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1.0  Introduction

1.1 Scope

This document covers the concept and design of the Trick Simulation Environment. It offers a bird’s eye view of the Trick 
design.

For details concerning items such as input variable syntax, source code syntax, simulation definition syntax etc., refer to the 
Users Guide. For details about how a particular design is implemented, refer to the code itself. For details on how to build 
a simulation, refer to the Tutorial. For details concerning the installation of Trick and what platforms are supported, refer to 
the installation portion of the User’s Guide.

This is not a requirements document. In the past (pre-2001), requirements were part of the “Product Specification” 
Document. These have been archived, and are available by request. All new software requirements are stored in a database 
in the Trick lab. If you are interested in finding requirements or adding a new requirement, contact a Trick representative.

1.2 Concept

Trick was designed to allow simulation engineers to concentrate on the math model development rather than the simulation 
executive. Trick eliminates the simulation executive specific and runtime input/output (I/O) code development tasks from 
simulation development. It is designed to allow modelers to share their models between simulations.

Figure 1  Concept

1.3 Developer/Trick Interface

To create a simulation, a developer will create models in C or FORTRAN 90 (F90 is only supported on SGI IRIX 6.5 OS, 
and will soon be unsupported). Model code is tagged with special instructions for Trick in the comment sections of the code. 
The developer will also create a text file called a simulation definition file. The simulation definition file is a blue print of 
how the developer plans to put the actual simulation together. The simulation definition file contains all sorts of 
specifications such as math model function (Trick uses the term “Job” to refer to C functions) calls, math model scheduling 
times, data structure declarations and default data. It houses everything that Trick needs to define a simulation with respect 
to its math model code.

Math Model 2

Math Model n

Trick

Simulation Executable

Math Model 1
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Figure 2  Developer/Trick Interface

1.4 Simulation Executable and Input/Output

The simulation executable is a binary executable created by a C compiler/loader. The simulation executable has one main 
calling argument which is a text file appropriately called an “input file”. The input file’s syntax closely resembles a C 
assignment statement and follows a simple “name = value;” format. It is able to #include other files which allows for a nested 
modular design of data files. The input file design and creation is the responsibility of the developer and/or user. The 
executable has several outputs. It prints to stderr, stdout. It is also able to send data across different communication mediums 
such as sockets. It is able to dump all the variables it has knowledge of into a text file coined a “checkpoint”. Each time it 
runs, it dumps a text file that contains a summary about the particular simulation run. The executable may also dump a 
database of variable information. Finally, if requested, it may log data. While the simulation is running, a two-way 
communication is offered to the user through the Trick control panel. The executable has built in communication software 
as well that allows it to communicate to other processes in a client/server model.

Figure 3  Simulation Executable IO
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1.5 Developer/Data Interface

One of the outputs of the simulation executable is data. Users are most interested in model data resulting from model 
calculations. Internal simulation data may be logged as well. The choice of data logged, the format of data (e.g. fixed ascii, 
binary) and the frequency at which data is logged is specified by the user in the simulation input file (data driven).

Once data is logged, it may be viewed in the form of a plot or table. The Trick data_products program is responsible for 
processing data, creating plots etc. In order to view or post process data, it is necessary for the developer to create description 
(data product specification) files for the data_products program.

Figure 4  Developer/Data Interface

1.6 Communicating With External processes or devices

The simulation executable can be programmed to communicate with any external process or device using trick 
communications which is a socket based library. As an example, Trick simulations may be programmed to drive a cockpit. 
Special accommodations were made to allow Trick simulations to communicate with other Trick simulations. These 
distributed processing and synchronous/asynchronous capabilities of Trick will be discussed in more detail later, but Figure 
5 below shows the high level concept.
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Figure 5  Simulation Executable And External Devices
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2.0  Creating A Simulation Executable

This section will detail how Trick takes a set of models and creates a simulation executable. Referring to Figure 1, we will 
now find out what is in that Trick gear box. Popular opinion holds that it is black voodoo. Hopefully we can dispel at least 
some of that myth.

Figure 6  The Trick Box

2.1 Trick Processor Overview

In a nutshell, Trick uses three code generating processors, UNIX make and the C compiler/loader to build the simulation 
executable. The three Trick processors are called the Interface Code Generator (ICG), Module Interface Specification (MIS) 
and the Configuration Processor (CP). All three processor are scripts written in Perl. ICG is used to parse header files and 
build the Trick internals for data structures. MIS is used to parse source code and build up the Trick internals for math model 
functions. CP parses the Simulation Definition file (S_define) and uses output from MIS and ICG along with the compiler/
loader to create the simulation executable. The developer will call CP to create the simulation executable.

To understand these internals, a more detailed description of the simulation executable is needed. The simulation executable 
is an amalgam of math model and Trick executive object code. Trick must know all math model data structure information 
to be able to access variables from memory, therefore it uses ICG to auto-generate Input/Output or “IO” source code from 
each and every data structure header file in the math models. Trick must also know all function prototype information, 
therefore it uses MIS to build internals to be used for function calls. CP, the final processor, parses the simulation definition 
file, creates a special source file named S_source.c and then invokes the compiler/loader. In the end: math model object 
code/libraries; IO auto-generated object code; simulation math model object code; Trick executive libraries and a Trick 
main() are all linked together to form the simulation executable.

Figure 7  Inside The Trick Box
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2.2 Configuration Processor

The Configuration Processor (CP) is responsible for parsing a simulation definition file. Using the simulation definition file 
as a blue print, it creates a simulation executable. CP also requires code and other information about the simulation data 
structures and math model modules (functions) which is generated by ICG and MIS. This code and database information 
will be discussed later.

2.2.1 Simulation Definition File (S_define)

This is the blue print that CP uses to create a simulation. For details concerning the syntax of the S_define, consult the User’s 
Guide. An abstract view of the simulation definition is displayed below.

Figure 8  Simulation Definition (S_define)

As shown, the simulation definition is broken up into “simulation objects” which contain data structure, default data 
specifications and job (function or subroutine) information.

Simulation objects are a way of organizing jobs into cohesive units. The order of the objects are important. The Trick 
executive will call jobs first in “class” order as the primary sort, and then in S_define sequential order as the secondary sort. 
More about job classifications will be discussed later.

Data structures must be declared so that Trick knows which header files to instantiate for IO code and which header files to 
include.

Simulation Object 2

Simulation Object n

Simulation Object 1

Declare data structures for this object
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Job1: [<Info> <Dir Location> <Import/Export> <Name> <Arguments>]
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Job n: [<Info> <Dir Location> <Import/Export> <Name> <Arguments>]

Simulation Definition
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Default data may be declared optionally so that Trick knows how to initialize data structures for simulation execution.

Jobs are the building blocks of the simulation objects. They point to developer math models functions. Details about how 
the simulation executable calls these jobs (order, priority, frequency etc.) will be explained later.

The following diagram shows the relationship between the simulation definition and the math models.

Figure 9  Simulation Definition/Math Model Interface

The simulation definition file points to a list of math model data structures, default data files and math model functions. With 
this information (and some special syntax in each header and source code file) CP is able build the simulation. 

2.2.2 CP Processing

As CP parses the simulation definition, it builds source code, databases and a master UNIX makefile containing all 
simulation dependencies. The Master makefile contains all rules/dependencies for building the simulation.
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Figure 10  CP’s Processing Of Simulation Definition

Once the master makefile is generated, processing of all the code may begin. The master makefile makes calls to CC as well 
as the Trick processors, ICG and MIS, to process math model source code. ICG is responsible for parsing headers and 
producing a data structure database and IO code that will allow Trick to input and output to math model variables. MIS is 
responsible for processing “function” source code. It’s primary job is to build a catalog database of math model jobs (or 
functions) with information about functions and their arguments. The figure below depicts how the master makefile, ICG 
and MIS work to produce object code.

Figure 11  Master Makefile
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2.2.3 Database And Code Generation

CP incorporates developers math models, data structures and default data to produce a simulation. CP also manages the 
dependency tree of simulation source code in a database (catalog) efficiency sake. It even produces a “documentation” 
HTML file for viewing the contents of a simulation. It is also responsible for creating a source file that contains logic for 
job order, job classification, job arguments, and run-time execution. This source file (S_source.c) is eventually compiled 
and linked into the simulation executable.

Figure 12  CP Database And Code Generation

2.2.4 Summary

CP is the interface between the developer and Trick. It is the processor that pulls together a simulation executable for the 
developer. The other two Trick processors (ICG & MIS) that Trick uses will be discussed in the following sections.

2.3 Interface Code Generator (ICG)

ICG parses developer created data structure header files and generates runtime executive Input/Output (IO) source code as 
well as database entries for all C struct, union, typedefs, enumerated types, and FORTRAN 90 types parsed (Note that F90 
is only supported for SGI IRIX 6.5 and will be phased out). The source code generated is eventually compiled into a 
simulation which uses the types parsed. The type databases are used by ICG and by CP for data structure compatibility 
checks and for data structure instantiation in the simulation.

simulation object 1
 ---> struct 1
---------> headers & default data
---> struct 2
etc....

Data structure database

CP

Data Structures Declarations

Default Data Declarations

Job Declarations

Simulation Definition

Simulation default data
Model default data (user data).

Default data database

Math model headers
Math model structure declarations
Trick executive structures declare.
Math model function prototypes
Math model function scheduler
Sim specific Trick exec functions
Variable database generator

Simulation Source
Page xiJSC Automation, Robotics and Simulation Division



Trick Design Doc
Section 2.0   Creating A Simulation Executable Trick 2005.0
2.3.1 IO Source And Attributes

ICG is responsible for creating IO code from header files. IO code is the code that Trick uses to access math model variables 
in memory. Each structure and each enumerated type in math model header is processed by ICG resulting in what are called 
“Attribute” structures. Attribute structures contain all the information that Trick needs about a variable. Some of that 
information, like the Unit specification, is given by the developer in comments next to the variable in special Trick 
“comment” syntax. Other information, like each parameter’s byte offset, is generated and used by Trick for accessing data.

Figure 13  IO Source

The ICG generated IO source code and “attribute” data is eventually compiled and included into the simulation by the CP 
process. This IO source and attribute data allows the simulation “user” to input data through Trick’s input processor with a 
“name = value” syntax. It also allows Trick’s logging functions to output “user” specified variables through a data driven 
interface by specifying what variables are to be logged. This attribute data design also allows math model developers access 
to any ICG processed data structure variable by “name”. Figure 14 below, shows the “attributes” concept for a data structure 
variable S1.a.b.c.i where “i” is the variable nested in structures S1, a, b, and c.

CP also uses ICG generated data to generate (in S_source.c) one “large” data structure that includes all math model and 
executive data. Math model function access to data structures are made through data structure pointers which are passed to 
functions that are specified in the simulation definition file and the generated simulation source.
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Figure 14  Attributes Tree

2.3.2 ICG/HTML Auto Documentation

Another responsibility of ICG is creating documentation. ICG parses the comment sections of the variables and creates 
HTML pages that describe all processed data structures. In the end CP creates a master HTML page that links all 
documentation for the simulation together. Information about variable type, input/output specifications, unit specs, etc. are 
generated by ICG and displayed in the HTML documentation.

2.4 Module Interface Specification (MIS)

MIS parses developer created source code “function” files and generates a database entry for each module (model function) 
parsed. The module database is used by the CP for module classification and calling argument consistency checks as well 
as automatic code generation to hook the modules into the Trick executive.

MIS must process all source code module files before they can be integrated into the simulation by CP. This is primarily to 
ensure that the object code link list is constructed properly by the CP (object code dependencies are included with the 
module database information).

Special syntax is used in comment sections of the source code so Trick will know the jobs class, object dependencies, library 
dependencies among other things. Consult the User’s Guide for details on syntax, available job classes etc.

Like ICG, MIS also creates HTML documentation that describes each module in the simulation.

Top level Attribute Struct 1 Attributes StructA: Sub structure of Struct 1

IO Source (from A.h)

Attributes StructB: Sub structure of Struct A

IO Source (from B.h)

Attributes StructC: Sub structure of Struct B

IO Source (from C.h)

Element i of Struct CElement i of Struct CElement i of Struct C

S_source.c 

Get Attributes

s1.a.b.c.i attributes of “s1.a.b.c.i”
including “address”
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Figure 15  MIS Functions

2.5 Make_build and Catalog

The Trick processors “make_build” and “catalog” have not been mentioned yet, but they are also part of the simulation 
building scheme that makes up trick. When executed from a math model directory, Make_build generates a UNIX Makefile 
for math model functions and header files. Make_build uses the X Windows utility “makedepend” to generate all make 
dependencies. Make_build is used by developers for “distributed” low level model development, but it is not required once 
CP is invoked and the simulation Makefile is generated.

The catalog utility servers two purposes for Trick developers. The first is when it is used as a reporting tool to list function 
and data structure database information for math models that have already been processed by MIS and ICG. The second 
purpose is to provide a catalog “initialization” and “building” capability to Trick developers. Each Trick developer 
maintains their own catalog directory environment which from time to time may require initialization and rebuilding. The 
catalog utility does this by scanning their environment setup and the math models that have been previously processed by 
MIS and ICG.

2.6 Putting it all together

Once all math model source code, with all the special Trick comments, is processed by CP, MIS, ICG and make, out comes 
a simulation executable. The following figure gives a grand picture for the interaction between all these pieces.
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Figure 16  Trick Development Process Internals
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3.0  The Simulation Executive

The Trick runtime executive is designed for both real-time and non-real-time applications which have time based (primary 
scheduling algorithm) and event based (secondary scheduling algorithm) scheduling requirements, including hardware-in-
the-loop, and/or distributed (multi-processor and/or multi-box) applications.

The Trick executive is also designed to be data driven wherever possible. The runtime executive provides a complex array 
of user inputs which allow the user to configure the scheduling, real-time, multi-process, multi-box aspects of each 
application.

The Trick executive also has a built in capability for recording real-time performance data, and this capability is configurable 
through user input.

3.1 Real-Time Processing

Trick provides a real-time processing capability which is different from most real-time simulation capabilities. The Trick 
executive is a time based executive and can run in a non-real-time mode just as easily as a real-time mode. This is because 
Trick guarantees job execution orders and allows the developer to design guaranteed interfaces which are not effected by 
the execution time required for any one or more jobs. Frame based scheduling executives typically have problems handling 
real-time overruns because the frame pulse is the scheduling cue. The frame-pulse in Trick is a mechanism to monitor and 
maintain the real-time status of the simulation, NOT a scheduling mechanism.

An executive for a real-time simulation must guarantee that the simulated time matches the real-world time at specified 
intervals (real-time frame length). If the simulated time is greater than the real-world time, an overrun has occurred and must 
be dealt with. Trick’s main or “parent” executive process does all job scheduling and real-time frame processing. Real-time 
frame processing is guaranteed by one of two methods; software time checks, or with operating system interval timer signals 
(itimers).

For both methods, the software time checks are performed at the end of each real-time frame by calling an operating system 
function to get the real-world time, and then comparing the real-world time to the simulated time. Although efficient, the 
software check alone has two major drawbacks for some real-time applications. First, it can not guarantee that an overrun 
will be detected when the real-time frame has elapsed; e.g. the software check will never stop an infinite loop. Second, since 
the software check burns the CPU during the underrun, it cannot will not go idle to let other processes have the CPU.

The software method can be combined with an itimer (SIGALARM) signal to guarantee overrun detection and handling and 
provide a process “wake up” or interrupt mechanism to facilitate CPU resource sharing. When itimers are used, the 
executive will pause (go to sleep) at the end of the real-time frame until the itimer signal handler receives the operating 
system SIGALARM interrupts at a specified interval. Once the signal is received, the handler performs checks on the 
execution status of the current real-time frame.

For both methods, if overruns occur which exceed the maximum overrun amount or the maximum number of overruns, the 
parent initiates a quick and graceful shutdown or it can go into freeze mode. Note that the executive does not know of the 
overrun condition until 1) it has finished its regularly scheduled real-time frame processing, or 2) the itimer signal is 
handled. This means that the overrun detection is not instantaneous, but dependent on synchronous itimer checks and 
indeterminate real-time frame completion.

When real-time frame under-runs occur, the executive can be configured (through input flags) to pause (uses no CPU 
resources) and wait for a SIGALARM interrupt, or to perform a spin loop (software only mode) continually checking the 
system clock against the simulated time until the “real world” system clock “catches up”. 

Through the input file, the user can set over-run limits, use software time checks and itimers, and use real-time process 
control features (locking the process in memory, assigning and locking a process to a processor, setting the process priority, 
running a simulation time to real-time ratio other than 1 to 1, etc.).
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3.2 Source Code Architecture

What source code comprises the simulation executive? What Figure 16 does not entail, this section covers.

A complete simulation source code body is comprised of the following components:

1. Trick runtime executive main() program (master.c),

2. Trick runtime executive source code which remains unchanged regardless of the simulation application 
(${TRICK_HOME}/trick_source/sim_services/*) (Note that the main() program also remains 
unchanged),

3. automatically generated Trick executive source code which is specific to each simulation application 
(${USER_HOME}/SIM_*/S_source.c),

4. developer generated math model source code (${TRICK_HOME}/module_source/version/src/
source.c, ${TRICK_HOME}/module_source/version/include/source.h and 
${TRICK_HOME}/module_source/version/include/source.d), and

5. automatically generated source code for math model runtime IO (${TRICK_HOME}/module_source/
version/io_src/io_*.c).

The relationship between these components is shown in Figure 17 which depicts a typical simulation source code 
architecture. The arrows in this figure indicate function calls; e.g. the main programs make function calls to the auto 
generated executive source code and the non-changing executive source code. The three levels depicted in the figure 
represents high, intermediate, and low level function calls. The source code blocks are shaded to separate the non-changing 
executive code (clear), from the automatically generated code (lighter shade), from the developer generated math model 
code (darker shade).

Figure 17   Runtime Source Code Architecture

The Trick main programs are contained in  the ${TRICK_HOME}/trick_source/sim_services/mains 
directory. The main programs are in their own source code directory because all the other executive source is packaged in 
archive libraries and the main program objects cannot be in the libraries if the simulation compile is to link properly.
master.c is the parent runtime executive which handles initialization, job scheduling and real-time processing control.

master.c calls functions from both the auto generated and non-changing executive source code. S_source.c is 
generated by CP for each simulation. S_source.c contains the high level runtime IO functions which call the lower 
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level IO functions (io_*.c) and the developer supplied math model jobs. The non-changing executive source code also 
provides some useful low level services for developing math models.

3.3 Memory Architecture

The Trick executive uses good old malloc-ed memory for 100% of its global data (ALL data structures) requirements. This 
design is possible since Trick uses threads rather than forking off children. This design has the benefit of being able to be 
“purified” by the Rational Purify tool.

In a multiprocess group (Master/slave) set up, data is shared by importing and exporting data over sockets. There is no 
“shared” arena.

3.4 Variable Server

Trick offers a way for an external process to get/set math model variables in memory. There is a thread called “variable 
server” that has access to memory. The variable server accepts clients and gives them access to simulation data and allows 
clients to set data to specified values as well. The simulation control panel is an example of such a client.

3.5 Process Architecture

Trick simulations can be configured to be single process or multi-process, including multi-computer. The S_define file 
syntax and data driven input parameters control this configuration. A simulation unit defined with a single S_define file is 
referred to as a “Process Group” or PG. This PG can be single process or multi-process (multi-process within a PG refers to 
UNIX threaded processes that run in parallel). Figure 18 shows the Trick executive interprocess communication (IPC) 
architecture for a single PG multi-process simulation running on a single, possibly multi-cpu, workstation.
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Figure 18  Single Process Group Architecture

Processes are represented by ovals and the shaded box represents the ipc mechanisms. In this figure, the executive is 
represented by a parent executive process, a simulation control (Tcl/Tk) process, and one or more threads that are spawned 
by the parent executive (according to specifications in S_define). In general, a multi-process simulation should only be 
executed on a multi-processor machine. If a multi-process simulation is executed on a single CPU machine, the simulation 
will run slower than the same simulation configured for a single process. This is due to the context switching that would be 
necessary on the single processor machine.

Malloced memory is used for all data structure data. Memory segments can be accessed by the parent executive and all 
threads. The parent executive controls all job timing, scheduling, and process control data; the child threads merely access 
the data. Math model data can be accessed or modified by either the parent or the child.

Pthread mutexes (or Spinlocks) are used to tell the child threads to start processing their respective job queues for each 
scheduling frame. The parent constructs all the child job queues and then sets a mutex for each child with jobs on its queue. 
Before the children receive their job queue start mutex, they are idle (using no CPU resources unless Spinlocks have been 
selected). The children receive and reset their respective mutex and start processing their job queue. The parent executive 
knows when the children have finished via job completion flags.

Sockets are used to managed health and status prints (debug, status, error message, etc.) from the parent executive and child 
processes to the Simulation Control process.

Signals are used to manage process termination as well as real-time synchronization. The typical termination signals 
INTERRUPT, KILL, FPE (floating point exception), SEGV (segmentation violation), and BUSERR (bus error), are all 
trapped so that the simulation can start a graceful shutdown. The ALARM signal is used in the real-time mode to 
synchronize the simulation clock with the real-world clock (the computer system clock).
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3.6 Executive Loop

The heart and soul of the simulation executive is shown in Figure 19. The two figures (Figure 20, Figure 21) that follow 
cover lost detail from Figure 19. Whether the simulation is setup as a real-time or non-real-time simulation, the control flow 
for job processing shown is the same, and controlled by the parent executive process. However, processing for single and 
multi-process simulations could be slightly different because of the parallel processing and could effect simulation output. 
Job dependency mechanisms are available to ensure that a multi-process simulation will produce identical output to an 
associated single process simulation.
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Figure 19  Executive Loop
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Figure 20  Derivative/Integration/Dynamic Event Control

Figure 21  Freeze Control
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3.7 Parent/Child Thread Details

A multi-process simulation requires more attention from a developer because data flow is not guaranteed unless depends 
on statements are added to the S_define file to force a critical data path. The main executable in a multi-process 
simulation is called the parent process, and all processes spawned by the parent are called child threads. All
initialization jobs specified for a child thread will execute in that child thread (as opposed to executing in the parent 
process), but are guaranteed to execute in the order specified in the S_define file, in other words, there is no parallel 
processing during initialization. Jobs of other classifications will run in the process specified within the S_define file.

The executive will build the main job queue, which should be identical to the queue for the single process simulation, but 
the executive will also build separate jobs queues for each process. If no depends on statements are specified in the
S_define file, then the executive will immediately start executing the first jobs on all process queues in parallel. A
depends on statement will set a dependency between jobs which will force the executive to hold off the execution of 
one job (on any thread) until the jobs it depends on have completed. Even if all jobs in the parent process queue have been 
completed, the executive will not continue to the next job scheduling cycle until all jobs scheduled for the current scheduling 
cycle have finished. The exceptions to this rule are the asynchronous and asynchronous_mustfinish jobs. 
Asynchronous jobs are scheduled by the executive, but the executive does not wait on these jobs to finish before 
continuing with normal job scheduling. Instead, the executive will check to see if it has finished and then start it again on 
its next cycle. Asynchronous_mustfinish jobs are similar to asynchronous jobs, except that the executive will 
“wait” for the asynchronous_mustfinish job to finish when it is time to restart it again.

Processes can be configured to block on job queue starts and job dependencies using either spin locks or pthread mutexes. 
Spin locks should not be used if the multi-process simulation is running more processes than available processors. Spin locks 
are implemented using a busy loop checking a flag in shared memory - this equates to 100% CPU utilization for the active 
process. If the simulation has fewer processes than processors, spin locks provide a more responsive (smallest latency) 
method for blocking the various simulation processes. Pthread mutexes, are good when there are fewer processors than 
processes. Mutexes allow the blocking thread to release the processor so that other threads can use the processor. Although 
mutex overhead is higher than spin locks, mutexes provide the best performance when the number of processes is greater 
than the number of processors.

3.8 Executive Timeline Example

Let’s step through a real-time simulation multi-process job scheduling scenario to help visualize job scheduling. (Figure 22) 
If an S_define had only the following scheduled job entries and the simulation was running with a 0.5 second real-time 
frame:

sim_object {

(0.1) test/v1: test_funct(); 
C1 (0.2) test/v1: test_funct1(); 
C2 (0.4) test/v1: test_funct2(); 
C3 (1.0) test/v1: test_functasync(); 
C4 (1.0) test/v1: test_functasyncmf();

} test;

the parent executive and child threads1 an 2 would wait for all three jobs to complete from the time 0.0 job frame (all 
scheduled jobs that have a start time of 0.0 will be called at time 0.0) before test_funct() would be called at the 0.1 job frame. 
Note that child threads 3 and 4 have asynchronous type job classes on them, so they will not be synchronized with the other 
job frames. The next job frame would be 0.2 in which test_funct() and test_funct1() would be called in parallel. Then the 
parent executive would wait until test_funct() and test_funct1() from the 0.2 job frame have completed before test_funct() 
would be called at the 0.3 job frame. The parent executive and child thread would then wait for test_funct() to complete and 
then call test_funct(), test_funct1(), and test_funct2() in parallel for job frame 0.4. Then the parent executive would wait 
until test_funct(), test_funct1(), and test_funct2() from the 0.4 job frame completed before waiting again for real-time to 
catch up to the simulation time. This final waiting time is labeled as the real-time frame “underrun” time. (see Section 3.1). 
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Finally test_funct() would be called at the 0.5 job frame when the real-time clock reached 0.5 seconds. This job frame and 
real-time synchronization policy would repeat through out the simulation.

The second mechanism that the executive uses for the mutual exclusion of shared data of jobs running in parallel is the 
S_define “depends on” syntax mentioned in the previous section. This mechanism prevents jobs executing in parallel on a 
given job frame from clobbering each other’s data in the reading and writing of common data structures. For example if an 
S_define file had the following depends on entry to go with the above jobs:

test:test_funct() depends on test:test_funct1() The executive would force Parent process to wait for the completion of the 
test_funct1() job scheduled on C1 before calling test_funct() in any common job frame (0.0, 0.2, 0.4, etc.). If we apply this 
dependency to the timeline example that we have been working with, it will cause real-time overruns (Figure 23).

Figure 22   Executive Job Frame Scheduling Timeline Example
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Figure 23   Executive “depends on” Job Frame Scheduling Timeline Example

3.9 Multiple Process Groups (Master/Slave)

The Trick executive has the capability to synchronize the execution frames (real-time or non-real-time) of simulation 
Process Groups (PG) running on the same or different processors/computers The multi-PG synchronization scheme can be 
visualized as a software implementation of an external interrupt generator, but with more capabilities. Since the 
synchronization is performed via software, frame overruns experienced by any of the simulation executables can be handled 
gracefully by all the executables without loosing real-time (without skipping a real-time frame) AND with guaranteed data 
path integrity; characteristics which a system driven by a hardware external interrupt cannot achieve easily.

In the multi-PG scenario, one PG is considered the master PG and all other PGs in the simulation are slaved to the control 
of the master PG. The master is responsible for generating synchronization queues to the slaves, collecting frame execution 
status from the slaves, controlling the simulation mode (initialization, run, freeze, shutdown), and synchronizing the slave 
clocks with the master’s clock. Synchronization communication between the simulation executables is performed via 
sockets (TCP/IP). The identification of the Master PG is done through the input file, and since the Master starts the Slave 
PGs, slave PGs do not have to be identified through input. This data driven capability provides a flexible configuration 
scheme for Master/Slave designation.

Simulation data packets can be passed between Trick PGs with Trick’s Export/Import capability. With this capability, 
simulation designers can specify data structure packets to be exported and imported into the PG via the S_define file. CP 
will parse this syntax and then generate the communication code to export or import the specified data at the specified 
frequency of the designated job the export/import syntax is attached to. The identification of the host machines and PGs is 
done through the input runstream which again makes the distribution of PGs highly configurable. The export/import 
capability can also be used between parent and child processes within the same PG, but is not usually used because process 
group parent and children already share the same memory.

Figure 24 shows a Process Group master/slave communication scenario. The diagram depicts a multi-process master PG 
synchronized with two multi-process slave PGs. The diagram shows the Parent processes from each PG communicating 
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synchronization, mode and clock resets. The diagram also shows child process #2 in slave #1 exporting data to child process 
#1 in slave #2, and child process #2 in slave #2 exporting data to child process #1 in slave #1.

Figure 24   Synchronization and data communication between Process Groups

3.10 Input Processor

The simulation executive is designed to be data driven. The interface between user and simulation executive is the input 
processor. Users/developers create input files in an ASCII C-like syntax. Before a simulation hits its first initialization job 
the input processor parses user created input files. As it parses, it sets variables, loads default data etc. The input processor 
handles #defines, #ifdef, #includes etc. Very complex input scenarios are built using these constructs. Dynamic simulation 
time based events are also specified in the input file. Much of the simulation executive is customized through the input file. 
Simulation stop times, data recording parameters, control panel preferences, Master/Slave setups, interprocess group 
import/export specifications and a host of other items are setup through the input processor.

In order to access data in shared memory, the input processor must have knowledge of the IO source code (attributes) 
generated by ICG.
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Figure 25  Input Processor

3.11 Data Recording

Data recording is built into the Trick executive. Data recording can be completely configured via the input file.

Data recording initialization, execution, and shutdown is automatically performed by the executive. Data recording is not a 
scheduled job like the input processor. 

Users need only to set up data in the input file to use data recording. Some of the more important capabilities involve the 
output format for recording, the output device for recording, and the recording frequency.

Data recording parameters (variables logged) are organized into groups. Each group has its own data format, data frequency, 
destination and frequency.

3.11.1 Formats

There are three data recording output formats: binary, ascii, and fixed ascii. The binary format is a continuous stream of 
bytes which represent the data records, one after the other, without any special separators. The binary format is meant for 
post processing programs. The ascii formats are suitable for printing or viewing via a text editor.

3.11.2 Devices

Each format can be directed to a disk file, computer memory, or a printer. For all devices, the data ultimately ends up in a 
disk file. Recording directly to memory is much faster than recording to disk, but the memory resource is typically much 
scarcer than hard disk space. Once a simulation has completed, any data recorded to memory is transferred to a disk file. 
The printer option is only operational for initialization and termination records for ascii and fixed ascii output formats. For 
the printer option, the records are first written to a disk file and then spooled to the printer.
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3.11.3 Output Destination

The user can specify an output directory to hold all data recording files generated by the simulation. If the user does not 
specify an output directory the RUN_* input directory is assumed. The data recording files include a binary data header 
file, and ASCII data header file, and files for every data recording group. The user can specify the name for the data 
recording manager for the simulation. This name is used to give the data recording header files (files which contain a list of 
all data recorded for the sim) a unique name. For users using a single simulation this name is unimportant, but for users using 
a multiple simulation application where all the recording data resides in the same directory, this name is important.

3.11.4 Frequency

Each data recording group can be recorded at different frequencies from the other recording groups. In addition, special 
recording frequency options are available. For all the frequency options, the processing for the option occurs at the cycle 
time specified for the recording group. Data can be recorded at every cycle, or data can be recorded only when the data has 
changed from the previous cycle, or, if data has changed, the data records on both sides on the change can be recorded (this 
creates an output for plots which looks identical to recorded every data point), or data can be recorded only for the 
initialization record, or only for the termination record, or only for both the initial and terminal records.

Figure 26  Data Recording
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4.0  Data Products

The new Data Products was designed from scratch based on requirements collected from several engineering and operations 
customers. The requirements which drove the resulting design were 1) real-time updates from a running simulation, and 2) 
access to recording data across any number of recording groups.

Data products is a command line program. It is responsible for gathering data from binary files and feeding data into Fermi 
Plot widgets or GNU plot. There are GUIs that drive the data products for ease of use. The figure below gives the overall 
picture of how data products fits into the Trick picture. 

Figure 27  Data Products Overview

4.1 Data

Data products works on data recording files already written to disk. It is a post processor. Data is written by a Trick 
simulation to disk in “data logs” by it’s data recording mechanism. Each data log contains: 1. Binary data 2. Header info for 
variable name and byte size of each variable logged. The header info is in text files. A collection of data logs is called a “Log 
Group”. Log groups may have many binary files and many headers associated with it, but will reside in the same directory. 
There is a well defined data products class that handles log groups called “LogGroup”.

There are many supported data formats. See the User’s Guide for details. To see the Trick binary format refer to the User’s 
Guide as well.

4.2 DP Specification Files

These are the files created by users so that data products will know what data and how to display the data once gathered. 
The syntax of the DP files may be found in the User’s Guide. The class responsible for handling the parsing and collection 
of knowledge of the DP spec file is called “DataProduct”.
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4.3 Session File

The Session file is the file that the plotting and table applications accept as an argument for creating the plots and/or tables. 
The Session file is basically a pointer to DP specifications files and Trick data. There is a class called “Session” that handles 
Session files.

4.4 Overall Architecture

By and large the Trick applications (fplot and table) use the session class, their own internal classes and the log class for 
accessing data. The diagram below shows this relationship.

Figure 28  Data Products Architecture

4.5 Class Architecture

Trick data products can be broken into five different areas.
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Figure 29  Class Architecture
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5.0  Trick Environment

5.1 Developer Environment

Before a developer can begin development he/she must obtain a Trick UNIX environment. A script is used to “install” the 
developer into the Trick UNIX environment. Environment variables such as TRICK_CFLAGS must be set for the Trick 
utilities to be able to build a simulation. These mandatory environment variables are introduced into the developer’s 
environment via a resource file that he/she sources within his .cshrc or .profile file.

5.2 Run Time Environment

It is possible, but not necessary, to run a simulation without any UNIX environment variables. Trick manages this by keeping 
a list of defaults for all environment variables that it may need during the course of a simulation run. Variables are resolved 
by first checking the UNIX environment. If the variable is not found there, it falls back to an internal default. So, overriding 
a variable’s internal definition is as easy as setting the variable in the UNIX environment.
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6.0  Monte Carlo And Optimization

Monte carlo is the process of iteratively calling a simulation over a set of predetermined or auto-generated inputs. Trick has 
designed its monte carlo capability to run distributed. 

6.1 Master/Slave Model

In particular, monte carlo is designed after a “master/slave” model (maybe this is more commonly known as the “boss/
worker” model). The master is in charge of creating slaves and tasking them to work. There may be any number of slaves 
distributed over a network. Master and slave communicate through sockets. Theoretically, a master and slave need not have 
the same file system. Each slave is responsible for requesting work, accomplishing work and reporting results. The work at 
hand is running a single simulation iteratively over an input space.

6.1.1 The Master

A master process tasks slaves to run the simulation with a given set of inputs. The master will task slaves to run in parallel. 
The master is responsible for keeping the slaves as busy as possible. To keep things running smoothly, the master is designed 
to reassign work when a slave is either dead or running too slowly. The master is only in charge of tasking work. The master 
does not run the simulation itself. The master will continue issuing work to the slaves until it is satisfied all simulation runs 
are complete.

6.1.2 Slaves

A slave consists of a parent and fork()ed children. A slave parent spawns a child using the fork() system call. A slave child 
runs the simulation in its own address space. Only one child exists at a time in a slave. Per slave, simulation execution is 
sequential. 

A slave is responsible for requesting work from the master, running a Trick simulation with inputs given by the master, 
dumping recorded data to disk and informing the master when it is finished running its task.

6.2 Simulation Inputs

The goal of monte carlo is to run the simulation over a set of inputs. The inputs that the master passes to the slaves are either 
generated by a statistical algorithm or they are hard-coded by the user in a data file. Inputs may also be generated exclusively 
by user calculations.

6.3 Monte Carlo Output

For each simulation run within a monte carlo suite of runs, a directory called “MONTE_<name>” is created. Slave output 
is directed to this “MONTE_” directory. Trick recorded data is dumped to disk in a set of “RUN_” directories within the 
parent “MONTE_” directory. Along with recorded data, stdout and stderr are dumped. A file that contains the summary of 
all runs is dumped to the MONTE_ directory.

6.4 Data Processing

The trick_dp is designed to understand “MONTE_” directories. When choosing to plot a “MONTE_” directory, trick_dp 
will overlay all curves from each “RUN_” directory within the parent “MONTE_” directory. The plot widget has built in 
features that allow the developer to distinguish what curve goes with what simulation run.
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6.5 Optimization

Optimization is made possible by creating a framework whereby the developer can change simulation inputs based on 
simulation results. Trick offers a set of job classes that allow the developer to enter the monte carlo loop and thereby enter 
the decision making on-the-fly. No canned optimization is available.

This special set of job classes work in concert together in master and slaves. Trick schedules jobs within the master at critical 
points so that they may create inputs to send to the slave as well as receive results from the slave. Slave jobs are scheduled 
to receive simulation inputs from the master as well as send simulation results back to the master.

The jobs are specified in the S_define. The jobs are created by the developer.
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7.0  Conclusion

7.1 Communications

Throughout this document there have been boxes that elude to a communications package. While the design of this would 
be good for this document, it made sense to put it in the User’s Guide. So if you are interested in the communications 
package, please refer to the User’s Guide, there is an entire section dedicated to it.

7.2 Contacts

If you have any further questions about design, please contact Keith Vetter (vetter@titan.com), or Eddie Paddock 
(epaddock@titan.com).
Page xxxvJSC Automation, Robotics and Simulation Division



Trick Design Document
Section 8.0   Glossary                                                                                                                                       Trick 2005.0
8.0  Glossary

Automatic Code Generation The process of generating compilable source code based upon a user defined 
specification.

context switching The time it takes the operating system to load a new process for execution onto a CPU.

frame An interval of time that encapsulates a set of jobs which have specific execution times.

hardware-in-the-loop Term referring to a type of simulation that interfaces (output and/or feedback) with 
hardware (robotics, avionics, etc.) through an external I/O channel (VME, D/A, etc.) from 
the host computer to the hardware. 

job A simulation executive job; a source code module or subroutine.

itimers A POSIX (not available on SUN4) interval timer that allows processes to establish system 
originated interval signals (SIGALRM) that can be handled by the process.

math model A collection of source program subroutines which comprise a specific service or 
simulation building block; for example, earth environment, manipulator dynamics, Space 
Shuttle Orbiter control system, etc.

real-time Term referring to the ability of simulation to guarantee execution rates at speeds identical 
to the system(s) they are simulating.

real-world clock Real-time reference to actual time of day. Used to compare to simulation time when 
calculating overruns and under-runs.

runtime Term referring to the time at which a simulation executes.

simulation A collection of math models integrated, managed, and operated through the Trick 
Simulation Environment.

simulation developer A person who builds simulations; must have good programming skills and in-depth 
knowledge of the capabilities and limitations of the Trick Simulation Environment.

simulation user A person who operates a simulation; requires no programming skills, but does require an 
in-depth knowledge of the capabilities and limitations of the specific simulation being 
operated.

spawn When a process (parent) starts another process (child) through UNIX functions (fork()/
exec()) or a system() call.

Trick A simulation construction and operation environment.
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9.0  Notes

None.
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10.0  Appendices

None.
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