
Ver 1.0 1

Compiling and Linking
Overview

John Penn (L-3Com/ER7)

HelloWorld.c

Ver 1.0 2

#include <stdio.h>

int main(int argc, char* argv[]) {

 printf("Hello World\n");

 return 0;

}

Building a Program

Ver 1.0 3

Preprocessor

Compiler

stdio.h (Header file)

HelloWorld.i (Translation unit)

(Object-file) HelloWorld.o

HelloWorld.c (Source file)

Linker

HelloWorld (Executable)

libc.a (C Standard Library)

cc HelloWorld.c -o HelloWorld

printf.o

Building a Program

Ver 1.0 4

The Preprocessor is the first thing to run in a C compilation. It processes
directives such as #include, #ifdef, #ifndef, #define, etc. It’s just a text-processor.

The Compiler takes the output of the preprocessor and generates an object (.o)
file which contains:

The Linker combines multiple object files(.o’s) and/or libraries (.a’s) to
produce an executable file. It does so by:

• Executable machine code.
• Global and static variables
• Constants and string literals
• Symbol table (<name, address>)
• Relocation records (symbolic references to external variables and
functions)

•  Resolving references to external symbols,
•  Assigning final addresses to functions and variables,
•  Updating code and data to reflect new addresses (a process called
relocation).

Object files (.o)

Ver 1.0 5

01001010100101010110010010
10101001010101110101010101

none

"Hello World\n"

<main, addr of main>

? printf

• Executable machine code.

• Global and static variables

Constants and string literals

• Symbol table

• Relocation records

HelloWorld.o

Relocation records are the “blanks that need to be filled in”.

Libraries (.a files)

Ver 1.0 6

Libraries are just files that contain collections of .o files.

foo.o

bar.o

narf.o

libBaz.a

Linking

Ver 1.0 7

The linker looks at all of the symbol tables and the relocation record tables
of a collection of object files and libraries, combines them and fills in the
blanks. If all of the relocation records can be resolved then the link is
successful.

In order for the resulting linked file to be executable, it’s symbol table must
define “main”.

A difference between C and C++ linking

Ver 1.0 8

C++ function-call relocation records need to know whether they are calling a C-functions
or a C++ functions. The default is to assume that a call is to a C++ function. If a function is
in fact a C-function then the user needs to indicate that it ‘s a C-function using “extern C”.
For example:

#ifdef __cplusplus
extern "C" {
#endif

My_super_duper_C_function(void* all_the_worlds_knowledge);

#ifdef __cplusplus
}
#endif

Surrounding your C-function prototypes with “#ifdef __cplusplus” stuff is generally
a good idea so that it can be used from both C or C++.

Ver 1.0 9

The End

