2015-02-26 09:02:31 -06:00

223 lines
5.9 KiB
C++

#include "Integrator.hh"
#include <math.h>
#include <iostream>
#include <ostream>
#include <fstream>
#include <iomanip>
#include "regula_falsi.h"
#include <string.h>
#define PI 3.141592653589793
#define RAD_PER_DEG (2.0*PI/180.0)
typedef struct {
double pos[2];
double vel[2];
double acc[2];
} BALL;
void deriv(BALL *B) {
B->acc[0] = -9.81;
B->acc[1] = 0;
}
void integ(Trick::Integrator *I, BALL *ball ) {
do {
deriv( ball);
I->state_in( &ball->pos[0], &ball->pos[1], &ball->vel[0], &ball->vel[1], NULL);
I->deriv_in( &ball->vel[0], &ball->vel[1], &ball->acc[0], &ball->acc[1], NULL);
I->integrate();
I->state_out( &ball->pos[0], &ball->pos[1], &ball->vel[0], &ball->vel[1], NULL);
} while ( I->intermediate_step);
}
void IBall_sim( Integrator_type Alg,
std::ostream& dataout) {
BALL ball;
long tick;
double sim_time;
REGULA_FALSI rf;
const double seconds_per_tick = 0.01;
const double initial_angle = 30.0;
const double initial_speed = 50.0;
const int doing_dynamic_events = 1;
dataout.width(16);
dataout.precision(14);
// ========================================
// Initialization
// ========================================
tick = 0;
sim_time = 0.0;
ball.pos[0] = 0.0;
ball.pos[1] = 0.0;
ball.vel[0] = initial_speed * cos( initial_angle * RAD_PER_DEG);
ball.vel[1] = initial_speed * sin( initial_angle * RAD_PER_DEG);
Trick::Integrator *I = Trick::getIntegrator( Alg, 4, seconds_per_tick );
sim_time = tick * seconds_per_tick ;
// Initialize Regula Falsi.
reset_regula_falsi(sim_time, &rf);
rf.error_tol = 1.0e-15;
rf.mode = Any;
// Note: We don't care what the tgo estimate is because here,
// we are just initializing the bounds.
rf.error = ball.pos[0];
regula_falsi(sim_time, &rf);
// ========================================
// Simulation loop
// ========================================
do {
dataout << sim_time << " " << ball.pos[0] << " " << ball.pos[1] << std::endl;
I->time = sim_time;
// ###I### Integrate over the time step.
integ(I, &ball);
// Advance time.
tick++;
sim_time = tick * seconds_per_tick ;
// If we are looking for roots ...
if ( doing_dynamic_events ) {
double tgo;
// ###RF### Given the current error, estimate how far (in time) we are from a root.
rf.error = ball.pos[0];
tgo = regula_falsi(sim_time, &rf);
// If regula_falsi found a root in the last interval ...
if ( tgo < seconds_per_tick) {
int root_found = 0;
double t_test = sim_time;
// Iterate until we find the root.
// NOTE: the regula_falsi function gives up and returns with tgo=0 if
// it hasn't converged on a root after 20 iterations.
while (! root_found) {
// ###I### Integrate over the time-correction.
I->dt = tgo;
integ(I, &ball);
t_test += tgo;
// ###RF### Given the current error, estimate how far (in time) we are from the root.
rf.error = ball.pos[0];
tgo = regula_falsi( t_test, &rf);
// If the estimated time-to-go is less than the chosen tolerance, then we have our root.
if (fabs( tgo) < rf.error_tol) {
printf("ROOT@ %18.14g\n", t_test);
root_found = 1;
reset_regula_falsi(t_test, &rf);
}
}
root_found = 0;
// ###I### Integrate from t=t_test back (forward actually) to t=sim_time.
I->dt = sim_time - t_test ;
integ(I, &ball);
// Restore the normal time-step.
I->dt = seconds_per_tick;
}
} // End of doing_dynamic_events.
} while (ball.pos[0] >= -3.0);
dataout << sim_time << " " << ball.pos[0] << " " << ball.pos[1] << std::endl;
delete( I);
}
int main(int argc, const char* argv[]) {
std::ofstream dataout;
std::ofstream gplout;
char dataout_name[80];
Integrator_type Algorithm ;
const char* Algorithm_name;
int test_number;
gplout.open("IBall.gpl", std::ofstream::out);
gplout << "plot \\" << std::endl;
for (test_number = 0; test_number < 5 ; test_number++) {
// Select test.
switch (test_number) {
case 0:
Algorithm = Euler;
Algorithm_name = "Euler";
break;
case 1:
Algorithm = Runge_Kutta_2;
Algorithm_name = "Runge_Kutta_2";
break;
case 2:
Algorithm = Runge_Kutta_4;
Algorithm_name = "Runge_Kutta_4";
break;
case 3:
Algorithm = Runge_Kutta_Fehlberg_45;
Algorithm_name = "Runge_Kutta_Fehlberg_45";
break;
case 4:
Algorithm = Runge_Kutta_Fehlberg_78;
Algorithm_name = "Runge_Kutta_Fehlberg_78";
break;
// case 5:
// Algorithm = Runge_Kutta_Gill_4;
// Algorithm_name = "Runge_Kutta_Gill_4";
// break;
default:
std::cerr << "Invalid test number." << std::endl;
}
strcpy (dataout_name, "IBall_");
strcat (dataout_name, Algorithm_name);
strcat (dataout_name, ".dat");
dataout.open( dataout_name);
IBall_sim( Algorithm, dataout);
dataout.close();
if (test_number > 0) {
gplout << ", \\" << std::endl;
}
gplout << "\"" << dataout_name << "\" using 3:2 title \'" << Algorithm_name << "\' with lines";
}
gplout.close();
system("gnuplot -persist IBall.gpl");
return (0);
}