +00:00
// if the cur_p aren't sorted, try the unsorted implementation first
if ( ! cur_p - > sorted ) {
2024-08-08 11:16:50 +00:00
std : : vector < llama_token_data > filtered_tokens ;
float max_logit = - FLT_MAX ;
2024-09-24 10:22:55 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
max_logit = std : : max ( max_logit , cur_p - > data [ i ] . logit ) ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
const float min_logit = max_logit + logf ( ctx - > p ) ; // min logit for p_i >= p * p_max
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
if ( cur_p - > data [ i ] . logit > = min_logit ) {
filtered_tokens . push_back ( cur_p - > data [ i ] ) ;
2024-08-08 11:16:50 +00:00
}
}
// if we have enough values the operation was a success
2024-09-24 10:22:55 +00:00
if ( filtered_tokens . size ( ) > = ctx - > min_keep ) {
memcpy ( cur_p - > data , filtered_tokens . data ( ) , filtered_tokens . size ( ) * sizeof ( llama_token_data ) ) ;
cur_p - > size = filtered_tokens . size ( ) ;
2024-08-08 11:16:50 +00:00
min_p_applied = true ;
}
}
2024-09-24 10:22:55 +00:00
// if the cur_p are sorted or the unsorted implementation failed, use this implementation
2024-08-08 11:16:50 +00:00
if ( ! min_p_applied ) {
// Sort the logits in descending order
2024-09-24 10:22:55 +00:00
if ( ! cur_p - > sorted ) {
std : : sort ( cur_p - > data , cur_p - > data + cur_p - > size , [ ] ( const llama_token_data & a , const llama_token_data & b ) {
2024-08-08 11:16:50 +00:00
return a . logit > b . logit ;
} ) ;
2024-09-24 10:22:55 +00:00
cur_p - > sorted = true ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
const float min_logit = cur_p - > data [ 0 ] . logit + logf ( ctx - > p ) ; // min logit for p_i >= p * p_max
2024-08-08 11:16:50 +00:00
size_t i = 1 ; // first token always matches
2024-09-24 10:22:55 +00:00
for ( ; i < cur_p - > size ; + + i ) {
if ( cur_p - > data [ i ] . logit < min_logit & & i > = ctx - > min_keep ) {
2024-08-08 11:16:50 +00:00
break ; // prob too small
}
}
// Resize the output vector to keep only the matching tokens
2024-09-24 10:22:55 +00:00
cur_p - > size = i ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler * llama_sampler_min_p_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_min_p * ) smpl - > ctx ;
return llama_sampler_init_min_p ( ctx - > p , ctx - > min_keep ) ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
static void llama_sampler_min_p_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_min_p * ) smpl - > ctx ;
}
static struct llama_sampler_i llama_sampler_min_p_i = {
/* .name = */ llama_sampler_min_p_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_min_p_apply ,
/* .reset = */ nullptr ,
/* .clone = */ llama_sampler_min_p_clone ,
/* .free = */ llama_sampler_min_p_free ,
} ;
struct llama_sampler * llama_sampler_init_min_p ( float p , size_t min_keep ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_min_p_i ,
/* .ctx = */ new llama_sampler_min_p {
/* .p = */ p ,
/* .min_keep = */ min_keep ,
} ,
} ;
}
// typical
struct llama_sampler_typical {
const float p ;
const size_t min_keep ;
} ;
static const char * llama_sampler_typical_name ( const struct llama_sampler * /*smpl*/ ) {
return " typical " ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
static void llama_sampler_typical_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_typical * ) smpl - > ctx ;
2024-08-08 11:16:50 +00:00
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
2024-09-24 10:22:55 +00:00
if ( ctx - > p > = 1.0f ) {
2024-08-08 11:16:50 +00:00
return ;
}
// Compute the softmax of logits and calculate entropy
2024-09-24 10:22:55 +00:00
llama_sampler_softmax_impl ( cur_p ) ;
2024-08-08 11:16:50 +00:00
float entropy = 0.0f ;
2024-09-24 10:22:55 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
entropy + = - cur_p - > data [ i ] . p * logf ( cur_p - > data [ i ] . p ) ;
2024-08-08 11:16:50 +00:00
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std : : vector < float > shifted_scores ;
2024-09-24 10:22:55 +00:00
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
float shifted_score = fabsf ( - logf ( cur_p - > data [ i ] . p ) - entropy ) ;
2024-08-08 11:16:50 +00:00
shifted_scores . push_back ( shifted_score ) ;
}
// Sort tokens based on the shifted_scores and their corresponding indices
2024-09-24 10:22:55 +00:00
std : : vector < size_t > indices ( cur_p - > size ) ;
2024-08-08 11:16:50 +00:00
std : : iota ( indices . begin ( ) , indices . end ( ) , 0 ) ;
std : : sort ( indices . begin ( ) , indices . end ( ) , [ & ] ( size_t a , size_t b ) {
return shifted_scores [ a ] < shifted_scores [ b ] ;
} ) ;
// Compute the cumulative probabilities
float cum_sum = 0.0f ;
size_t last_idx = indices . size ( ) ;
for ( size_t i = 0 ; i < indices . size ( ) ; + + i ) {
size_t idx = indices [ i ] ;
2024-09-24 10:22:55 +00:00
cum_sum + = cur_p - > data [ idx ] . p ;
2024-08-08 11:16:50 +00:00
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
2024-09-24 10:22:55 +00:00
if ( cum_sum > ctx - > p & & i > = ctx - > min_keep - 1 ) {
2024-08-08 11:16:50 +00:00
last_idx = i + 1 ;
break ;
}
}
// Resize the output vector to keep only the locally typical tokens
2024-09-24 10:22:55 +00:00
std : : vector < llama_token_data > cur_p_new ;
2024-08-08 11:16:50 +00:00
for ( size_t i = 0 ; i < last_idx ; + + i ) {
size_t idx = indices [ i ] ;
2024-09-24 10:22:55 +00:00
cur_p_new . push_back ( cur_p - > data [ idx ] ) ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
// Replace the data in cur_p with the cur_p_new data
std : : copy ( cur_p_new . begin ( ) , cur_p_new . end ( ) , cur_p - > data ) ;
cur_p - > size = cur_p_new . size ( ) ;
cur_p - > sorted = false ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler * llama_sampler_typical_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_typical * ) smpl - > ctx ;
return llama_sampler_init_typical ( ctx - > p , ctx - > min_keep ) ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
static void llama_sampler_typical_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_typical * ) smpl - > ctx ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler_i llama_sampler_typical_i = {
/* .name = */ llama_sampler_typical_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_typical_apply ,
/* .reset = */ nullptr ,
/* .clone = */ llama_sampler_typical_clone ,
/* .free = */ llama_sampler_typical_free ,
} ;
struct llama_sampler * llama_sampler_init_typical ( float p , size_t min_keep ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_typical_i ,
/* .ctx = */ new llama_sampler_typical {
/* .p = */ p ,
/* .min_keep = */ min_keep ,
} ,
} ;
}
// temp
struct llama_sampler_temp {
const float temp ;
} ;
static const char * llama_sampler_temp_name ( const struct llama_sampler * /*smpl*/ ) {
return " temp " ;
}
static void llama_sampler_temp_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_temp * ) smpl - > ctx ;
2024-10-31 20:29:22 +00:00
llama_sampler_temp_impl ( cur_p , ctx - > temp ) ;
2024-09-24 10:22:55 +00:00
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler * llama_sampler_temp_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_temp * ) smpl - > ctx ;
return llama_sampler_init_temp ( ctx - > temp ) ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static void llama_sampler_temp_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_temp * ) smpl - > ctx ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler_i llama_sampler_temp_i = {
/* .name = */ llama_sampler_temp_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_temp_apply ,
/* .reset = */ nullptr ,
/* .clone = */ llama_sampler_temp_clone ,
/* .free = */ llama_sampler_temp_free ,
} ;
struct llama_sampler * llama_sampler_init_temp ( float temp ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_temp_i ,
/* .ctx = */ new llama_sampler_temp {
/*.temp = */ temp ,
} ,
} ;
}
// temp-ext
struct llama_sampler_temp_ext {
const float temp ;
const float delta ;
const float exponent ;
} ;
static const char * llama_sampler_temp_ext_name ( const struct llama_sampler * /*smpl*/ ) {
return " temp-ext " ;
}
static void llama_sampler_temp_ext_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
const auto * ctx = ( llama_sampler_temp_ext * ) smpl - > ctx ;
if ( ctx - > delta > 0 ) {
const float min_temp = std : : max ( 0.0f , ctx - > temp - ctx - > delta ) ;
const float max_temp = ctx - > temp + ctx - > delta ;
2024-10-31 20:29:22 +00:00
2024-09-24 10:22:55 +00:00
float exponent_val = ctx - > exponent ;
// no need to do anything if there is only one (or zero) candidates
if ( cur_p - > size < = 1 ) {
return ;
}
// Calculate maximum possible entropy
float max_entropy = - logf ( 1.0f / cur_p - > size ) ;
llama_sampler_softmax_impl ( cur_p ) ;
// Calculate entropy of the softmax probabilities
float entropy = 0.0f ;
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
float prob = cur_p - > data [ i ] . p ;
if ( prob > 0.0f ) { // Ensure no log(0)
entropy - = prob * logf ( prob ) ;
}
}
// Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above)
float normalized_entropy = entropy / max_entropy ;
// Map the normalized entropy to the desired temperature range using the power function
float dyn_temp = min_temp + ( max_temp - min_temp ) * powf ( normalized_entropy , exponent_val ) ;
# ifdef DEBUG
LLAMA_LOG_INFO ( " Your text maxtemp value is: %f \n " , max_temp ) ;
LLAMA_LOG_INFO ( " Entropy: %f \n " , entropy ) ;
LLAMA_LOG_INFO ( " Max Possible Entropy: %f \n " , max_entropy ) ;
LLAMA_LOG_INFO ( " Normalized Entropy: %f \n " , normalized_entropy ) ;
LLAMA_LOG_INFO ( " Exponent: %f \n " , exponent_val ) ;
LLAMA_LOG_INFO ( " Dynamic Temperature (dyn_temp): %f \n " , dyn_temp ) ;
# endif
// Apply the dynamically calculated temperature scaling
2024-10-31 20:29:22 +00:00
llama_sampler_temp_impl ( cur_p , dyn_temp ) ;
2024-09-24 10:22:55 +00:00
// Re-compute softmax probabilities after scaling logits with dynamic temperature
const double max_l_double = cur_p - > data [ 0 ] . logit ;
double cum_sum_double = 0.0 ;
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
double p = exp ( cur_p - > data [ i ] . logit - max_l_double ) ;
cur_p - > data [ i ] . p = p ; // Store the scaled probability
cum_sum_double + = p ;
}
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cur_p - > data [ i ] . p / = cum_sum_double ; // Re-normalize the probabilities
}
# ifdef DEBUG
// Print the updated top 25 probabilities after temperature scaling
LLAMA_LOG_INFO ( " \n Updated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages): \n " ) ;
for ( size_t i = 0 ; i < 25 & & i < cur_p - > size ; + + i ) {
LLAMA_LOG_INFO ( " Token %zu: %f%% \n " , i + 1 , cur_p - > data [ i ] . p * 100.0f ) ;
}
# endif
} else {
2024-10-31 20:29:22 +00:00
llama_sampler_temp_impl ( cur_p , ctx - > temp ) ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler * llama_sampler_temp_ext_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_temp_ext * ) smpl - > ctx ;
return llama_sampler_init_temp_ext ( ctx - > temp , ctx - > delta , ctx - > exponent ) ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static void llama_sampler_temp_ext_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_temp_ext * ) smpl - > ctx ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler_i llama_sampler_temp_ext_i = {
/* .name = */ llama_sampler_temp_ext_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_temp_ext_apply ,
/* .reset = */ nullptr ,
/* .clone = */ llama_sampler_temp_ext_clone ,
/* .free = */ llama_sampler_temp_ext_free ,
} ;
struct llama_sampler * llama_sampler_init_temp_ext ( float temp , float delta , float exponent ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_temp_ext_i ,
/* .ctx = */ new llama_sampler_temp_ext {
/* .temp = */ temp ,
/* .delta = */ delta ,
/* .exponent = */ exponent ,
} ,
} ;
}
2024-10-31 20:29:22 +00:00
// xtc
struct llama_sampler_xtc {
const float probability ;
const float threshold ;
const size_t min_keep ;
const uint32_t seed ;
uint32_t seed_cur ;
std : : mt19937 rng ;
} ;
static const char * llama_sampler_xtc_name ( const struct llama_sampler * /*smpl*/ ) {
return " xtc " ;
}
static void llama_sample_xtc_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_xtc * ) smpl - > ctx ;
if ( ctx - > probability < = 0.0f
| | ctx - > threshold > 0.5f
| | cur_p - > size < 2 ) {
return ;
}
std : : uniform_real_distribution < float > distribution ( 0.0f , 1.0f ) ;
float chance = distribution ( ctx - > rng ) ;
if ( chance > ctx - > probability ) return ;
// in case it's not sorted/recalculated yet
llama_sampler_softmax_impl ( cur_p ) ;
int pos_last = 0 ;
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
if ( cur_p - > data [ i ] . p > = ctx - > threshold ) {
pos_last = i ;
} else break ;
}
if ( cur_p - > size - pos_last > = ctx - > min_keep & & pos_last > 0 ) {
cur_p - > data + = pos_last ;
cur_p - > size - = pos_last ;
}
}
static struct llama_sampler * llama_sampler_xtc_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_xtc * ) smpl - > ctx ;
auto * result = llama_sampler_init_xtc ( ctx - > probability , ctx - > threshold , ctx - > min_keep , ctx - > seed ) ;
// copy the state
{
auto * result_ctx = ( llama_sampler_xtc * ) result - > ctx ;
result_ctx - > rng = ctx - > rng ;
}
return result ;
}
static void llama_sampler_xtc_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_xtc * ) smpl - > ctx ;
}
static void llama_sampler_xtc_reset ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_xtc * ) smpl - > ctx ;
ctx - > seed_cur = get_rng_seed ( ctx - > seed ) ;
ctx - > rng . seed ( ctx - > seed_cur ) ;
}
static struct llama_sampler_i llama_sampler_xtc_i = {
/* .name = */ llama_sampler_xtc_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sample_xtc_apply ,
/* .reset = */ llama_sampler_xtc_reset ,
/* .clone = */ llama_sampler_xtc_clone ,
/* .free = */ llama_sampler_xtc_free ,
} ;
struct llama_sampler * llama_sampler_init_xtc ( float p , float t , size_t min_keep , uint32_t seed ) {
auto seed_cur = get_rng_seed ( seed ) ;
return new llama_sampler {
/* .iface = */ & llama_sampler_xtc_i ,
/* .ctx = */ new llama_sampler_xtc {
/* .probability = */ p ,
/* .threshold = */ t ,
/* .min_keep = */ min_keep ,
/* .seed = */ seed ,
/* .seed_cur = */ seed_cur ,
/* .rng = */ std : : mt19937 ( seed_cur ) ,
} ,
} ;
}
2024-09-24 10:22:55 +00:00
// mirostat
struct llama_sampler_mirostat {
const int32_t n_vocab ;
const uint32_t seed ;
uint32_t seed_cur ;
const float tau ;
const float eta ;
const int32_t m ;
float mu ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
std : : mt19937 rng ;
} ;
static const char * llama_sampler_mirostat_name ( const struct llama_sampler * /*smpl*/ ) {
return " mirostat " ;
}
static void llama_sampler_mirostat_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_mirostat * ) smpl - > ctx ;
llama_sampler_softmax_impl ( cur_p ) ;
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0 ;
float sum_ti_bi = 0.0 ;
float sum_ti_sq = 0.0 ;
for ( size_t i = 0 ; i < size_t ( ctx - > m - 1 ) & & i < cur_p - > size - 1 ; + + i ) {
float t_i = logf ( float ( i + 2 ) / float ( i + 1 ) ) ;
float b_i = logf ( cur_p - > data [ i ] . p / cur_p - > data [ i + 1 ] . p ) ;
sum_ti_bi + = t_i * b_i ;
sum_ti_sq + = t_i * t_i ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
s_hat = sum_ti_bi / sum_ti_sq ;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1 ;
float k = powf ( ( epsilon_hat * powf ( 2 , ctx - > mu ) ) / ( 1 - powf ( ctx - > n_vocab , - epsilon_hat ) ) , 1 / s_hat ) ;
llama_sampler_top_k_impl ( cur_p , std : : max ( int ( k ) , 1 ) ) ;
llama_sampler_softmax_impl ( cur_p ) ;
const int idx = llama_sample_dist ( cur_p , ctx - > rng ) ;
cur_p - > selected = idx ;
float observed_surprise = - log2f ( cur_p - > data [ idx ] . p ) ;
float e = observed_surprise - ctx - > tau ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
// Update mu using the learning rate and error
ctx - > mu = ctx - > mu - ctx - > eta * e ;
}
static struct llama_sampler * llama_sampler_mirostat_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_mirostat * ) smpl - > ctx ;
auto * result = llama_sampler_init_mirostat ( ctx - > n_vocab , ctx - > seed , ctx - > tau , ctx - > eta , ctx - > m ) ;
// copy the state
{
auto * result_ctx = ( llama_sampler_mirostat * ) smpl - > ctx ;
result_ctx - > mu = ctx - > mu ;
result_ctx - > rng = ctx - > rng ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
return result ;
}
static void llama_sampler_mirostat_reset ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_mirostat * ) smpl - > ctx ;
ctx - > mu = 2.0f * ctx - > tau ;
ctx - > seed_cur = get_rng_seed ( ctx - > seed ) ;
ctx - > rng . seed ( ctx - > seed_cur ) ;
}
static void llama_sampler_mirostat_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_mirostat * ) smpl - > ctx ;
}
static struct llama_sampler_i llama_sampler_mirostat_i = {
/* .name = */ llama_sampler_mirostat_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_mirostat_apply ,
/* .reset = */ llama_sampler_mirostat_reset ,
/* .clone = */ llama_sampler_mirostat_clone ,
/* .free = */ llama_sampler_mirostat_free ,
} ;
struct llama_sampler * llama_sampler_init_mirostat ( int32_t n_vocab , uint32_t seed , float tau , float eta , int32_t m ) {
auto seed_cur = get_rng_seed ( seed ) ;
return new llama_sampler {
/* .iface = */ & llama_sampler_mirostat_i ,
/* .ctx = */ new llama_sampler_mirostat {
/* .n_vocab = */ n_vocab ,
/* .seed = */ seed ,
/* .seed_cur = */ seed_cur ,
/* .tau = */ tau ,
/* .eta = */ eta ,
/* .m = */ m ,
/* .mu = */ 2.0f * tau ,
/* .rng = */ std : : mt19937 ( seed_cur ) ,
} ,
} ;
}
// mirostat v2
struct llama_sampler_mirostat_v2 {
const uint32_t seed ;
uint32_t seed_cur ;
const float tau ;
const float eta ;
float mu ;
std : : mt19937 rng ;
} ;
static const char * llama_sampler_mirostat_v2_name ( const struct llama_sampler * /*smpl*/ ) {
return " mirostat-v2 " ;
}
static void llama_sampler_mirostat_v2_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_mirostat_v2 * ) smpl - > ctx ;
llama_sampler_softmax_impl ( cur_p ) ;
// Truncate the words with surprise values greater than mu
cur_p - > size = std : : distance ( cur_p - > data , std : : find_if ( cur_p - > data , cur_p - > data + cur_p - > size , [ & ] ( const llama_token_data & candidate ) {
return - log2f ( candidate . p ) > ctx - > mu ;
} ) ) ;
if ( cur_p - > size = = 0 ) {
cur_p - > size = 1 ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
// Normalize the probabilities of the remaining words
llama_sampler_softmax_impl ( cur_p ) ;
const int idx = llama_sample_dist ( cur_p , ctx - > rng ) ;
cur_p - > selected = idx ;
float observed_surprise = - log2f ( cur_p - > data [ idx ] . p ) ;
float e = observed_surprise - ctx - > tau ;
// Update mu using the learning rate and error
ctx - > mu = ctx - > mu - ctx - > eta * e ;
}
static void llama_sampler_mirostat_v2_reset ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_mirostat_v2 * ) smpl - > ctx ;
ctx - > mu = 2.0f * ctx - > tau ;
ctx - > seed_cur = get_rng_seed ( ctx - > seed ) ;
ctx - > rng . seed ( ctx - > seed_cur ) ;
}
static struct llama_sampler * llama_sampler_mirostat_v2_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_mirostat_v2 * ) smpl - > ctx ;
auto * result = llama_sampler_init_mirostat_v2 ( ctx - > seed , ctx - > tau , ctx - > eta ) ;
// copy the state
{
auto * result_ctx = ( llama_sampler_mirostat_v2 * ) result - > ctx ;
result_ctx - > mu = ctx - > mu ;
result_ctx - > rng = ctx - > rng ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
return result ;
}
static void llama_sampler_mirostat_v2_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_mirostat_v2 * ) smpl - > ctx ;
}
static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
/* .name = */ llama_sampler_mirostat_v2_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_mirostat_v2_apply ,
/* .reset = */ llama_sampler_mirostat_v2_reset ,
/* .clone = */ llama_sampler_mirostat_v2_clone ,
/* .free = */ llama_sampler_mirostat_v2_free ,
} ;
struct llama_sampler * llama_sampler_init_mirostat_v2 ( uint32_t seed , float tau , float eta ) {
auto seed_cur = get_rng_seed ( seed ) ;
return new llama_sampler {
/* .iface = */ & llama_sampler_mirostat_v2_i ,
/* .ctx = */ new llama_sampler_mirostat_v2 {
/* .seed = */ seed ,
/* .seed_cur = */ seed_cur ,
/* .tau = */ tau ,
/* .eta = */ eta ,
/* .mu = */ 2.0f * tau ,
/* .rng = */ std : : mt19937 ( seed_cur ) ,
} ,
} ;
}
// grammar
struct llama_sampler_grammar {
const struct llama_vocab * vocab ;
std : : string grammar_str ;
std : : string grammar_root ;
struct llama_grammar * grammar ;
} ;
static const char * llama_sampler_grammar_name ( const struct llama_sampler * /*smpl*/ ) {
return " grammar " ;
}
static void llama_sampler_grammar_accept_impl ( struct llama_sampler * smpl , llama_token token ) {
auto * ctx = ( llama_sampler_grammar * ) smpl - > ctx ;
if ( ctx - > grammar ) {
llama_grammar_accept_impl ( * ctx - > grammar , token ) ;
}
}
static void llama_sampler_grammar_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_grammar * ) smpl - > ctx ;
if ( ctx - > grammar ) {
llama_grammar_apply_impl ( * ctx - > grammar , cur_p ) ;
}
}
static void llama_sampler_grammar_reset ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_grammar * ) smpl - > ctx ;
if ( ! ctx - > grammar ) {
return ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
auto * grammar_new = llama_grammar_init_impl ( ctx - > grammar - > vocab , ctx - > grammar_str . c_str ( ) , ctx - > grammar_root . c_str ( ) ) ;
llama_grammar_free_impl ( ctx - > grammar ) ;
ctx - > grammar = grammar_new ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
static struct llama_sampler * llama_sampler_grammar_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_grammar * ) smpl - > ctx ;
auto * result = llama_sampler_init_grammar_impl ( * ctx - > vocab , nullptr , nullptr ) ;
// copy the state
{
auto * result_ctx = ( llama_sampler_grammar * ) result - > ctx ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
if ( ctx - > grammar ) {
result_ctx - > grammar_str = ctx - > grammar_str ;
result_ctx - > grammar_root = ctx - > grammar_root ;
result_ctx - > grammar = llama_grammar_clone_impl ( * ctx - > grammar ) ;
}
}
return result ;
}
static void llama_sampler_grammar_free ( struct llama_sampler * smpl ) {
const auto * ctx = ( llama_sampler_grammar * ) smpl - > ctx ;
if ( ctx - > grammar ) {
llama_grammar_free_impl ( ctx - > grammar ) ;
}
delete ctx ;
}
static struct llama_sampler_i llama_sampler_grammar_i = {
/* .name = */ llama_sampler_grammar_name ,
/* .accept = */ llama_sampler_grammar_accept_impl ,
/* .apply = */ llama_sampler_grammar_apply ,
/* .reset = */ llama_sampler_grammar_reset ,
/* .clone = */ llama_sampler_grammar_clone ,
/* .free = */ llama_sampler_grammar_free ,
} ;
struct llama_sampler * llama_sampler_init_grammar_impl ( const struct llama_vocab & vocab , const char * grammar_str , const char * grammar_root ) {
auto * ctx = new llama_sampler_grammar ;
if ( grammar_str ! = nullptr & & grammar_str [ 0 ] ! = ' \0 ' ) {
* ctx = {
/* .vocab = */ & vocab ,
/* .grammar_str = */ grammar_str ,
/* .grammar_root = */ grammar_root ,
/* .grammar = */ llama_grammar_init_impl ( & vocab , grammar_str , grammar_root ) ,
} ;
} else {
* ctx = {
/* .vocab = */ & vocab ,
/* .grammar_str = */ { } ,
/* .grammar_root = */ { } ,
/* .grammar = */ nullptr ,
} ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
return new llama_sampler {
/* .iface = */ & llama_sampler_grammar_i ,
/* .ctx = */ ctx ,
} ;
}
// penalties
struct llama_sampler_penalties {
const int32_t penalty_last_n ;
const float penalty_repeat ;
const float penalty_freq ;
const float penalty_present ;
ring_buffer < llama_token > prev ;
2024-12-17 19:19:28 +00:00
// a frequency map to count token occurrences
std : : unordered_map < llama_token , int > token_count ;
2024-09-24 10:22:55 +00:00
} ;
static const char * llama_sampler_penalties_name ( const struct llama_sampler * /*smpl*/ ) {
return " penalties " ;
}
static void llama_sampler_penalties_accept ( struct llama_sampler * smpl , llama_token token ) {
auto * ctx = ( llama_sampler_penalties * ) smpl - > ctx ;
if ( ctx - > penalty_last_n = = 0 ) {
return ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
2024-12-17 19:19:28 +00:00
ctx - > token_count [ token ] + + ;
2024-09-24 10:22:55 +00:00
2024-12-17 19:19:28 +00:00
// if the ring buffer is full, remove the oldest token
if ( ctx - > prev . size ( ) > = ( size_t ) ctx - > penalty_last_n ) {
const auto old = ctx - > prev . front ( ) ;
2024-09-24 10:22:55 +00:00
2024-12-17 19:19:28 +00:00
ctx - > token_count [ old ] - - ;
if ( ctx - > token_count [ old ] = = 0 ) {
ctx - > token_count . erase ( old ) ;
2024-09-24 10:22:55 +00:00
}
}
2024-12-17 19:19:28 +00:00
ctx - > prev . push_back ( token ) ;
2024-08-08 11:16:50 +00:00
2024-12-17 19:19:28 +00:00
#if 0
// sanity check
std : : unordered_map < llama_token , int > tmp ;
for ( int i = 0 ; i < std : : min < int > ( ctx - > penalty_last_n , ctx - > prev . size ( ) ) ; + + i ) {
tmp [ ctx - > prev . rat ( i ) ] + + ;
2024-09-24 10:22:55 +00:00
}
2024-08-08 11:16:50 +00:00
2024-12-17 19:19:28 +00:00
assert ( ctx - > token_count = = tmp ) ;
# endif
}
static void llama_sampler_penalties_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_penalties * ) smpl - > ctx ;
2024-09-24 10:22:55 +00:00
2024-12-17 19:19:28 +00:00
if ( ( ctx - > penalty_last_n = = 0 ) | |
( ctx - > penalty_repeat = = 1.0f & & ctx - > penalty_freq = = 0.0f & & ctx - > penalty_present = = 0.0f ) ) {
return ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
// Apply frequency and presence penalties to the cur_p
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
2024-12-17 19:19:28 +00:00
const auto token_iter = ctx - > token_count . find ( cur_p - > data [ i ] . id ) ;
if ( token_iter = = ctx - > token_count . end ( ) ) {
2024-08-08 11:16:50 +00:00
continue ;
}
const int count = token_iter - > second ;
2024-12-17 19:19:28 +00:00
assert ( count > 0 & & count < = ctx - > penalty_last_n ) ;
2024-08-08 11:16:50 +00:00
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
2024-09-24 10:22:55 +00:00
if ( cur_p - > data [ i ] . logit < = 0 ) {
cur_p - > data [ i ] . logit * = ctx - > penalty_repeat ;
2024-08-08 11:16:50 +00:00
} else {
2024-09-24 10:22:55 +00:00
cur_p - > data [ i ] . logit / = ctx - > penalty_repeat ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
cur_p - > data [ i ] . logit - = float ( count ) * ctx - > penalty_freq + float ( count > 0 ) * ctx - > penalty_present ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
cur_p - > sorted = false ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
static void llama_sampler_penalties_reset ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_penalties * ) smpl - > ctx ;
ctx - > prev . clear ( ) ;
2024-12-17 19:19:28 +00:00
ctx - > token_count . clear ( ) ;
2024-09-24 10:22:55 +00:00
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler * llama_sampler_penalties_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_penalties * ) smpl - > ctx ;
auto * result = llama_sampler_init_penalties (
ctx - > penalty_last_n ,
ctx - > penalty_repeat ,
ctx - > penalty_freq ,
2024-12-17 19:19:28 +00:00
ctx - > penalty_present ) ;
2024-09-24 10:22:55 +00:00
// copy the state
{
auto * result_ctx = ( llama_sampler_penalties * ) result - > ctx ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
result_ctx - > prev = ctx - > prev ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
return result ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
static void llama_sampler_penalties_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_penalties * ) smpl - > ctx ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler_i llama_sampler_penalties_i = {
/* .name = */ llama_sampler_penalties_name ,
/* .accept = */ llama_sampler_penalties_accept ,
/* .apply = */ llama_sampler_penalties_apply ,
/* .reset = */ llama_sampler_penalties_reset ,
/* .clone = */ llama_sampler_penalties_clone ,
/* .free = */ llama_sampler_penalties_free ,
} ;
struct llama_sampler * llama_sampler_init_penalties (
int32_t penalty_last_n ,
float penalty_repeat ,
float penalty_freq ,
2024-12-17 19:19:28 +00:00
float penalty_present ) {
2024-09-24 10:22:55 +00:00
penalty_last_n = std : : max ( penalty_last_n , 0 ) ;
return new llama_sampler {
/* .iface = */ & llama_sampler_penalties_i ,
/* .ctx = */ new llama_sampler_penalties {
/* .penalty_last_n = */ penalty_last_n ,
/* .penalty_repeat = */ penalty_repeat ,
/* .penalty_freq = */ penalty_freq ,
/* .penalty_present = */ penalty_present ,
/* .prev = */ ring_buffer < llama_token > ( penalty_last_n ) ,
2024-12-17 19:19:28 +00:00
/* .token_count = */ { } ,
2024-09-24 10:22:55 +00:00
} ,
} ;
}
2024-08-08 11:16:50 +00:00
2024-10-31 20:29:22 +00:00
// DRY
struct llama_sampler_dry {
int32_t total_context_size ;
const float dry_multiplier ;
const float dry_base ;
const int32_t dry_allowed_length ;
const int32_t dry_penalty_last_n ;
std : : unordered_multimap < llama_token , std : : vector < llama_token > > dry_processed_breakers ;
std : : vector < int > dry_repeat_count ;
std : : unordered_map < llama_token , int > dry_max_token_repeat ;
ring_buffer < llama_token > last_tokens ;
} ;
// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
static void get_overlapping_token_sequences ( const llama_vocab & vocab , const std : : string & str , std : : unordered_multimap < llama_token , std : : vector < llama_token > > & token_sequences , int max_tail_len = - 1 ) {
for ( llama_token token_id = 0 ; token_id < ( llama_token ) vocab . n_vocab ; token_id + + ) {
std : : string word = llama_detokenize ( vocab , { token_id } , true ) ;
if ( word . find ( str ) ! = std : : string : : npos ) {
token_sequences . emplace ( token_id , std : : vector < llama_token > ( ) ) ;
} else {
2024-12-17 19:19:28 +00:00
size_t word_len = word . size ( ) ;
size_t str_len = str . size ( ) ;
2024-10-31 20:29:22 +00:00
size_t pos = - 1 ;
while ( ( pos = word . find ( str [ 0 ] , pos + 1 ) ) ! = std : : string : : npos ) {
bool match = true ;
size_t i ;
for ( i = 1 ; i < str_len & & i + pos < word_len ; + + i ) {
if ( word [ pos + i ] ! = str [ i ] ) {
match = false ;
break ;
}
}
if ( match ) {
std : : vector < llama_token > tokenization = llama_tokenize_internal ( vocab , str . substr ( i ) , false , false ) ;
if ( max_tail_len > = 0 & & tokenization . size ( ) > ( size_t ) max_tail_len ) {
tokenization . resize ( max_tail_len ) ;
}
// Ensure we don't already have a duplicate matching tokenization
auto its = token_sequences . equal_range ( token_id ) ;
bool found = false ;
for ( auto it = its . first ; it ! = its . second ; + + it ) {
if ( tokenization = = it - > second ) {
found = true ;
break ;
}
}
if ( ! found ) {
token_sequences . emplace ( token_id , tokenization ) ;
}
}
}
}
}
}
static const char * llama_sampler_dry_name ( const struct llama_sampler * /*smpl*/ ) {
return " dry " ;
}
static void llama_sampler_dry_accept ( struct llama_sampler * smpl , llama_token token ) {
auto * ctx = ( llama_sampler_dry * ) smpl - > ctx ;
if ( ctx - > dry_multiplier = = 0.0f | | ctx - > dry_base < 1.0f | | ctx - > dry_penalty_last_n = = 0 ) {
return ;
}
ctx - > last_tokens . push_back ( token ) ;
}
// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
static void llama_sampler_dry_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_dry * ) smpl - > ctx ;
if ( ctx - > dry_multiplier = = 0.0f | | ctx - > dry_base < 1.0f | | ctx - > dry_penalty_last_n = = 0 ) {
return ;
}
int32_t effective_dry_penalty_last_n = ( ctx - > dry_penalty_last_n = = - 1 ) ? ctx - > total_context_size : std : : max ( ctx - > dry_penalty_last_n , 0 ) ;
int last_n_repeat = std : : min ( std : : min ( ( int ) ctx - > last_tokens . size ( ) , effective_dry_penalty_last_n ) , ctx - > total_context_size ) ;
if ( last_n_repeat < = ctx - > dry_allowed_length ) {
return ;
}
ctx - > dry_repeat_count . assign ( last_n_repeat , 0 ) ;
ctx - > dry_max_token_repeat . clear ( ) ;
// Step 1: Look for restart sequences to limit the maximum repetition length.
// Work backwards through the context looking for any token that begins a restart sequence.
//
// The collection `restart_sequences` is a mapping from a "head" token to all "tail"
// sequences that together comprise a restart sequence. This allows us to quickly check
// whether each token is the head of a complete sequence. Most restart sequences are actually
// a single token, and for these the "tail" is an empty vector.
//
// If the token is a "head", test all restart sequences that begin with this token
// (there will often only be one sequence for each token, but if sequences like 'aaaq1' and
// 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The
// longest matching sequence (if any) is used to limit the maximum repetition length.
//
// Note that in the case case of a short sequence contained in a longer one, this might fail to
// find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as
// restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress
// 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare.
//
// This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we
// have already clamped the maximum tail sequence length when generating `restart_sequences`.
// With clamping, this scan is O(N) in the context length.
int rep_limit = last_n_repeat ;
for ( int i = 0 ; i < last_n_repeat ; + + i ) {
llama_token token = ctx - > last_tokens . rat ( i ) ;
auto its = ctx - > dry_processed_breakers . equal_range ( token ) ;
if ( its . first = = ctx - > dry_processed_breakers . end ( ) ) {
continue ;
}
int longest_match = - 1 ;
for ( auto it = its . first ; it ! = its . second ; + + it ) {
// Note that (*it) does not contain the head character, so seq_len will be
// the restart sequence length minus 1.
// In the common case of a single-token restart sequence, (*it) will be empty
// and we will trivially match.
int seq_len = ( int ) it - > second . size ( ) ;
if ( seq_len > longest_match & & seq_len < = ( int ) i ) {
bool match = true ;
for ( int offset = 0 ; offset < seq_len ; + + offset ) {
// The -1 when indexing `last_tokens` is because we already matched the head.
if ( it - > second [ offset ] ! = ctx - > last_tokens . rat ( i - offset - 1 ) ) {
match = false ;
break ;
}
}
if ( match ) {
longest_match = seq_len ;
}
}
}
if ( longest_match > = 0 ) {
// We found a restart sequence starting `i` tokens from the end and continuing for
// `longest_match` tokens.
rep_limit = i - longest_match ;
break ;
}
}
if ( rep_limit < ctx - > dry_allowed_length ) {
return ;
}
// Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in
// the reverse direction) to efficiently compute the positions and lengths of suffixes appearing
// elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences.
//
// This algorithm is not currently documented on Wikipedia, but there is a clear description here:
// https://ivanyu.me/blog/2014/10/15/z-algorithm/
//
// The code below is adapted from the public domain implementation by the same author here:
// https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py
//
// Example:
// Last N tokens: a b c c b c y a b c
// Repeat counts: 0 0 3 1 0 2 0 0 0 0
// ^
// This `3` means that the last three tokens of the context (a b c) also appear here.
//
// This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested
// for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each
// repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables
// ensure that the inner while loops only examine each token in the context once as the outer
// for loop iterates over the context.
{
const int last = last_n_repeat - 1 ;
int rt = 0 , lt = 0 ;
for ( int k = 1 ; k < last_n_repeat ; + + k ) {
if ( k > rt ) {
// If k is outside the current Z-box, do naive computation.
int n = 0 ;
while ( n + k < last_n_repeat & & ctx - > last_tokens . rat ( n ) = = ctx - > last_tokens . rat ( n + k ) ) {
+ + n ;
}
ctx - > dry_repeat_count [ last - k ] = std : : min ( n , rep_limit ) ;
if ( n > 0 ) {
lt = k ;
rt = k + n - 1 ;
}
} else {
// If k is inside the current Z-box, consider two cases.
int p = k - lt ; // Pair index.
int right_part_len = rt - k + 1 ;
if ( ctx - > dry_repeat_count [ last - p ] < right_part_len ) {
int n = std : : min ( ctx - > dry_repeat_count [ last - p ] , rep_limit ) ;
ctx - > dry_repeat_count [ last - k ] = n ;
} else {
int i = rt + 1 ;
while ( i < last_n_repeat & & ctx - > last_tokens . rat ( i ) = = ctx - > last_tokens . rat ( i - k ) ) {
i + = 1 ;
}
int n = std : : min ( i - k , rep_limit ) ;
ctx - > dry_repeat_count [ last - k ] = n ;
lt = k ;
rt = i - 1 ;
}
}
}
}
// Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length
// that would be generated by emitting each new token that would extend a sequence.
//
// Following the same example as above:
// Last N tokens: a b c c b c y a b c
// Repeat counts: 0 0 3 1 0 2 0 0 0 0
//
// For each non-zero, look ahead one token. This token, if emitted, would extend the repetition.
// c: 3 -> 4 (from `a b c` to `a b c c`)
// b: 1 -> 2 (from `c` to `c b`)
// y: 2 -> 3 (from `b c` to `b c y`)
for ( int i = 0 ; i < last_n_repeat - 1 ; + + i ) {
int repeat_len = ctx - > dry_repeat_count [ i ] ;
if ( repeat_len > = ctx - > dry_allowed_length ) {
// This token ends a repeat, so the next token would continue one.
// By convention, the value of `repeat_len` only includes the tokens currently
// in the context, not the new token that would be added.
llama_token token = ctx - > last_tokens . rat ( last_n_repeat - 2 - i ) ;
// Track the maximum sequence ending in this token.
const auto & it = ctx - > dry_max_token_repeat . find ( token ) ;
if ( it = = ctx - > dry_max_token_repeat . end ( ) | | it - > second < repeat_len ) {
ctx - > dry_max_token_repeat [ token ] = repeat_len ;
}
}
}
// Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens.
// Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`.
// Compute it from `penalty_base` and the approximate log of `std::numeric_limits<float>::max()`
const float FLOAT_MAX_LOG = 88.7228391f ;
int max_exponent = 0 ;
if ( ctx - > dry_base > 1.000001f ) {
max_exponent = FLOAT_MAX_LOG / std : : log ( ctx - > dry_base ) ;
}
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
const auto & af_kvp = ctx - > dry_max_token_repeat . find ( cur_p - > data [ i ] . id ) ;
if ( af_kvp ! = ctx - > dry_max_token_repeat . end ( ) ) {
// Check all sequence breakers starting with this token
auto range = ctx - > dry_processed_breakers . equal_range ( cur_p - > data [ i ] . id ) ;
bool is_single_token_breaker = false ;
for ( auto it = range . first ; it ! = range . second ; + + it ) {
if ( it - > second . empty ( ) ) {
is_single_token_breaker = true ;
break ;
}
}
// Apply penalty only if it's not a single-token sequence breaker
if ( ! is_single_token_breaker ) {
int repeat_exp = af_kvp - > second - ctx - > dry_allowed_length ;
if ( max_exponent > 0 & & repeat_exp > max_exponent ) {
repeat_exp = max_exponent ;
}
float penalty = ctx - > dry_multiplier * std : : pow ( ctx - > dry_base , repeat_exp ) ;
cur_p - > data [ i ] . logit - = penalty ;
}
}
}
cur_p - > sorted = false ;
}
static void llama_sampler_dry_reset ( struct llama_sampler * smpl ) {
auto * ctx = ( llama_sampler_dry * ) smpl - > ctx ;
ctx - > last_tokens . clear ( ) ;
ctx - > dry_repeat_count . clear ( ) ;
ctx - > dry_max_token_repeat . clear ( ) ;
}
static struct llama_sampler * llama_sampler_dry_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( llama_sampler_dry * ) smpl - > ctx ;
2024-11-15 06:41:06 +00:00
llama_vocab dummy_vocab ;
// dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
auto * result = llama_sampler_init_dry_impl ( dummy_vocab , ctx - > total_context_size , ctx - > dry_multiplier , ctx - > dry_base , ctx - > dry_allowed_length , ctx - > dry_penalty_last_n , NULL , 0 ) ;
2024-10-31 20:29:22 +00:00
// Copy the state, including the processed breakers
{
auto * result_ctx = ( llama_sampler_dry * ) result - > ctx ;
result_ctx - > dry_processed_breakers = ctx - > dry_processed_breakers ;
result_ctx - > dry_repeat_count = ctx - > dry_repeat_count ;
result_ctx - > dry_max_token_repeat = ctx - > dry_max_token_repeat ;
result_ctx - > last_tokens = ctx - > last_tokens ;
}
return result ;
}
static void llama_sampler_dry_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_dry * ) smpl - > ctx ;
}
static struct llama_sampler_i llama_sampler_dry_i = {
/* .name = */ llama_sampler_dry_name ,
/* .accept = */ llama_sampler_dry_accept ,
/* .apply = */ llama_sampler_dry_apply ,
/* .reset = */ llama_sampler_dry_reset ,
/* .clone = */ llama_sampler_dry_clone ,
/* .free = */ llama_sampler_dry_free ,
} ;
struct llama_sampler * llama_sampler_init_dry_impl ( const struct llama_vocab & vocab , int32_t context_size , float dry_multiplier , float dry_base , int32_t dry_allowed_length , int32_t dry_penalty_last_n , const char * * seq_breakers , size_t num_breakers ) {
int32_t effective_dry_penalty_last_n = ( dry_penalty_last_n = = - 1 ) ? context_size : std : : max ( dry_penalty_last_n , 0 ) ;
std : : unordered_multimap < llama_token , std : : vector < llama_token > > processed_breakers ;
const int MAX_CHAR_LEN = 40 ;
const int MAX_SEQ_LEN = 20 ;
const bool dry_enabled = ( dry_multiplier ! = 0.0f & & dry_base > = 1.0f & & dry_penalty_last_n ! = 0 ) ;
if ( dry_enabled & & seq_breakers ! = nullptr & & num_breakers > 0 ) {
// Process sequence breakers
for ( size_t i = 0 ; i < num_breakers ; + + i ) {
if ( seq_breakers [ i ] = = nullptr | | std : : strlen ( seq_breakers [ i ] ) = = 0 ) {
LLAMA_LOG_WARN ( " skipping null or empty DRY sequence breaker at index %zu \n " , i ) ;
continue ;
}
std : : string sequence_break ( seq_breakers [ i ] ) ;
if ( sequence_break . empty ( ) ) {
LLAMA_LOG_WARN ( " skipping empty DRY sequence breaker \n " ) ;
continue ;
}
if ( sequence_break . size ( ) > MAX_CHAR_LEN ) {
LLAMA_LOG_WARN ( " truncating DRY sequence breaker to %d characters \n " , MAX_CHAR_LEN ) ;
sequence_break . resize ( MAX_CHAR_LEN ) ;
}
get_overlapping_token_sequences ( vocab , sequence_break , processed_breakers , MAX_SEQ_LEN ) ;
}
}
return new llama_sampler {
/* .iface = */ & llama_sampler_dry_i ,
/* .ctx = */ new llama_sampler_dry {
/* .total_context_size = */ context_size ,
/* .dry_multiplier = */ dry_multiplier ,
/* .dry_base = */ dry_base ,
/* .dry_allowed_length = */ dry_allowed_length ,
/* .dry_penalty_last_n = */ dry_penalty_last_n ,
/* .dry_processed_breakers = */ std : : move ( processed_breakers ) ,
/* .dry_repeat_count = */ dry_enabled ? std : : vector < int > ( effective_dry_penalty_last_n , 0 ) : std : : vector < int > { } ,
/* .dry_max_token_repeat = */ { } ,
/* .last_tokens = */ dry_enabled ? ring_buffer < llama_token > ( effective_dry_penalty_last_n ) : ring_buffer < llama_token > ( 0 ) ,
} ,
} ;
}
// wrapper for test-sampling.cpp
struct llama_sampler * llama_sampler_init_dry_testing ( int32_t context_size , float dry_multiplier , float dry_base , int32_t dry_allowed_length , int32_t dry_penalty_last_n , const std : : vector < std : : vector < llama_token > > & seq_breakers ) {
llama_vocab dummy_vocab ;
auto * result = llama_sampler_init_dry_impl ( dummy_vocab , context_size , dry_multiplier , dry_base , dry_allowed_length , dry_penalty_last_n , NULL , 0 ) ;
auto * ctx = ( llama_sampler_dry * ) result - > ctx ;
// Process the token-based sequence breakers
ctx - > dry_processed_breakers . clear ( ) ;
if ( seq_breakers . empty ( ) ) {
LLAMA_LOG_WARN ( " empty DRY sequence breakers list in llama_sampler_init_dry_testing \n " ) ;
} else {
for ( const auto & breaker : seq_breakers ) {
if ( breaker . empty ( ) ) {
LLAMA_LOG_WARN ( " skipping DRY empty sequence breaker \n " ) ;
continue ;
}
llama_token head_token = breaker [ 0 ] ;
std : : vector < llama_token > tail_tokens ( breaker . begin ( ) + 1 , breaker . end ( ) ) ;
ctx - > dry_processed_breakers . emplace ( head_token , std : : move ( tail_tokens ) ) ;
}
if ( ctx - > dry_processed_breakers . empty ( ) ) {
LLAMA_LOG_WARN ( " no valid DRY sequence breakers processed in llama_sampler_init_dry_testing \n " ) ;
}
}
return result ;
}
2024-09-24 10:22:55 +00:00
// logit-bias
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
struct llama_sampler_logit_bias {
const int32_t n_vocab ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
const std : : vector < llama_logit_bias > logit_bias ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
std : : vector < llama_logit_bias > to_search ;
} ;
static const char * llama_sampler_logit_bias_name ( const struct llama_sampler * /*smpl*/ ) {
return " logit-bias " ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
static void llama_sampler_logit_bias_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_logit_bias * ) smpl - > ctx ;
if ( ctx - > logit_bias . empty ( ) ) {
return ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
ctx - > to_search . clear ( ) ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
// update the candidates that have not been shuffled in the vocabulary (i.e. idx == id)
for ( const auto & lb : ctx - > logit_bias ) {
if ( lb . token > = 0 & & cur_p - > size > ( size_t ) lb . token & & cur_p - > data [ lb . token ] . id = = lb . token ) {
cur_p - > data [ lb . token ] . logit + = lb . bias ;
} else {
ctx - > to_search . push_back ( lb ) ;
}
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
if ( ctx - > to_search . empty ( ) ) {
return ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
// search for the remaining candidates that were not found in the previous step
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
for ( const auto & lb : ctx - > to_search ) {
if ( cur_p - > data [ i ] . id = = lb . token ) {
cur_p - > data [ i ] . logit + = lb . bias ;
break ;
}
}
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler * llama_sampler_logit_bias_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_logit_bias * ) smpl - > ctx ;
return llama_sampler_init_logit_bias ( ctx - > n_vocab , ctx - > logit_bias . size ( ) , ctx - > logit_bias . data ( ) ) ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static void llama_sampler_logit_bias_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_logit_bias * ) smpl - > ctx ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
static struct llama_sampler_i llama_sampler_logit_bias_i = {
/* .name = */ llama_sampler_logit_bias_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_logit_bias_apply ,
/* .reset = */ nullptr ,
/* .clone = */ llama_sampler_logit_bias_clone ,
/* .free = */ llama_sampler_logit_bias_free ,
} ;
struct llama_sampler * llama_sampler_init_logit_bias (
int32_t n_vocab ,
int32_t n_logit_bias ,
const llama_logit_bias * logit_bias ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_logit_bias_i ,
/* .ctx = */ new llama_sampler_logit_bias {
/* .n_vocab = */ n_vocab ,
/* .logit_bias = */ std : : vector < llama_logit_bias > ( logit_bias , logit_bias + n_logit_bias ) ,
/* .to_search = */ { } ,
} ,
} ;
}
2024-08-08 11:16:50 +00:00
2024-10-31 20:29:22 +00:00
// infill
//#define GGML_DEBUG_SAMPLER_INFILL
struct llama_sampler_infill {
const struct llama_vocab * vocab ;
std : : vector < char > buf0 ;
std : : vector < char > buf1 ;
} ;
static const char * llama_sampler_infill_name ( const struct llama_sampler * /*smpl*/ ) {
return " infill " ;
}
static void llama_sampler_infill_apply ( struct llama_sampler * smpl , llama_token_data_array * cur_p ) {
auto * ctx = ( llama_sampler_infill * ) smpl - > ctx ;
llama_sampler_softmax_impl ( cur_p ) ;
# if defined(GGML_DEBUG_SAMPLER_INFILL)
# define LOG_DBG_CUR LLAMA_LOG_DEBUG
# else
# define LOG_DBG_CUR(...)
# endif
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
LOG_DBG_CUR ( " %s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f } \n " , __func__ , i , cur_p - > data [ i ] . id , cur_p - > data [ i ] . p , cur_p - > data [ i ] . logit ) ;
}
float p_txt_sum = 0.0f ;
float p_eog_sum = 0.0f ;
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
if ( llama_token_is_eog_impl ( * ctx - > vocab , cur_p - > data [ i ] . id ) ) {
p_eog_sum + = cur_p - > data [ i ] . p ;
} else {
p_txt_sum + = cur_p - > data [ i ] . p ;
}
}
const float rat = p_eog_sum = = 0.0 ? INFINITY : p_txt_sum / p_eog_sum ; GGML_UNUSED ( rat ) ;
LOG_DBG_CUR ( " %s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu \n " , __func__ , p_txt_sum , p_eog_sum , rat , cur_p - > size ) ;
if ( 3 * p_eog_sum * cur_p - > size > p_txt_sum ) {
LOG_DBG_CUR ( " %s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG \n " , __func__ , p_txt_sum / p_eog_sum ) ;
// keep just the EOG tokens
const auto size_org = cur_p - > size ;
cur_p - > size = 0 ;
float p_sum = 0.0f ;
for ( size_t i = 0 ; i < size_org ; + + i ) {
if ( llama_token_is_eog_impl ( * ctx - > vocab , cur_p - > data [ i ] . id ) ) {
p_sum + = cur_p - > data [ i ] . p ;
cur_p - > data [ cur_p - > size + + ] = cur_p - > data [ i ] ;
}
}
// normalize probs
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cur_p - > data [ i ] . p / = p_sum ;
}
return ;
}
size_t n_combined = 0 ; GGML_UNUSED ( n_combined ) ;
// combine tokens with common prefix
for ( size_t i0 = 0 ; i0 < cur_p - > size ; + + i0 ) {
for ( size_t i1 = 0 ; i1 < cur_p - > size ; + + i1 ) {
if ( cur_p - > data [ i0 ] . logit = = - INFINITY ) {
break ;
}
if ( i0 = = i1 | | cur_p - > data [ i1 ] . logit = = - INFINITY ) {
continue ;
}
int len0 = llama_token_to_piece_impl ( * ctx - > vocab , cur_p - > data [ i0 ] . id , ctx - > buf0 . data ( ) , ctx - > buf0 . size ( ) , 0 , false ) ;
if ( len0 < 0 ) {
ctx - > buf0 . resize ( len0 ) ;
len0 = llama_token_to_piece_impl ( * ctx - > vocab , cur_p - > data [ i0 ] . id , ctx - > buf0 . data ( ) , ctx - > buf0 . size ( ) , 0 , false ) ;
assert ( len0 > 0 ) ;
}
int len1 = llama_token_to_piece_impl ( * ctx - > vocab , cur_p - > data [ i1 ] . id , ctx - > buf1 . data ( ) , ctx - > buf1 . size ( ) , 0 , false ) ;
if ( len1 < 0 ) {
ctx - > buf1 . resize ( len1 ) ;
len1 = llama_token_to_piece_impl ( * ctx - > vocab , cur_p - > data [ i1 ] . id , ctx - > buf1 . data ( ) , ctx - > buf1 . size ( ) , 0 , false ) ;
assert ( len1 > 0 ) ;
}
// token i0 is a prefix of token i1
if ( len0 > 0 & & len0 < = len1 & & memcmp ( ctx - > buf0 . data ( ) , ctx - > buf1 . data ( ) , len0 ) = = 0 ) {
int dst = i0 ;
int src = i1 ;
// merge into the token with higher probability
if ( cur_p - > data [ i1 ] . p > cur_p - > data [ i0 ] . p ) {
std : : swap ( dst , src ) ;
}
cur_p - > data [ dst ] . p + = cur_p - > data [ src ] . p ;
cur_p - > data [ src ] . logit = - INFINITY ;
cur_p - > data [ src ] . p = 0.0f ;
n_combined + + ;
}
}
}
size_t n_non_eog = 0 ;
size_t size_org = cur_p - > size ;
float p_sum = 0.0f ;
float thold = 0.2f ;
cur_p - > size = 0 ;
LOG_DBG_CUR ( " %s: n_combined = %zu, applying thold = %.3f \n " , __func__ , n_combined , thold ) ;
for ( size_t i = 0 ; i < size_org ; + + i ) {
const bool is_eog = llama_token_is_eog_impl ( * ctx - > vocab , cur_p - > data [ i ] . id ) ;
if ( cur_p - > data [ i ] . p < thold & & ! is_eog ) {
continue ;
}
if ( ! is_eog ) {
+ + n_non_eog ;
}
p_sum + = cur_p - > data [ i ] . p ;
// keep this token
cur_p - > data [ cur_p - > size + + ] = cur_p - > data [ i ] ;
}
LOG_DBG_CUR ( " %s: n_non_eog = %zu \n " , __func__ , n_non_eog ) ;
// if no non-EOG tokens are left -> reduce cur_p to single EOT token
if ( n_non_eog = = 0 ) {
cur_p - > size = 1 ;
cur_p - > data [ 0 ] . id = llama_token_eot_impl ( * ctx - > vocab ) ;
cur_p - > data [ 0 ] . logit = 1.0f ;
return ;
}
// normalize probs
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cur_p - > data [ i ] . p / = p_sum ;
LOG_DBG_CUR ( " %s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f } \n " , __func__ , i , cur_p - > data [ i ] . id , cur_p - > data [ i ] . p , cur_p - > data [ i ] . logit ) ;
}
size_org = cur_p - > size ;
p_sum = 0.0f ;
thold = 1.0 / ( n_non_eog + 1 ) ;
cur_p - > size = 0 ;
LOG_DBG_CUR ( " %s: applying thold = %.3f \n " , __func__ , thold ) ;
for ( size_t i = 0 ; i < size_org ; + + i ) {
const bool is_eog = llama_token_is_eog_impl ( * ctx - > vocab , cur_p - > data [ i ] . id ) ;
if ( cur_p - > data [ i ] . p < thold & & ! is_eog ) {
continue ;
}
p_sum + = cur_p - > data [ i ] . p ;
cur_p - > data [ cur_p - > size + + ] = cur_p - > data [ i ] ;
}
// normalize probs
for ( size_t i = 0 ; i < cur_p - > size ; + + i ) {
cur_p - > data [ i ] . p / = p_sum ;
LOG_DBG_CUR ( " %s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f } \n " , __func__ , i , cur_p - > data [ i ] . id , cur_p - > data [ i ] . p , cur_p - > data [ i ] . logit ) ;
}
# undef LOG_DBG_CUR
}
static struct llama_sampler * llama_sampler_infill_clone ( const struct llama_sampler * smpl ) {
const auto * ctx = ( const llama_sampler_infill * ) smpl - > ctx ;
return llama_sampler_init_infill_impl ( * ctx - > vocab ) ;
}
static void llama_sampler_infill_free ( struct llama_sampler * smpl ) {
delete ( llama_sampler_infill * ) smpl - > ctx ;
}
static struct llama_sampler_i llama_sampler_infill_i = {
/* .name = */ llama_sampler_infill_name ,
/* .accept = */ nullptr ,
/* .apply = */ llama_sampler_infill_apply ,
/* .reset = */ nullptr ,
/* .clone = */ llama_sampler_infill_clone ,
/* .free = */ llama_sampler_infill_free ,
} ;
struct llama_sampler * llama_sampler_init_infill_impl (
const struct llama_vocab & vocab ) {
return new llama_sampler {
/* .iface = */ & llama_sampler_infill_i ,
/* .ctx = */ new llama_sampler_infill {
/* .vocab = */ & vocab ,
/* .buf0 = */ std : : vector < char > ( 512 ) ,
/* .buf1 = */ std : : vector < char > ( 512 ) ,
} ,
} ;
}
2024-09-24 10:22:55 +00:00
// utils
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
uint32_t llama_sampler_get_seed ( const struct llama_sampler * smpl ) {
if ( smpl - > iface = = & llama_sampler_dist_i ) {
return ( ( const llama_sampler_dist * ) smpl - > ctx ) - > seed_cur ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
if ( smpl - > iface = = & llama_sampler_mirostat_i ) {
return ( ( const llama_sampler_mirostat * ) smpl - > ctx ) - > seed_cur ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
if ( smpl - > iface = = & llama_sampler_mirostat_v2_i ) {
return ( ( const llama_sampler_mirostat_v2 * ) smpl - > ctx ) - > seed_cur ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
if ( smpl - > iface = = & llama_sampler_chain_i ) {
const auto * ctx = ( const llama_sampler_chain * ) smpl - > ctx ;
for ( auto it = ctx - > samplers . rbegin ( ) ; it ! = ctx - > samplers . rend ( ) ; + + it ) {
const uint32_t seed = llama_sampler_get_seed ( * it ) ;
if ( seed ! = LLAMA_DEFAULT_SEED ) {
return seed ;
}
}
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
return LLAMA_DEFAULT_SEED ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
// perf
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
struct llama_perf_sampler_data llama_perf_sampler ( const struct llama_sampler * chain ) {
struct llama_perf_sampler_data data = { } ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
if ( chain = = nullptr | | chain - > iface ! = & llama_sampler_chain_i ) {
GGML_ABORT ( " %s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init() \n " , __func__ ) ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
const auto * ctx = ( const struct llama_sampler_chain * ) chain - > ctx ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
data . t_sample_ms = 1e-3 * ctx - > t_sample_us ;
data . n_sample = std : : max ( 0 , ctx - > n_sample ) ;
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
return data ;
}
2024-08-08 11:16:50 +00:00
2024-09-24 10:22:55 +00:00
void llama_perf_sampler_print ( const struct llama_sampler * chain ) {
const auto data = llama_perf_sampler ( chain ) ;
LLAMA_LOG_INFO ( " %s: sampling time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second) \n " ,
__func__ , data . t_sample_ms , data . n_sample , data . t_sample_ms / data . n_sample , 1e3 / data . t_sample_ms * data . n_sample ) ;
2024-08-08 11:16:50 +00:00
}
2024-09-24 10:22:55 +00:00
void llama_perf_sampler_reset ( struct llama_sampler * chain ) {
if ( chain = = nullptr | | chain - > iface ! = & llama_sampler_chain_i ) {
GGML_ABORT ( " %s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init() \n " , __func__ ) ;
}
auto * ctx = ( struct llama_sampler_chain * ) chain - > ctx ;
ctx - > t_sample_us = ctx - > n_sample = 0 ;
2024-08-08 11:16:50 +00:00
}