trick/trick_source/codegen/Interface_Code_Gen/ClassValues.cpp
Alex Lin 7dcc65d0bd Ignore privacy
Mostly working.  This removes the use of offsetof from all I/O code.  This was
the only reason we needed friends.  In it's place we put the offset value that
clang has calculated for the field.  Still need to work on virtually inherited
classes and confirm bitfields.

refs #218
2016-04-13 16:07:14 -05:00

305 lines
10 KiB
C++

#include <iostream>
#include <sstream>
#include "ClassValues.hh"
#include "FieldDescription.hh"
ClassValues::ClassValues(bool in_inherit, bool in_virtual_inherit) :
inherited(in_inherit) ,
virtual_inherited(in_virtual_inherit) ,
has_init_attr_friend(false) ,
is_pod(false) ,
is_abstract(false) ,
has_default_constructor(false) ,
has_public_destructor(false) ,
invade_privacy(false)
{}
ClassValues::~ClassValues() {
std::vector<FieldDescription *>::iterator fdit ;
for ( fdit = field_descripts.begin() ; fdit != field_descripts.end() ; fdit++ ) {
delete (*fdit) ;
}
std::vector<ClassValues *>::iterator cvit ;
for ( cvit = inherited_classes.begin() ; cvit != inherited_classes.end() ; cvit++ ) {
delete (*cvit) ;
}
}
void ClassValues::addFieldDescription(FieldDescription * in_fdes) {
field_descripts.push_back(in_fdes) ;
// This section creates code that clang on the Mac cannot compile.
// So, we cannot handle overloaded names on the Mac.
#ifndef __APPLE__
// Test to see if the new field overloads a field of the same name. If it does
// then fully qualify the name of the inherited field (the one already in field_name_to_info).
std::map< std::string , FieldDescription * >::iterator mit = field_name_to_info_map.find(in_fdes->getName()) ;
if ( mit != field_name_to_info_map.end() ) {
// If the matched variable is inherited, qualify it with its container class name.
if ( (*mit).second->isInherited() ) {
(*mit).second->setName( (*mit).second->getContainerClass() + "::" + (*mit).second->getName() ) ;
field_name_to_info_map[(*mit).second->getName()] = (*mit).second ;
field_name_to_info_map.erase(mit) ;
}
}
#endif
field_name_to_info_map[in_fdes->getName()] = in_fdes ;
}
void ClassValues::addInheritedFieldDescriptions(std::vector<FieldDescription *> in_fdes) {
// Make a copy of all of the FieldDescription variables.
field_descripts.insert(field_descripts.end(), in_fdes.begin() , in_fdes.end()) ;
// This section creates code that clang on the Mac cannot compile.
// So, we cannot handle overloaded names on the Mac.
#ifndef __APPLE__
std::vector<FieldDescription *>::iterator fdit ;
// Loop through the incoming inherited variable names
for ( fdit = in_fdes.begin() ; fdit != in_fdes.end() ; fdit++ ) {
std::string in_name = (*fdit)->getName() ;
// search existing names for incoming inherited variable name.
std::map< std::string , FieldDescription * >::iterator mit = field_name_to_info_map.find(in_name) ;
// if the variable name already exists we have overloaded variable names.
if ( mit != field_name_to_info_map.end() ) {
// the incoming variable is known to be inherited. Qualify it with its container class name.
(*fdit)->setName( (*fdit)->getContainerClass() + "::" + (*fdit)->getName() ) ;
field_name_to_info_map[(*fdit)->getName()] = *fdit ;
// If the matched variable is also inherited, qualify it with its container class name.
if ( (*mit).second->isInherited() ) {
(*mit).second->setName( (*mit).second->getContainerClass() + "::" + (*mit).second->getName() ) ;
field_name_to_info_map[(*mit).second->getName()] = (*mit).second ;
field_name_to_info_map.erase(mit) ;
// Mark this name is one that we always have to qualify.
field_names_to_qualify.insert(in_name) ;
}
} else {
// incoming name did not match an existing variable name.
// Test to see if there variables of this name need to be qualified.
if ( field_names_to_qualify.find(in_name) == field_names_to_qualify.end() ) {
// The name is not overloaded (yet), add the unqualified inherited name straight into map.
field_name_to_info_map[in_name] = *fdit ;
// Upgrade the inherited variable's container class to the current class.
//(*fdit)->setContainerClass( name ) ;
} else {
// The name is overloaded by other inherited variables... qualify the name.
(*fdit)->setName( (*fdit)->getContainerClass() + "::" + (*fdit)->getName() ) ;
field_name_to_info_map[(*fdit)->getName()] = *fdit ;
}
}
}
#endif
}
void ClassValues::saveInheritAncestry( ClassValues * in_cv ) {
std::map< std::string , unsigned int >::iterator mit ;
for ( mit = in_cv->all_inherited_class_names_map.begin() ; mit != in_cv->all_inherited_class_names_map.end() ; mit++ ) {
all_inherited_class_names_map[(*mit).first] += (*mit).second ;
}
all_inherited_class_names_map[in_cv->getName()]++ ;
}
void ClassValues::setContainerClassForFields() {
std::vector<FieldDescription *>::iterator fdit ;
// Loop through all fields
for ( fdit = field_descripts.begin() ; fdit != field_descripts.end() ; fdit++ ) {
// Prepend the field container class with the current class name.
(*fdit)->setContainerClass( name + "::" + (*fdit)->getContainerClass() ) ;
}
}
void ClassValues::clearAmbiguousVariables() {
std::map< std::string , unsigned int >::iterator mit ;
std::vector<FieldDescription *>::iterator fdit ;
for ( mit = all_inherited_class_names_map.begin() ; mit != all_inherited_class_names_map.end() ; mit++ ) {
// If a class in inherited more than once we have a diamond. We'll need to modify variables that were
// inherited from that class.
if ( (*mit).second > 1 ) {
std::string str = (*mit).first + "::" ;
// Loop through all fields testing for the diamond inherited class in the name.
for ( fdit = field_descripts.begin() ; fdit != field_descripts.end() ; fdit++ ) {
std::string fdit_name = (*fdit)->getName() ;
size_t f = fdit_name.find(str) ;
// If the variable contains the diamond class string, remove the diamond class qualification.
if ( f != std::string::npos ) {
fdit_name.replace(f , str.length() , "") ;
(*fdit)->setName(fdit_name) ;
}
}
}
}
// Removing diamond class qualifications possibly leaves fields with duplicate names.
// We want to remove the duplicated names.
std::set< std::string > field_names ;
fdit = field_descripts.begin() ;
while ( fdit != field_descripts.end() ) {
// test if the current field is in the list of field names processed.
if ( field_names.find( (*fdit)->getName() ) == field_names.end() ) {
// This name is new.
// Add the field to the test set
field_names.insert( (*fdit)->getName() ) ;
fdit++ ;
} else {
// This name was already present
// Free the field's memory.
delete (*fdit) ;
// Erase the field from the list. Move iterator to next field.
fdit = field_descripts.erase(fdit) ;
}
}
}
std::vector<FieldDescription *> ClassValues::getFieldDescription() {
return field_descripts ;
}
void ClassValues::clearFieldDescription() {
field_descripts.clear() ;
}
void ClassValues::addInheritedClass(ClassValues * in_cv) {
inherited_classes.push_back(in_cv) ;
}
void ClassValues::clearInheritedClass() {
inherited_classes.clear() ;
}
void ClassValues::setInherited(bool in_inh) {
inherited = in_inh ;
}
bool ClassValues::isInherited() {
return inherited ;
}
void ClassValues::setVirtualInherited(bool in_inh) {
virtual_inherited = in_inh ;
}
bool ClassValues::isVirtualInherited() {
return virtual_inherited ;
}
void ClassValues::setHasInitAttrFriend(bool in_val) {
has_init_attr_friend = in_val ;
}
bool ClassValues::getHasInitAttrFriend() {
return has_init_attr_friend ;
}
void ClassValues::setPOD(bool in_val) {
is_pod = in_val ;
}
bool ClassValues::isPOD() {
return is_pod ;
}
void ClassValues::setAbstract(bool in_val) {
is_abstract = in_val ;
}
bool ClassValues::isAbstract() {
return is_abstract ;
}
void ClassValues::setHasDefaultConstructor(bool in_val) {
has_default_constructor = in_val ;
}
bool ClassValues::getHasDefaultConstructor() {
return has_default_constructor ;
}
void ClassValues::setHasPublicDestructor(bool in_val) {
has_public_destructor = in_val ;
}
bool ClassValues::getHasPublicDestructor() {
return has_public_destructor ;
}
void ClassValues::setInvadePrivacy(bool in_val) {
invade_privacy = in_val ;
}
bool ClassValues::getInvadePrivacy() {
return invade_privacy ;
}
void ClassValues::setMangledTypeName( std::string in_val ) {
mangled_type_name = in_val ;
}
std::string ClassValues::getMangledTypeName() {
if ( mangled_type_name.empty() ) {
return name ;
}
return mangled_type_name ;
}
std::string ClassValues::getFullyQualifiedMangledTypeName() {
std::ostringstream oss ;
NamespaceIterator ni ;
for ( ni = namespace_begin() ; ni != namespace_end() ; ni++ ) {
oss << (*ni) << "::" ;
}
for ( ni = container_class_begin() ; ni != container_class_end() ; ni++ ) {
oss << (*ni) << "::" ;
}
oss << getMangledTypeName() ;
return oss.str() ;
}
void ClassValues::print_namespaces(std::ostream & os, const char * delimiter) {
unsigned int ii ;
for ( ii = 0 ; ii < namespaces.size() ; ii++ ) {
os << namespaces[ii] << delimiter ;
}
}
std::ostream & operator << (std::ostream & os , ClassValues & cv ) {
os << " name = " << cv.name << std::endl ;
os << " mangled_name = " << cv.mangled_type_name << std::endl ;
os << " file_name = " << cv.file_name << std::endl ;
os << " namespaces =" ;
ConstructValues::NamespaceIterator it ;
for ( it = cv.namespace_begin() ; it != cv.namespace_end() ; it++ ) {
os << " " << *it ;
}
os << std::endl ;
os << " parent classes =" ;
for ( it = cv.container_class_begin() ; it != cv.container_class_end() ; it++ ) {
os << " " << *it ;
}
os << std::endl ;
os << " has_init_attr_friend = " << cv.has_init_attr_friend << std::endl ;
os << " is_pod = " << cv.is_pod << std::endl ;
os << " is_abstract = " << cv.is_abstract << std::endl ;
os << " has_default_constructor = " << cv.has_default_constructor << std::endl ;
os << " has_public_destructor = " << cv.has_public_destructor << std::endl ;
ClassValues::FieldIterator fit ;
for ( fit = cv.field_begin() ; fit != cv.field_end() ; fit++ ) {
os << **fit << std::endl ;
}
return os ;
}