mirror of
https://github.com/nasa/trick.git
synced 2025-01-04 20:34:12 +00:00
9099792947
* Provide MonteCarloGenerate capability Intermediate commit, this squash represents all of Isaac Reaves' work during his Fall 2022 Pathways internship tour [skip ci] * TrickOps: Add phase, [min-max] range, and overhaul YAML verification * Add new "phase:" mechanism to TrickOps Runs and Builds to support project-specific constraints on build and run ordering - phase defaults to zero if not specified and must be between -1000 and 1000 if given. - jobs can now optionally be requested by their phase or phase range - See trickops/README.md for details * Add [min-max] notation capability to run: entries and compare: entries - [min-max] ranges provide definition of a set of runs using a common numbering scheme in the YAML file, greatly reducing YAML file size for monte-carlo and other zero-padded run numbering use cases - See trickops/README.md for details * YAML parsing changes - Overhaul the logic which verifies YAML files for the expected TrickOps format. This is now done in TrickWorkflowYamlVerifier and provides much more robust error checking than previous approach - .yaml_requirements.yml now provides the required types, ranges, and default values as applicable to expected entries in YAML files - valgrind: is now an sub-option to run: entries, not its own section Users should now list their runs normallly and define their flags in in that run's valgrind: subsection - parallel_safety is now a per-sim parameter and not global. Users should move their global config to the sim layer - self.config_errors is now a list of errors. Users should now check for empty list when using instead of True/False * Robustify the get_koviz_report_jobs unit test to work whether koviz exists on PATH or not * Adjust trickops.py to use the new phase and range features - Make it more configurable on the command-line via argparse - Move SIM_mc_generation tests into test_sims.yml [skip ci] * Code review and cleanup from PR #1389 Documentation: * Adjust documentation to fit suggested symlinked approach. Also cleaned up duplicate images and old documentation. * Moved the verification section out of markdown and into a PDF since it heavily leverages formatting not available in markdown. * Clarify a couple points on the Darwin Trick install guide * Update wiki to clarify that data recording strings is not supported MCG Code: * Replace MonteCarloVariableRandomNormal::is_near_equal with new Trick::dbl_is_near from trick team MCG Testing: * Reduce the set of SIM_mc_generation comparisons. After discussion the trick team, we are choosing to remove all comparisons to verif_data/ which contain random-generated numbers since these tests cannot pass across all supported trick platforms. * Fix the wrong rule on exlcuding -Werror for Darwin builds of SIM_mc_generation * Remove data recording of strings in SIM_mc_generation Trickops: * Replace build_command with build_args per discussion w/ Trick team Since we only support arguments to trick-CP, replace the build_command yaml entry with build_args * Disable var server connection by default in SingleRun if TrickWorkflow.quiet is True * Guard against multiple Job starts * Remove SimulationJob inheritance layer since old monte-carlo wasn't and never will be supported by TrickOps * Ignore IOError raise from variable_server that looks like "The remote endpoint has closed the connection". This appears to occur when SingleRun jobs attempt to connect to the var server for a sim that terminates very early [skip ci] * Adjust phasing of old/new MCG initialize functions * Clarify failure message in generate_dispersions if new/old MC are both used. * Adjust the phasing order of MCG intialize method to be before legacy MC initialized. Without this, monte-carlo dry run completes with success before the check in generate_dispersions() can run * Add -Wno-stringop-truncation to S_override.mk for SIM_mc_generation since gcc 8+ warns about SWIG generated content in top.cpp * Introduce MonteCarloGenerationHelper python class This new class provides an easy-to-use interface for MCG sim-module users: 1. Run generation 2. Getting an sbatch array job suitable for SLURM 3. Getting a list of SingleRun() instances for generated runs, to be executed locally if desired --------- Co-authored-by: Dan Jordan <daniel.d.jordan@nasa.gov>
584 lines
22 KiB
C++
584 lines
22 KiB
C++
/*******************************TRICK HEADER******************************
|
|
PURPOSE: (Provides the front-end interface to the monte-carlo model)
|
|
|
|
PROGRAMMERS:
|
|
(((Gary Turner) (OSR) (October 2019) (Antares) (Initial)))
|
|
(((Isaac Reaves) (NASA) (November 2022) (Integration into Trick Core)))
|
|
**********************************************************************/
|
|
#include "trick/mc_master.hh"
|
|
|
|
#include <iterator> // std::prev
|
|
#include <fstream> // std::ofstream
|
|
#include <cstdlib> // system
|
|
#include "trick/message_type.h"
|
|
#include "trick/message_proto.h"
|
|
#include "trick/exec_proto.h"
|
|
|
|
|
|
/*****************************************************************************
|
|
Constructor
|
|
*****************************************************************************/
|
|
MonteCarloMaster::MonteCarloMaster(
|
|
std::string location_)
|
|
:
|
|
active(false),
|
|
generate_dispersions(true),
|
|
run_name(),
|
|
monte_dir(),
|
|
input_file_name("input.py"),
|
|
generate_meta_data(false),
|
|
generate_summary(true),
|
|
minimum_padding(0),
|
|
monte_run_number(0),
|
|
input_files_prepared(false),
|
|
location(location_),
|
|
variables(),
|
|
num_runs(0)
|
|
{}
|
|
|
|
/*****************************************************************************
|
|
activate
|
|
Purpose:()
|
|
*****************************************************************************/
|
|
void
|
|
MonteCarloMaster::activate(
|
|
std::string run_name_)
|
|
{
|
|
run_name = run_name_;
|
|
monte_dir = "MONTE_"+run_name;
|
|
active = true;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
prepare_input_files
|
|
Purpose:(Creates the top-level MONTE_<run_name> directory, clearing out any
|
|
existing content.
|
|
Creates the RUN_<run_num> subdirectories
|
|
Creates the monte_<input.py> in each RUN_<run_num> subdirectory.)
|
|
*****************************************************************************/
|
|
bool
|
|
MonteCarloMaster::prepare_input_files()
|
|
{
|
|
if (input_files_prepared) {
|
|
std::string message =
|
|
std::string("File: ") + __FILE__ + ", Line: " +
|
|
std::to_string(__LINE__) + ", Invalid sequence\n" + "Attempted to "
|
|
"generate a set of input files, but this action has\nalready been "
|
|
"completed. Keeping the original set of input files.\nIgnoring "
|
|
"the later instruction.\n";
|
|
message_publish(MSG_ERROR, message.c_str());
|
|
return true;
|
|
}
|
|
|
|
// Create the new MONTE_ dir name where runs will go
|
|
std::string command = "mkdir -p "+monte_dir;
|
|
system( command.c_str());
|
|
command = "rm -rf "+monte_dir+"/RUN_*";
|
|
// TODO should we check return code for failure here? -Jordan 2/2020
|
|
system( command.c_str());
|
|
|
|
// Based on the number of runs, generate an appropriately-sized string to
|
|
// contain the run number.
|
|
// E.g. For 1-10 runs, need only 1 numeric character to supply:
|
|
// RUN_0, RUN_1, RUN_2, ..., RUN_9
|
|
// For between 10001-100000 runs, need 5 numeric characters to supply:
|
|
// RUN_00000, RUN_00001, ..., RUN_99999
|
|
// This string length can be set to a MINIMUM value with the variable
|
|
// minimum_padding.
|
|
int max_length = std::to_string(num_runs-1).size();
|
|
if (max_length < minimum_padding) {
|
|
max_length = minimum_padding;
|
|
}
|
|
std::string run_num_base(max_length, '0');
|
|
|
|
|
|
// create the master list of varaibles being recorded in the monte_values
|
|
// files. note that this is not all the variables, only those whose values
|
|
// are being recorded ina s eparate file for every run. For a full list of
|
|
// variables and their type, see the meta-data file.
|
|
if (generate_summary) {
|
|
// Create the summary file and variable list
|
|
std::string filename = monte_dir + "/monte_variables";
|
|
std::ofstream variable_list(filename);
|
|
// Check for success of file creation
|
|
if (!variable_list.is_open()) {
|
|
std::string message = std::string("File: ") + __FILE__ + ", Line: " +
|
|
std::to_string(__LINE__) + ", I/O error\nUnable to open the " +
|
|
"variable summary files for writing.\nDispersion summary will not " +
|
|
"be generated.\n";
|
|
message_publish(MSG_ERROR, message.c_str());
|
|
generate_summary = false;
|
|
}
|
|
else {
|
|
// Write the variable list
|
|
variable_list << "run_number\n";
|
|
for (auto var_it : variables) {
|
|
if (var_it->include_in_summary) {
|
|
variable_list << var_it->get_variable_name()
|
|
<< ", " << var_it->units << "\n";
|
|
}
|
|
}
|
|
variable_list.close();
|
|
}
|
|
}
|
|
|
|
// Process each input file one at a time, and write all variables into each
|
|
// file before moving on to the next file. This is better than trying to
|
|
// keep a large number of files open so each variable can be written into
|
|
// all files before moving on to the next variable.
|
|
for (unsigned int run_num = 0; run_num < num_runs; ++run_num) {
|
|
std::string run_num_str(run_num_base);
|
|
std::string run_num_str_partial = std::to_string(run_num);
|
|
int length = run_num_str_partial.size();
|
|
|
|
// I'm going to be replacing contents of the string of zeros with the
|
|
// run-number; make sure the run-number doesn't contain more characters
|
|
// than in the string of zeros. Because the zeros-string is as long as
|
|
// the largest number, this should always pass.
|
|
// Unreachable code in current implementation. run_num_str is sized to
|
|
// accommodate run_num_base, which ahs been given as many zeroes as the
|
|
// number of characters in the largest run number.
|
|
if (run_num_str_partial.size() > run_num_str.size()) {
|
|
std::string message =
|
|
std::string("File: ") + __FILE__ + ", Line: " +
|
|
std::to_string(__LINE__) + ", Sizing Error\nAttempted to create a " +
|
|
"filename with a run-number that exceeds the\npre-generated size " +
|
|
"(e.g. trying to fit the number 10000 into 4 characters.\nThis " +
|
|
"should never happen.\n";
|
|
message_publish(MSG_ERROR, message.c_str());
|
|
exec_terminate_with_return(1, __FILE__, __LINE__, message.c_str());
|
|
}
|
|
// else
|
|
run_num_str.replace( max_length - length, length, run_num_str_partial);
|
|
|
|
// Create the directories.
|
|
command = "mkdir -p " +monte_dir+"/RUN_"+run_num_str;
|
|
system( command.c_str());
|
|
|
|
// Next write the input file into the created directory
|
|
std::string filename_root = monte_dir + "/RUN_" + run_num_str + "/monte_";
|
|
std::string filename = filename_root + input_file_name;
|
|
std::ofstream input_file(filename);
|
|
// Check for success of file-open using ofstream's failbit.
|
|
if (input_file.fail()) {
|
|
std::string message =
|
|
std::string("File: ") + __FILE__ + ", Line: " +
|
|
std::to_string(__LINE__) + ", I/O error\nUnable to open file " +
|
|
filename.c_str() + " for writing.";
|
|
message_publish(MSG_ERROR, message.c_str());
|
|
exec_terminate_with_return(1, __FILE__, __LINE__, message.c_str());
|
|
}
|
|
|
|
// print the default (common) content to the top of the file and add the
|
|
// run-number identification for any variables that may depend on this.
|
|
input_file <<
|
|
location << ".active = True"
|
|
"\n" << location << ".generate_dispersions = False\n"
|
|
"\nexec(open('"<<run_name<<"/"<<input_file_name<<"').read())"
|
|
"\n" << location << ".monte_run_number = "<< run_num <<"\n";
|
|
|
|
// Process all monte-carlo variables for this run. Note -- each variable
|
|
// has its own random generator, so the insertion of other variables
|
|
// cannot interfere with the random number generation sequence.
|
|
for (auto var_it : variables) {
|
|
var_it->generate_assignment();
|
|
input_file << var_it->get_command();
|
|
}
|
|
input_file << "\n";
|
|
input_file.close();
|
|
|
|
// Generate the run-level dispersions list
|
|
if (generate_summary) {
|
|
std::ofstream disp_list(filename_root + "values");
|
|
if (disp_list.is_open()) {
|
|
disp_list << run_num_str;
|
|
// Print the run number at the beginning of the line
|
|
for (auto var_it : variables) {
|
|
if (var_it->include_in_summary) {
|
|
disp_list << ", " << var_it->get_assignment();
|
|
}
|
|
}
|
|
disp_list << "\n";
|
|
disp_list.close();
|
|
}
|
|
// Unreachable code in current implementation.
|
|
else {
|
|
std::string message =
|
|
std::string("File: ") + __FILE__ + ", Line: " +
|
|
std::to_string(__LINE__) + ", Output failure\nFailed to record " +
|
|
"summary data for run " + run_num_str.c_str() + ".\n";
|
|
message_publish(MSG_ERROR, message.c_str());
|
|
generate_summary = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Consolidate all individual run monte_values files.
|
|
if (generate_summary) {
|
|
std::string all_runs_filename = monte_dir + "/monte_values_all_runs";
|
|
command = "rm -f " + all_runs_filename;
|
|
system( command.c_str());
|
|
command = "cat " + monte_dir + "/RUN_*/monte_values >> " +
|
|
all_runs_filename;
|
|
system( command.c_str());
|
|
command = "for r in " + monte_dir + "/RUN_*;" +
|
|
"do ln -s ../monte_variables $r/monte_variables; done";
|
|
system( command.c_str());
|
|
}
|
|
|
|
|
|
input_files_prepared = true;
|
|
return true;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
add_variable
|
|
Purpose:(Adds a pointer to an instantiated MonteCarloVariable to the
|
|
master-list. This master-list will be processed in generating the
|
|
random assignments that are recorded in the monte_input.py files.)
|
|
*****************************************************************************/
|
|
void
|
|
MonteCarloMaster::add_variable(
|
|
MonteCarloVariable & variable)
|
|
{
|
|
if (input_files_prepared) {
|
|
std::string message =
|
|
std::string("File: ") + __FILE__ + ", Line: " +
|
|
std::to_string(__LINE__) + ", Invalid sequence\nAttempted to add a " +
|
|
"new variable " + variable.get_variable_name().c_str() + " to run " +
|
|
run_name.c_str() + ", but the input files have already been " +
|
|
"generated.\nCannot modify input files to accommodate this new " +
|
|
"variable.\nAddition of variable rejected.\n";
|
|
message_publish(MSG_ERROR, message.c_str());
|
|
return;
|
|
}
|
|
|
|
// check for uniqueness
|
|
for (auto var_it = variables.begin(); var_it != variables.end(); ++var_it) {
|
|
if ( (**var_it).get_variable_name() == variable.get_variable_name()) {
|
|
std::string message =
|
|
std::string("File: ") + __FILE__ + ", Line: "
|
|
+ std::to_string(__LINE__) + ", Duplicated variable.\nAttempted " +
|
|
"to add two settings for variable " +
|
|
variable.get_variable_name().c_str() +
|
|
".\nTerminating to allow resolution of which setting to use.\n";
|
|
message_publish(MSG_ERROR, message.c_str());
|
|
exec_terminate_with_return(1, __FILE__, __LINE__, message.c_str());
|
|
}
|
|
}
|
|
|
|
// if the variable is of type MonteCarloVariableFile, check for
|
|
// other MonteCarloVariableFiles that use the same file.
|
|
MonteCarloVariableFile * file_variable =
|
|
dynamic_cast< MonteCarloVariableFile *> (&variable);
|
|
if (file_variable != NULL) {
|
|
std::string filename = file_variable->get_filename();
|
|
bool found_file = false;
|
|
for (auto it = file_list.begin(); it != file_list.end(); ++it) {
|
|
if (filename == (*it).first) {
|
|
(*it).second->register_dependent( file_variable);
|
|
found_file = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found_file) {
|
|
std::pair< std::string, MonteCarloVariableFile *>
|
|
new_pair(filename, file_variable);
|
|
file_list.push_back( new_pair);
|
|
}
|
|
}
|
|
|
|
// Finally, add this variable to the list
|
|
variables.push_back(&variable);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
find_variable
|
|
Purpose:
|
|
Get a pointer to a MonteCarloVariable instance based on its "name" -- i.e.
|
|
the variable for which it is generating a value.
|
|
Limitations:
|
|
- Only returns the base-class pointer, so this has limited
|
|
versatility. If the desire is to modify the distribution parameters
|
|
or other characteristic of a MCVariable after it has been
|
|
generated, the returned pointer may require an additional
|
|
dynamic-cast to make the characteristics of the distribution type
|
|
available.
|
|
- Return value must be checked for NULL
|
|
*****************************************************************************/
|
|
MonteCarloVariable *
|
|
MonteCarloMaster::find_variable( std::string var_name)
|
|
{
|
|
for (auto it : variables) {
|
|
if (var_name == it->get_variable_name()) {
|
|
return it;
|
|
}
|
|
}
|
|
std::string message =
|
|
std::string("File: ") + __FILE__ + ", Line: " +
|
|
std::to_string(__LINE__) + ", Invalid name\nCould not find MonteCarlo " +
|
|
"variable with name " + var_name.c_str() +
|
|
".\nReturning a NULL pointer.\n";
|
|
message_publish(MSG_ERROR, message.c_str());
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
remove_variable
|
|
Purpose:(remove a variable from distribution after it has been added)
|
|
Limitation:(Must be run before "execute"; once the files have been generated, it is too late to remove a variable)
|
|
*****************************************************************************/
|
|
void
|
|
MonteCarloMaster::remove_variable( std::string var_name)
|
|
{
|
|
// NOTE - cannot use find_variable(...); that returns a pointer to the
|
|
// variable and this method needs the list iterator addressing the variable.
|
|
for (auto it = variables.begin(); it != variables.end(); ++it) {
|
|
if (var_name == (*it)->get_variable_name()) {
|
|
variables.erase(it);
|
|
return;
|
|
}
|
|
}
|
|
std::string message =
|
|
std::string("File: ") + __FILE__ + ", Line: " +
|
|
std::to_string(__LINE__) + ", Invalid name\nAttempt to remove " +
|
|
"MonteCarlo variable with name " + var_name.c_str() + " FAILED.\nDid " +
|
|
"not find a variable with that name.\n";
|
|
message_publish(MSG_WARNING, message.c_str());
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
set_num_runs
|
|
Purpose:(Sets the intended number of runs for this scenario)
|
|
*****************************************************************************/
|
|
void
|
|
MonteCarloMaster::set_num_runs(
|
|
unsigned int num_runs_)
|
|
{
|
|
if (input_files_prepared) {
|
|
std::string message =
|
|
std::string("File: ") + __FILE__ + ", Line: " +
|
|
std::to_string(__LINE__) + ", Invalid sequence\nAttempted to set the " +
|
|
"number of runs to " + std::to_string(num_runs_) + ", but the " +
|
|
"input files have\nalready been generated.";
|
|
message_publish(MSG_ERROR, message.c_str());
|
|
}
|
|
else {
|
|
num_runs = num_runs_;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************
|
|
execute
|
|
Purpose:(The main executive. This should be run as an initialization-class
|
|
job very early in the initialization cycle, after all the input
|
|
processor operations have completed.)
|
|
*****************************************************************************/
|
|
void
|
|
MonteCarloMaster::execute()
|
|
{
|
|
if (!active || !generate_dispersions) {
|
|
return;
|
|
}
|
|
|
|
for (auto it = file_list.begin(); it != file_list.end(); ++it) {
|
|
(*it).second->initialize_file();
|
|
}
|
|
|
|
prepare_input_files();
|
|
|
|
if (generate_meta_data) {
|
|
collate_meta_data();
|
|
}
|
|
|
|
// clean up any lingering aspects of the MonteCarloVariable instances.
|
|
std::list<MonteCarloVariable *>::iterator var_it = variables.begin();
|
|
for (; var_it != variables.end(); ++var_it) {
|
|
(**var_it).shutdown();
|
|
}
|
|
|
|
std::string message =
|
|
"\nMonte-Input files generated in "+ monte_dir +
|
|
"\nRuns can now be launched using the generated monte-input "+
|
|
"files and\nmanaged with an external load-management system, "+
|
|
"such as SLURM.\n"+
|
|
"This simulation is complete. Exiting.\n";
|
|
exec_terminate_with_return(0, __FILE__, __LINE__,message.c_str());
|
|
}
|
|
|
|
/*****************************************************************************
|
|
collate_meta_data
|
|
Purpose:(Generates an output of metadata describing the variables, their
|
|
types, and other identifying characteristics)
|
|
*****************************************************************************/
|
|
void
|
|
MonteCarloMaster::collate_meta_data()
|
|
{
|
|
std::string filename = "MonteCarlo_Meta_data_output";
|
|
if (input_files_prepared) { // so directory exists
|
|
filename = monte_dir + "/" + filename;
|
|
}
|
|
|
|
std::ofstream meta_data( filename);
|
|
// Check for success of file-open.
|
|
if (meta_data.fail()) {
|
|
std::string message =
|
|
std::string("File: ") + __FILE__ + ", Line: " +
|
|
std::to_string(__LINE__) + ", I/O error\nUnable to open file " +
|
|
filename.c_str() + " for writing.\nAborting generation of meta-data.\n";
|
|
message_publish(MSG_WARNING, message.c_str());
|
|
return;
|
|
}
|
|
|
|
if (!input_files_prepared) {
|
|
meta_data << "Generating meta-data on the current configuration.\n" <<
|
|
"The input files have not yet been generated which means this\n" <<
|
|
"configuration has not been finalized and is subject to change.\n" <<
|
|
"Sending meta-data to top-level directory.\n";
|
|
}
|
|
|
|
// Capture and alphabetize all variable names with their respective variable
|
|
// type; count the number of each type.
|
|
std::list< std::string > variable_names;
|
|
std::list< std::string > exec_file_names;
|
|
std::list< std::pair < unsigned int, std::string> > random_variables;
|
|
unsigned int count_calc = 0;
|
|
unsigned int count_const = 0;
|
|
unsigned int count_exec = 0;
|
|
unsigned int count_presc = 0;
|
|
unsigned int count_rand = 0;
|
|
unsigned int count_undef = 0;
|
|
|
|
for (auto const * var_it : variables) {
|
|
switch (var_it->get_type()) {
|
|
// Unreachable case in current implementation.
|
|
// All current variable classes have been given a "type"
|
|
default:
|
|
variable_names.push_back (var_it->get_variable_name() + ", Undefined_type");
|
|
count_undef++;
|
|
break;
|
|
case MonteCarloVariable::Calculated:
|
|
variable_names.push_back (var_it->get_variable_name() + ", Calculated");
|
|
count_calc++;
|
|
break;
|
|
case MonteCarloVariable::Constant:
|
|
variable_names.push_back (var_it->get_variable_name() + ", Constant");
|
|
count_const++;
|
|
break;
|
|
case MonteCarloVariable::Execute:
|
|
exec_file_names.push_back (var_it->get_variable_name());
|
|
count_exec++;
|
|
break;
|
|
case MonteCarloVariable::Prescribed:
|
|
variable_names.push_back (var_it->get_variable_name() + ", Prescribed");
|
|
count_presc++;
|
|
break;
|
|
case MonteCarloVariable::Random:
|
|
variable_names.push_back (var_it->get_variable_name() + ", Random");
|
|
count_rand++;
|
|
std::pair< unsigned int, std::string> var(var_it->get_seed(),
|
|
var_it->get_variable_name());
|
|
random_variables.push_back(var);
|
|
break;
|
|
}
|
|
}
|
|
variable_names.sort();
|
|
|
|
meta_data <<
|
|
"\n\n*************************** SUMMARY **************************\n" <<
|
|
variables.size() << " total assignments\n - " <<
|
|
count_const << " constant values\n - " <<
|
|
count_calc << " calculated variables\n - " <<
|
|
count_presc << " prescribed (file-based) variables\n - " <<
|
|
count_rand << " random variables\n - " <<
|
|
count_exec << " files for execution\n - " <<
|
|
count_undef << " variables of undefined type" <<
|
|
"\n\n********************* LIST OF VARIABLES, TYPES****************\n";
|
|
|
|
std::list< std::string >::iterator var_name_it = variable_names.begin();
|
|
for (; var_name_it != variable_names.end(); ++var_name_it) {
|
|
meta_data << (*var_name_it) << "\n";
|
|
}
|
|
meta_data <<
|
|
"**************************************************************\n";
|
|
|
|
if (!exec_file_names.empty()) {
|
|
meta_data <<
|
|
"\n\n*********** LIST OF EXECUTABLE FILES AND FUNCTIONS ***********\n";
|
|
for (auto const & var_name_it_temp : exec_file_names) {
|
|
meta_data << var_name_it_temp << "\n***\n";
|
|
}
|
|
meta_data <<
|
|
"**************************************************************\n";
|
|
}
|
|
|
|
if (!file_list.empty()) {
|
|
meta_data <<
|
|
"\n\n***** LIST OF DATA FILES AND THE VARIABLES THEY POPULATE *****";
|
|
for (auto const & file_it : file_list) {
|
|
meta_data << "\n******\n" << file_it.first << "\n";
|
|
const std::list<MonteCarloVariableFile*> & dependents =
|
|
file_it.second->get_dependents();
|
|
for (auto const & itv : dependents) {
|
|
meta_data << itv->get_column_number() << " " <<
|
|
itv->get_variable_name() << "\n";
|
|
}
|
|
}
|
|
meta_data <<
|
|
"**************************************************************\n";
|
|
}
|
|
|
|
// Need to check the seeds on the random variables for inadvertent
|
|
// correlation between variables. If there are no random variables, there is
|
|
// nothing to do.
|
|
if (!random_variables.empty()) {
|
|
random_variables.sort(seed_sort);
|
|
|
|
meta_data <<
|
|
"\n\n*****Duplicate seeds; check for intentional correlations*****\n";
|
|
std::list< std::pair< unsigned int, std::string> >::iterator rand_it =
|
|
random_variables.begin();
|
|
unsigned int prev_seed = (*rand_it).first;
|
|
// start checking at the second element ... obviously the first element
|
|
// doesn't match its previous value, and starting with the second element
|
|
// guarantees that there will be a previous element.
|
|
++rand_it;
|
|
bool in_duplicate = false;
|
|
for (; rand_it != random_variables.end(); ++rand_it) {
|
|
// if this seed matches the value of the previous seed, need to
|
|
// record it and the variable associated with it.
|
|
// Also record the variable associated with the previous list entry (i.e.
|
|
// the one with the same seed), but need to be careful here in the case
|
|
// of having 3 (or more) variables with matching seeds to avoid
|
|
// multiple records being made of the middle duplicates.
|
|
if ((*rand_it).first == prev_seed) {
|
|
if (!in_duplicate) {
|
|
// if this is the first match for a given seed, record the previous
|
|
// entry as well.
|
|
meta_data << (*std::prev(rand_it)).first << " " <<
|
|
(*std::prev(rand_it)).second << "\n";
|
|
in_duplicate = true;
|
|
}
|
|
// Then record this entry for all matches.
|
|
meta_data << (*rand_it).first << " " << (*rand_it).second << "\n";
|
|
}
|
|
else {
|
|
in_duplicate = false;
|
|
prev_seed = (*rand_it).first;
|
|
}
|
|
}
|
|
meta_data <<
|
|
"**************************************************************\n";
|
|
meta_data <<
|
|
"\n\n************************ ALL SEEDS *************************\n";
|
|
for (rand_it = random_variables.begin();
|
|
rand_it != random_variables.end();
|
|
++rand_it) {
|
|
meta_data << (*rand_it).first << " " << (*rand_it).second << "\n";
|
|
}
|
|
}
|
|
meta_data.close();
|
|
}
|