ggml : add Flash Attention (llama/5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (llama/6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (llama/6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
|
|
|
#include "common.cuh"
|
|
|
|
#include "fattn.cuh"
|
|
|
|
|
|
|
|
#include <cstdint>
|
|
|
|
|
|
|
|
#if FP16_MMA_AVAILABLE
|
|
|
|
#include <mma.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define FATTN_KQ_STRIDE 256
|
|
|
|
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
|
|
|
|
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
|
|
|
|
|
|
|
|
template<int D, int parallel_blocks> // D == head size
|
|
|
|
__launch_bounds__(((D + WARP_SIZE - 1) / WARP_SIZE)*WARP_SIZE, 1)
|
|
|
|
static __global__ void flash_attn_vec_ext_f16(
|
|
|
|
const char * __restrict__ Q,
|
|
|
|
const char * __restrict__ K,
|
|
|
|
const char * __restrict__ V,
|
|
|
|
const char * __restrict__ mask,
|
|
|
|
float * __restrict__ dst,
|
|
|
|
float2 * __restrict__ dst_meta,
|
|
|
|
const float scale,
|
|
|
|
const int ne00,
|
|
|
|
const int ne01,
|
|
|
|
const int ne02,
|
|
|
|
const int ne03,
|
|
|
|
const int ne10,
|
|
|
|
const int ne11,
|
|
|
|
const int ne12,
|
|
|
|
const int ne13,
|
|
|
|
const int ne31,
|
|
|
|
const int nb31,
|
|
|
|
const int nb01,
|
|
|
|
const int nb02,
|
|
|
|
const int nb03,
|
|
|
|
const int nb11,
|
|
|
|
const int nb12,
|
|
|
|
const int nb13,
|
|
|
|
const int ne0,
|
|
|
|
const int ne1,
|
|
|
|
const int ne2,
|
|
|
|
const int ne3) {
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
|
|
|
|
|
|
const int ic = blockIdx.x / parallel_blocks; // Index of the Q/QKV column to work on.
|
|
|
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
|
|
|
|
|
|
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
|
|
|
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic);
|
|
|
|
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
|
|
|
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
|
|
|
const half * maskh = (const half *) mask + ne11*ic;
|
|
|
|
|
|
|
|
const int stride_KV = nb11 / sizeof(half);
|
|
|
|
const int stride_KV2 = nb11 / sizeof(half2);
|
|
|
|
|
|
|
|
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
|
|
|
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
|
|
|
__builtin_assume(tid < nwarps*WARP_SIZE);
|
|
|
|
|
|
|
|
__shared__ half KQ[nwarps*WARP_SIZE];
|
|
|
|
KQ[tid] = -INFINITY;
|
|
|
|
half2 * KQ2 = (half2 *) KQ;
|
|
|
|
|
|
|
|
half kqmax = -HALF_MAX_HALF;
|
|
|
|
half kqsum = 0.0f;
|
|
|
|
|
|
|
|
__shared__ half kqmax_shared[WARP_SIZE];
|
|
|
|
__shared__ half kqsum_shared[WARP_SIZE];
|
|
|
|
if (threadIdx.y == 0) {
|
|
|
|
kqmax_shared[threadIdx.x] = -HALF_MAX_HALF;
|
|
|
|
kqsum_shared[threadIdx.x] = 0.0f;
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// Convert Q to half2 and store in registers:
|
|
|
|
half2 Q_h2[(D/2 + WARP_SIZE - 1) / WARP_SIZE];
|
|
|
|
#pragma unroll
|
|
|
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
|
|
const int i = i0 + threadIdx.x;
|
|
|
|
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
Q_h2[i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(Q_f2[i].x, Q_f2[i].y);
|
|
|
|
}
|
|
|
|
|
|
|
|
half2 VKQ = make_half2(0.0f, 0.0f); // Each thread calculates a single VKQ value.
|
|
|
|
|
|
|
|
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
|
|
|
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
|
|
|
|
// Calculate KQ tile and keep track of new maximum KQ values:
|
|
|
|
half kqmax_new = kqmax;
|
|
|
|
#pragma unroll
|
|
|
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
|
|
|
const int i_KQ = i_KQ_0 + threadIdx.y;
|
|
|
|
|
|
|
|
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
half2 sum2 = make_half2(0.0f, 0.0f);
|
|
|
|
#pragma unroll
|
|
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
|
|
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
|
|
|
if (k_KQ_0 + WARP_SIZE > D/2 && k_KQ >= D/2) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
|
|
|
sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
|
|
|
|
}
|
|
|
|
|
|
|
|
sum2 = warp_reduce_sum(sum2);
|
|
|
|
half sum = __low2half(sum2) + __high2half(sum2);
|
|
|
|
sum += mask ? maskh[k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
2024-05-01 12:46:37 +00:00
|
|
|
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
ggml : add Flash Attention (llama/5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (llama/6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (llama/6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
KQ[i_KQ] = sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
kqmax_new = warp_reduce_max(kqmax_new);
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
kqmax_shared[threadIdx.y] = kqmax_new;
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
kqmax_new = kqmax_shared[threadIdx.x];
|
|
|
|
kqmax_new = warp_reduce_max(kqmax_new);
|
|
|
|
|
|
|
|
const half KQ_max_scale = hexp(kqmax - kqmax_new);
|
|
|
|
kqmax = kqmax_new;
|
|
|
|
|
|
|
|
const half val = hexp(KQ[tid] - kqmax);
|
|
|
|
kqsum = kqsum*KQ_max_scale + val;
|
|
|
|
KQ[tid] = val;
|
|
|
|
|
|
|
|
VKQ *= __half2half2(KQ_max_scale);
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (tid < D) {
|
|
|
|
#pragma unroll
|
|
|
|
for (int k0 = 0; k0 < D; k0 += 2) {
|
|
|
|
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
half2 V_k;
|
|
|
|
reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
|
|
|
|
reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
|
|
|
|
VKQ += V_k*KQ2[k0/2];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tid >= D) {
|
|
|
|
kqsum = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
kqsum = warp_reduce_sum(kqsum);
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
kqsum_shared[threadIdx.y] = kqsum;
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
kqsum = kqsum_shared[threadIdx.x];
|
|
|
|
kqsum = warp_reduce_sum(kqsum);
|
|
|
|
|
|
|
|
if (tid >= D) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
half dst_val = (__low2half(VKQ) + __high2half(VKQ));
|
|
|
|
if (parallel_blocks == 1) {
|
|
|
|
dst_val /= kqsum;
|
|
|
|
}
|
|
|
|
dst[D*gridDim.y*blockIdx.x + D*blockIdx.y + tid] = dst_val;
|
|
|
|
|
|
|
|
if (parallel_blocks == 1 || tid != 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
dst_meta[ic*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax, kqsum);
|
|
|
|
#else
|
|
|
|
NO_DEVICE_CODE;
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
}
|
|
|
|
|
|
|
|
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
|
|
|
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
|
|
|
|
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
|
|
|
static __global__ void flash_attn_ext_f16(
|
|
|
|
const char * __restrict__ Q,
|
|
|
|
const char * __restrict__ K,
|
|
|
|
const char * __restrict__ V,
|
|
|
|
const char * __restrict__ mask,
|
|
|
|
float * __restrict__ dst,
|
|
|
|
float2 * __restrict__ dst_meta,
|
|
|
|
const float scale,
|
|
|
|
const int ne00,
|
|
|
|
const int ne01,
|
|
|
|
const int ne02,
|
|
|
|
const int ne03,
|
|
|
|
const int ne10,
|
|
|
|
const int ne11,
|
|
|
|
const int ne12,
|
|
|
|
const int ne13,
|
|
|
|
const int ne31,
|
|
|
|
const int nb31,
|
|
|
|
const int nb01,
|
|
|
|
const int nb02,
|
|
|
|
const int nb03,
|
|
|
|
const int nb11,
|
|
|
|
const int nb12,
|
|
|
|
const int nb13,
|
|
|
|
const int ne0,
|
|
|
|
const int ne1,
|
|
|
|
const int ne2,
|
|
|
|
const int ne3) {
|
|
|
|
#if FP16_MMA_AVAILABLE
|
|
|
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
|
|
|
|
|
|
|
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
|
|
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
|
|
|
|
|
|
|
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
|
|
|
|
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
|
|
|
|
constexpr int frag_m = ncols == 8 ? 32 : 16;
|
|
|
|
constexpr int frag_n = ncols == 8 ? 8 : 16;
|
|
|
|
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
|
|
|
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
|
|
|
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
|
|
|
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
|
|
|
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
|
|
|
|
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
|
|
|
|
|
|
|
|
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
|
|
|
|
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
|
|
|
|
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
|
|
|
|
|
|
|
|
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
|
|
|
|
constexpr int D_padded = D + 8;
|
|
|
|
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
|
|
|
|
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
|
|
|
|
|
|
|
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
|
|
|
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
|
|
|
|
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
|
|
|
|
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
|
|
|
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
|
|
|
|
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
|
|
|
|
|
|
|
|
const int stride_Q = nb01 / sizeof(float);
|
|
|
|
const int stride_KV = nb11 / sizeof(half);
|
|
|
|
|
|
|
|
frag_b Q_b[D/16][ncols/frag_n];
|
|
|
|
|
|
|
|
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
|
|
|
constexpr int mem_KQ = ncols*kqs_padded*kqar;
|
|
|
|
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
|
|
|
|
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
|
|
|
|
float * KQ_f = (float *) KQ;
|
|
|
|
half2 * KQ2 = (half2 *) KQ;
|
|
|
|
|
|
|
|
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
|
|
|
|
float KQ_max_f[ncols/nwarps];
|
|
|
|
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
|
|
|
KQ_max_f[j] = -FLT_MAX/2.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
|
|
|
half2 KQ_max_h2[ncols/nwarps];
|
|
|
|
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
|
|
|
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
|
|
|
|
}
|
|
|
|
|
|
|
|
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
|
|
|
|
half2 * VKQ2 = (half2 *) VKQ;
|
|
|
|
#pragma unroll
|
|
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
|
|
const int j = j0 + threadIdx.y;
|
|
|
|
#pragma unroll
|
|
|
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
|
|
const int i = i0 + threadIdx.x;
|
|
|
|
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convert Q to half and apply scale, temporarily store in KQ:
|
|
|
|
#pragma unroll
|
|
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
|
|
const int j = j0 + threadIdx.y;
|
|
|
|
#pragma unroll
|
|
|
|
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
|
|
|
const int i = i0 + threadIdx.x;
|
|
|
|
if (i0 + WARP_SIZE > D && i >= D) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// Load Q into tensor core fragments/registers since it will be used frequently:
|
|
|
|
#pragma unroll
|
|
|
|
for (int i0 = 0; i0 < D; i0 += 16) {
|
|
|
|
#pragma unroll
|
|
|
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
|
|
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// Iterate over ne11 == previous tokens:
|
|
|
|
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
|
|
|
|
// Calculate tile of KQ:
|
|
|
|
#pragma unroll
|
|
|
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
|
|
|
|
frag_c_KQ KQ_c[ncols/frag_n];
|
|
|
|
#pragma unroll
|
|
|
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
|
|
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
|
|
|
|
}
|
|
|
|
#pragma unroll
|
|
|
|
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
|
|
|
|
frag_a_K K_a;
|
|
|
|
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
|
|
|
|
#pragma unroll
|
|
|
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
|
|
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#pragma unroll
|
|
|
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
|
|
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// Calculate softmax for each KQ column using the current max. value.
|
|
|
|
// The divisor is stored in KQ_rowsum and will be applied at the end.
|
|
|
|
#pragma unroll
|
|
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
|
|
const int j = j0 + threadIdx.y;
|
|
|
|
|
|
|
|
if (std::is_same<KQ_acc_t, float>::value) {
|
|
|
|
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
|
|
|
|
#pragma unroll
|
|
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
|
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
|
|
|
|
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
|
|
|
}
|
|
|
|
|
|
|
|
float KQ_max_new = KQ_max_f[j0/nwarps];
|
|
|
|
#pragma unroll
|
|
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
|
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
|
|
|
|
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
|
|
|
|
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
|
|
|
|
}
|
|
|
|
KQ_max_new = warp_reduce_max(KQ_max_new);
|
|
|
|
|
|
|
|
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
|
|
|
|
KQ_max_scale_f[j0/nwarps] = expf(diff);
|
|
|
|
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
|
|
|
KQ_max_scale_f[j0/nwarps] = 0.0f;
|
|
|
|
}
|
|
|
|
KQ_max_f[j0/nwarps] = KQ_max_new;
|
|
|
|
|
|
|
|
float KQ_rowsum_add = 0.0f;
|
|
|
|
#pragma unroll
|
|
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
|
|
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
|
|
|
|
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
|
|
|
|
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
|
|
|
|
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
|
|
|
|
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
|
|
|
|
}
|
|
|
|
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
|
|
|
|
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
|
|
|
|
}
|
|
|
|
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
|
|
|
|
|
|
|
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
|
|
|
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
|
|
|
|
} else {
|
|
|
|
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
|
|
|
|
#pragma unroll
|
|
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
|
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
|
|
|
|
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
|
|
|
}
|
|
|
|
|
|
|
|
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
|
|
|
#pragma unroll
|
|
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
|
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
|
|
|
|
KQ2_tmp[k0/WARP_SIZE] += mask ? mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
|
2024-05-01 12:46:37 +00:00
|
|
|
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
|
ggml : add Flash Attention (llama/5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (llama/6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (llama/6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
|
|
|
}
|
2024-05-01 12:46:37 +00:00
|
|
|
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
|
ggml : add Flash Attention (llama/5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (llama/6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (llama/6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 09:16:08 +00:00
|
|
|
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
|
|
|
|
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
|
|
|
|
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
|
|
|
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
|
|
|
|
KQ_max_h2[j0/nwarps] = KQ_max_new;
|
|
|
|
|
|
|
|
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
|
|
|
|
#pragma unroll
|
|
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
|
|
|
|
const int k = k0 + threadIdx.x;
|
|
|
|
|
|
|
|
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
|
|
|
|
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
|
|
|
|
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
|
|
|
|
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
|
|
|
|
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
|
|
|
|
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
|
|
|
|
}
|
|
|
|
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
|
|
|
|
|
|
|
|
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
|
|
|
|
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
|
|
|
|
#pragma unroll
|
|
|
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
|
|
#pragma unroll
|
|
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
|
|
|
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
|
|
|
nvcuda::wmma::load_matrix_sync(
|
|
|
|
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
|
|
|
|
KQ + j0*(kqar*kqs_padded) + k,
|
|
|
|
kqar*kqs_padded);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
|
|
|
|
#pragma unroll
|
|
|
|
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
|
|
|
|
#pragma unroll
|
|
|
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
|
|
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
|
|
|
|
}
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
|
|
|
|
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
|
|
|
|
|
|
|
|
frag_a_V v_a;
|
|
|
|
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
|
|
|
|
#pragma unroll
|
|
|
|
for (int j = 0; j < ncols/frag_n; ++j) {
|
|
|
|
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
|
|
|
|
#pragma unroll
|
|
|
|
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
|
|
|
|
#pragma unroll
|
|
|
|
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
|
|
|
|
nvcuda::wmma::store_matrix_sync(
|
|
|
|
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
|
|
|
|
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
|
|
|
|
D_padded, nvcuda::wmma::mem_col_major);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
|
|
const int j = j0 + threadIdx.y;
|
|
|
|
|
|
|
|
half2 VKQ_scale;
|
|
|
|
if (std::is_same<KQ_acc_t, float>::value) {
|
|
|
|
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
|
|
|
|
} else {
|
|
|
|
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
|
|
|
|
}
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
|
|
|
const int i = i0 + threadIdx.x;
|
|
|
|
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
half2 VKQ_add = make_half2(0.0f, 0.0f);
|
|
|
|
#pragma unroll
|
|
|
|
for (int l = 0; l < VKQ_ratio; ++l) {
|
|
|
|
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
|
|
|
|
}
|
|
|
|
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
|
|
|
const int j_VKQ = j0 + threadIdx.y;
|
|
|
|
if (ic0 + j_VKQ >= ne01) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
|
|
|
|
|
|
|
float KQ_rowsum_j;
|
|
|
|
if (std::is_same<KQ_acc_t, float>::value) {
|
|
|
|
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
|
|
|
|
} else {
|
|
|
|
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
|
|
|
|
}
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
|
|
|
|
const int i = i0 + threadIdx.x;
|
|
|
|
if (i0 + WARP_SIZE > D && i >= D) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
float dst_val = VKQ[j_VKQ*D_padded + i];
|
|
|
|
if (parallel_blocks == 1) {
|
|
|
|
dst_val /= KQ_rowsum_j;
|
|
|
|
}
|
|
|
|
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (parallel_blocks == 1 || threadIdx.x != 0) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
float2 dst_meta_val;
|
|
|
|
if (std::is_same<KQ_acc_t, float>::value) {
|
|
|
|
dst_meta_val.x = KQ_max_f[j0/nwarps];
|
|
|
|
} else {
|
|
|
|
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
|
|
|
|
}
|
|
|
|
dst_meta_val.y = KQ_rowsum_j;
|
|
|
|
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
NO_DEVICE_CODE;
|
|
|
|
#endif // FP16_MMA_AVAILABLE
|
|
|
|
}
|
|
|
|
|
|
|
|
template<int D, int parallel_blocks> // D == head size
|
|
|
|
__launch_bounds__(D, 1)
|
|
|
|
static __global__ void flash_attn_combine_results(
|
|
|
|
const float * __restrict__ VKQ_parts,
|
|
|
|
const float2 * __restrict__ VKQ_meta,
|
|
|
|
float * __restrict__ dst) {
|
|
|
|
#if FP16_AVAILABLE
|
|
|
|
VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
|
|
|
|
VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x;
|
|
|
|
dst += D * gridDim.y*blockIdx.x;
|
|
|
|
|
|
|
|
const int tid = threadIdx.x;
|
|
|
|
__builtin_assume(tid < D);
|
|
|
|
|
|
|
|
__shared__ float2 meta[parallel_blocks];
|
|
|
|
if (tid < 2*parallel_blocks) {
|
|
|
|
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
float kqmax = meta[0].x;
|
|
|
|
#pragma unroll
|
|
|
|
for (int l = 1; l < parallel_blocks; ++l) {
|
|
|
|
kqmax = max(kqmax, meta[l].x);
|
|
|
|
}
|
|
|
|
|
|
|
|
float VKQ_numerator = 0.0f;
|
|
|
|
float VKQ_denominator = 0.0f;
|
|
|
|
#pragma unroll
|
|
|
|
for (int l = 0; l < parallel_blocks; ++l) {
|
|
|
|
const float diff = meta[l].x - kqmax;
|
|
|
|
const float KQ_max_scale = expf(diff);
|
|
|
|
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
|
|
|
|
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
|
|
|
|
|
|
|
|
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
|
|
|
|
VKQ_denominator += KQ_max_scale * meta[l].y;
|
|
|
|
}
|
|
|
|
|
|
|
|
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
|
|
|
#else
|
|
|
|
NO_DEVICE_CODE;
|
|
|
|
#endif // FP16_AVAILABLE
|
|
|
|
}
|
|
|
|
|
|
|
|
constexpr int get_max_power_of_2(int x) {
|
|
|
|
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
|
|
|
|
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
|
|
|
|
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
|
|
|
|
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
|
|
|
|
|
|
|
|
// Number of VKQ rows calculated in parallel:
|
|
|
|
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
|
|
|
|
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
|
|
|
|
}
|
|
|
|
|
|
|
|
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
|
|
|
|
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
|
|
|
|
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
|
|
|
|
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
|
|
|
|
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
|
|
|
|
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
|
|
|
|
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
|
|
|
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
|
|
|
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
|
|
|
|
|
|
|
template <int D, int parallel_blocks> void launch_fattn_vec_f16(
|
|
|
|
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
|
|
|
ggml_cuda_pool & pool, cudaStream_t main_stream
|
|
|
|
) {
|
|
|
|
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
|
|
|
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
|
|
|
|
|
|
|
if (parallel_blocks > 1) {
|
|
|
|
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
|
|
|
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
|
|
|
}
|
|
|
|
|
|
|
|
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
|
|
|
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
|
|
|
const dim3 blocks_num(parallel_blocks*Q->ne[1], Q->ne[2], Q->ne[3]);
|
|
|
|
const int shmem = 0;
|
|
|
|
|
|
|
|
float scale;
|
|
|
|
memcpy(&scale, KQV->op_params, sizeof(float));
|
|
|
|
|
|
|
|
flash_attn_vec_ext_f16<D, parallel_blocks>
|
|
|
|
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
|
|
|
(const char *) Q->data,
|
|
|
|
(const char *) K->data,
|
|
|
|
(const char *) V->data,
|
|
|
|
mask ? ((const char *) mask->data) : nullptr,
|
|
|
|
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
|
|
|
scale,
|
|
|
|
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
|
|
|
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
|
|
|
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
|
|
|
Q->nb[1], Q->nb[2], Q->nb[3],
|
|
|
|
K->nb[1], K->nb[2], K->nb[3],
|
|
|
|
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
|
|
|
);
|
|
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
|
|
|
|
if (parallel_blocks == 1) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const dim3 block_dim_combine(D, 1, 1);
|
|
|
|
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
|
|
|
const int shmem_combine = 0;
|
|
|
|
|
|
|
|
flash_attn_combine_results<D, parallel_blocks>
|
|
|
|
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
|
|
|
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
|
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
}
|
|
|
|
|
|
|
|
template <int D, int cols_per_block, int nwarps, int parallel_blocks, typename KQ_acc_t> void launch_fattn_f16_impl(
|
|
|
|
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
|
|
|
ggml_cuda_pool & pool, cudaStream_t main_stream
|
|
|
|
) {
|
|
|
|
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
|
|
|
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
|
|
|
|
|
|
|
if (parallel_blocks > 1) {
|
|
|
|
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
|
|
|
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
|
|
|
}
|
|
|
|
|
|
|
|
constexpr int frag_m = (cols_per_block) == 8 && (D) % 32 == 0 ? 32 : 16;
|
|
|
|
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
|
|
|
const dim3 blocks_num(parallel_blocks*(Q->ne[1] + cols_per_block - 1) / cols_per_block, Q->ne[2], Q->ne[3]);
|
|
|
|
const int shmem = 0;
|
|
|
|
|
|
|
|
float scale;
|
|
|
|
memcpy(&scale, KQV->op_params, sizeof(float));
|
|
|
|
|
|
|
|
flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>
|
|
|
|
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
|
|
|
(const char *) Q->data,
|
|
|
|
(const char *) K->data,
|
|
|
|
(const char *) V->data,
|
|
|
|
mask ? ((const char *) mask->data) : nullptr,
|
|
|
|
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
|
|
|
scale,
|
|
|
|
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
|
|
|
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
|
|
|
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
|
|
|
Q->nb[1], Q->nb[2], Q->nb[3],
|
|
|
|
K->nb[1], K->nb[2], K->nb[3],
|
|
|
|
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
|
|
|
);
|
|
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
|
|
|
|
if ((parallel_blocks) == 1) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const dim3 block_dim_combine(D, 1, 1);
|
|
|
|
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
|
|
|
const int shmem_combine = 0;
|
|
|
|
|
|
|
|
flash_attn_combine_results<D, parallel_blocks>
|
|
|
|
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
|
|
|
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
|
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
}
|
|
|
|
|
|
|
|
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t> void launch_fattn_f16(
|
|
|
|
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
|
|
|
const int nsm, ggml_cuda_pool & pool, cudaStream_t main_stream
|
|
|
|
) {
|
|
|
|
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
|
|
|
|
|
|
|
if (4*blocks_num_pb1 < 2*nsm) {
|
|
|
|
launch_fattn_f16_impl<D, cols_per_block, nwarps, 4, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (2*blocks_num_pb1 < 2*nsm) {
|
|
|
|
launch_fattn_f16_impl<D, cols_per_block, nwarps, 2, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
launch_fattn_f16_impl<D, cols_per_block, nwarps, 1, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|
|
|
const ggml_tensor * Q = dst->src[0];
|
|
|
|
const ggml_tensor * K = dst->src[1];
|
|
|
|
const ggml_tensor * V = dst->src[2];
|
|
|
|
|
|
|
|
const ggml_tensor * mask = dst->src[3];
|
|
|
|
|
|
|
|
ggml_tensor * KQV = dst;
|
|
|
|
|
|
|
|
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
|
|
|
GGML_ASSERT(K->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT(V->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
|
|
|
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
|
|
|
|
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
|
|
|
|
|
|
|
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
|
|
|
|
|
|
|
ggml_cuda_set_device(ctx.device);
|
|
|
|
|
|
|
|
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
|
|
|
|
|
|
|
const int32_t precision = KQV->op_params[1];
|
|
|
|
|
|
|
|
if (precision != GGML_PREC_DEFAULT) {
|
|
|
|
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
|
|
|
constexpr int cols_per_block = 16;
|
|
|
|
constexpr int nwarps = 4;
|
|
|
|
switch (Q->ne[0]) {
|
|
|
|
case 64:
|
|
|
|
launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 80:
|
|
|
|
launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 96:
|
|
|
|
launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 112:
|
|
|
|
launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 128:
|
|
|
|
launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 256:
|
|
|
|
launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
constexpr int cols_per_block = 32;
|
|
|
|
constexpr int nwarps = 4;
|
|
|
|
switch (Q->ne[0]) {
|
|
|
|
case 64:
|
|
|
|
launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 80:
|
|
|
|
launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 96:
|
|
|
|
launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 112:
|
|
|
|
launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 128:
|
|
|
|
launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
// case 256:
|
|
|
|
// launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
// break;
|
|
|
|
default:
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
|
|
|
|
constexpr int parallel_blocks = 4;
|
|
|
|
switch (Q->ne[0]) {
|
|
|
|
case 64:
|
|
|
|
launch_fattn_vec_f16< 64, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 128:
|
|
|
|
launch_fattn_vec_f16<128, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 256:
|
|
|
|
launch_fattn_vec_f16<256, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
|
|
|
constexpr int cols_per_block = 8;
|
|
|
|
constexpr int nwarps = 4;
|
|
|
|
switch (Q->ne[0]) {
|
|
|
|
case 64:
|
|
|
|
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 96:
|
|
|
|
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 128:
|
|
|
|
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 256:
|
|
|
|
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Q->ne[1] <= 32) {
|
|
|
|
constexpr int cols_per_block = 16;
|
|
|
|
constexpr int nwarps = 4;
|
|
|
|
switch (Q->ne[0]) {
|
|
|
|
case 64:
|
|
|
|
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 80:
|
|
|
|
launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 96:
|
|
|
|
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 112:
|
|
|
|
launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 128:
|
|
|
|
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 256:
|
|
|
|
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
constexpr int cols_per_block = 32;
|
|
|
|
constexpr int nwarps = 4;
|
|
|
|
switch (Q->ne[0]) {
|
|
|
|
case 64:
|
|
|
|
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 80:
|
|
|
|
launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 96:
|
|
|
|
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 112:
|
|
|
|
launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 128:
|
|
|
|
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
case 256:
|
|
|
|
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
GGML_ASSERT(false);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|