\documentclass{article} \usepackage[a4paper,left=2cm,top=2cm]{geometry} \usepackage{parskip} \usepackage{amsmath} \usepackage{amssymb} \usepackage{mathtools} \usepackage{hyperref} \begin{document} \title{Analysis of Superpressure Balloon using the ideal gas law} \author{Richard Meadows 2016} Analysis of Superpressure Balloon using the ideal gas law. \[ P_{super} = P_{gas} - P_{air} \ \ \ \ (1) \] We can write the ideal gas equation for the gas inside the balloon: \[ P_{gas}V = {m_{gas}\over{M_{gas}}} R T_{gas} \ \ \ \ (2) \] Since the system is floating, we know the mass of the air displaced is $m_{system}$. So we can also write the idea gas equation for the air displaced by the balloon. \[ P_{air}V = {m_{system}\over{M_{air}}} R T_{air} \ \ \ \ (3) \] We assume the volumes are equal, so we can subsitiute one into the other. \[ P_{gas} = P_{air} \bigg[ {{{m_{gas}\over{M_{gas}}} R T_{gas}}\over{{m_{system}\over{M_{air}}} R T_{air}}} \bigg] \ \ \ \ (4) \] Re-arrange and cancel $R$: \[ P_{gas} = { P_{air} \bigg[ { {m_{gas}T_{gas}M_{air}}\over{M_{gas}T_{air}m_{system}} } \bigg]} \ \ \ \ (5) \] Now we can use the definition of superpressure (1): \[ P_{super} = P_{gas} - P_{air} \ \ \ \ (1) \] \[ P_{super} = { P_{air} \bigg[ { {m_{gas}T_{gas}M_{air}}\over{M_{gas}T_{air}m_{system}} } - 1\bigg]} \ \ \ \ (6) \] Substituting in our expression for $P_{air}$: \[ P_{air} = {{m_{system}R T_{air}}\over{M_{air}V}} \ \ \ \ (3) \] \[ P_{super} = { {{m_{system}R T_{air}}\over{M_{air}V}} \bigg[ { {m_{gas}T_{gas}M_{air}}\over{M_{gas}T_{air}m_{system}} } - 1\bigg]} \ \ \ \ (7) \] \[ P_{super} = { {R\over{V}} \bigg[ { {m_{gas}}\over{M_{gas}} } T_{gas} - { {m_{system}}\over{M_{system}} } T_{air}\bigg]} \ \ \ \ (8) \] We define supertemperature in the same way as superpressure: \[ T_{super} = T_{gas} - T_{air} \ \ \ \ (9) \] \[ P_{super} = { {R\over{V}} \bigg[ \Big( {m_{gas}\over{M_{gas}}} - {m_{system}\over{M_{air}}} \Big)T_{air} + {{m_{gas}}\over{M_{gas}}}T_{super} \bigg]} \ \ \ \ \ \ (10) \] We can reasonably say the superpressure due to the temperature dominates, so \[ {P_{super}\over{T_{super}}} \approx {{m_{gas}}\over{M_{gas}}}{R\over{V}} \ \ \ \ \ (11) \] \end{document}