# Stand-Alone Integration Library ## Contents * [Introduction](#Introduction) * [class Integrator](#class-Integrator) * [typedef DerivsFunc](#typedef-DerivsFunc) * [class FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator) * [typedef RootErrorFunc](#typedef-RootErrorFunc) * [class FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator) * [class EulerIntegrator](#class-EulerIntegrator) * [class HeunsMethod](#class-HeunsMethod) * [class RK2Integrator](#class-RK2Integrator) * [class RK4Integrator](#class-RK4Integrator) * [class RK3_8Integrator](#class-RK3_8Integrator) * [typedef Derivs2Func](#typedef-Derivs2Func) * [class EulerCromerIntegrator](#class-EulerCromerIntegrator) * [class ABM2Integrator](#class-ABM2Integrator) * [class ABM4Integrator](#class-ABM4Integrator) * [enum SlopeConstraint](#enum-SlopeConstraint) * [class RootFinder](#class-RootFinder) <a id=Introduction></a> ## Introduction The Stand-Alone Integration Library can be used within a Trick simulation, or independent of it. Some examples of using these integrators can be found in the **examples/** directory. * [CannonBall](examples/CannonBall/README.md) uses the RK2Integrator. * [MassSpringDamper](examples/MassSpringDamper/README.md) uses the EulerCromerIntegrator. * [Orbit](examples/Orbit/README.md) uses the EulerCromerIntegrator. * [DoubleIntegral](examples/DoubleIntegral/README.md) shows an example of a double integral. <a id=class-Integrator></a> ## class Integrator ### Description This base-class represents a numerical **integrator**. ### Data Members |Member |Type |Access |Description| |----------|------------|---------|-----------| |X_in |```double```|Protected|Independent variable value of the input state.| |X_out |```double```|Protected|Independent variable value of the output state.| |default_h |```double```|Protected|Default integration step-size| |user_data |```void*``` |Protected|A pointer to user defined data that will be passed to user-defined functions when called by the Integrator. | ### Constructor #### ```Integrator(double h, void* udata);``` |Parameter|Type |Description | |---------|------------|-------------| |h |```double```| Default integration step-size | |udata |```void*``` | A pointer to user defined data that will be passed to user-defined functions when called by the Integrator. | ### Destructor #### ```virtual ~Integrator() {}``` ### Public Member Functions <a id=method-Integrator::step></a> #### ```virtual void step()``` Derived classes should override this method to perform a numeric integration step, and then call [```advanceIndyVar()```](#method-Integrator::advanceIndyVar) to advance the independent variable. The default behavior of this member-function is to call ```advanceIndyVar()```. <a id=method-Integrator::load></a> #### ```virtual void load()``` Derived classes should override this method to load/prepare the integrator for the next integration step. The default behavior is to set the input value of the independent variable to its previous output value, i.e, ```X_in = X_out```. <a id=method-Integrator::unload></a> #### ```virtual void unload()``` Derived classes should override this method to disseminate the values of the output state to their respective destinations. The default behavior is to do nothing. <a id=method-Integrator::integrate></a> #### ```void integrate()``` Call ```load()```, ```step()```, and ```unload()``` in that order. <a id=method-Integrator::undo_integrate></a> #### ```virtual double undo_integrate()``` Derived classes should override this member function to **undo** the effect of ```integrate()``` and return that last step-size. The behavior of this function is to set the output value of the independent variable to its previous input value, i.e, ```X_out = X_in```, and then return the default step-size ```default_h```. <a id=method-Integrator::getIndyVar></a> #### ```double getIndyVar()``` Returns the value of the independent variable (i.e, the variable over which you are integrating) If you are integrating over time, this value will be the accumulated time. <a id=method-Integrator::setIndyVar></a> #### ```double setIndyVar( double t)``` Sets the value of the independent variable. (i.e, the variable over which you are integrating) If you are integrating over time, this will be the accumulated time. ### Protected Member Functions <a id=method-Integrator::advanceIndyVar></a> #### ```void advanceIndyVar()``` This member function advances the independent variable by the default integration step-size. <a id=typedef-DerivsFunc></a> ## typedef DerivsFunc ### Description This typedef defines a type of C/C++ function whose purpose is to populate a state derivative array. ``` typedef void (*DerivsFunc)( double x, double state[], double derivs[], void* udata); ``` where: |Parameter|Type |Direction|Description| |---------|-------------|---------|-----------| |x |```double``` |IN |Independent variable.| |state |```double*```|IN |Array of state variable values.| |derivs |```double*```|OUT |Array into which derivatives are to be returned.| |udata |```void*``` |IN |Pointer to user_data.| #### Example ``` void my_derivs( double t, double state[], double deriv[], void* udata) { ... } ``` <a id=class-FirstOrderODEIntegrator></a> ## class FirstOrderODEIntegrator Derived from [```Integrator```](#class-Integrator). ### Description This class represents an integrator for a first order [Ordinary Differential Equation]([https://en.wikipedia.org/wiki/Ordinary_differential_equation). ### Data Members Those inherited from [Integrator](#class-Integrator) plus: |Member |Type |Access |Description| |-----------|------------------|---------|-----------| |state_size |```unsigned int```|Protected|Size of the state vector.| |inState |```double*``` |Protected|Input state vector to the integrator.| |outState |```double*``` |Protected|Output state vector from the integrator.| |inVars |```double**``` |Protected|Array of pointers to the variables from which input state vector values are copied.| |outVars |```double**``` |Protected|Array of pointers to the variables to which output state vector values are copied.| |derivs_func|[```DerivsFunc```](#typedef-DerivsFunc)|Protected|Function thats generates the function (an array of state derivatives) to be integrated.| This class introduces: * Input and output state arrays. * A function that calculates state-derivatives for the integration algorithm. * Array of pointers to variables from which to load the input state array, and array of pointers to variables to which to unload the output state array. ### Constructor ``` FirstOrderODEIntegrator( double h, int N, double* in_vars[], double* out_vars[], DerivsFunc func, void* user_data); ``` where: <a id=FOODEConstructorParameters></a> |Parameter |Type |Description| |-------------|-------------|-----------| |h |```double``` |Default integration step-size. | |N |```int``` |Number of state variables to be integrated| |in_vars |```double*```|Array of pointers to the state variables from which we ```load()``` the integrator state (```in_vars``` and ```out_vars``` will generally point to the same array of pointers.)| |out_vars |```double*```|Array of pointers to the state variables to which we ```unload()``` the integrator state (```in_vars``` and ```out_vars``` will generally point to the same array of pointers.)| | derivs_func |[```DerivsFunc```](#typedef-DerivsFunc)| Function thats generates the function (the derivatives) to be integrated. | |user_data |```void*``` | A pointer to user defined data that will be passed to a DerivsFunc when called by the Integrator. | In addition to the above constructor, this class provides: * a copy constructor, * a destructor, * an assignment operator, * an insertion operator, * the public member functions inherited from [class Integrator](#class-Integrator), * and the following public member functions: ### Public Member Functions <a id=method-FirstOrderODEIntegrator::load></a> #### ```void load()``` **Overrides** [Integrator::load()](#method-Integrator::load) Load the integrator's initial state from the variables specified by **in_vars**. Set the initial value of the independent variable for the next step to the final value of the previous step. ![load](images/load.png) <a id=method-FirstOrderODEIntegrator::unload></a> #### ```void unload()``` **Overrides** [Integrator::unload()](#method-Integrator::unload) Unload the integrator's result state to the variables specified by **out_vars**. ![unload](images/unload.png) <a id=method-FirstOrderODEIntegrator::step></a> #### ```virtual void step()``` **Overrides** [Integrator::step()](#method-Integrator::step) ![step](images/step.png) Derived classes should override this method to calculate ```outState``` using some integration algorithm, using ```X_in```, ```inState```, and ```derivs_func```, and ```default_h```. The over-riding method should also pass the ```user_data``` when calling the ```DerivsFunc```. The default algorithm is Euler. #### ```void integrate()``` **Inherited** from [Integrator::integrate()](#method-Integrator::integrate) <a id=method-FirstOrderODEIntegrator::undo_integrate></a> #### ```virtual void undo_integrate()``` **Overrides** [Integrator::undo_integrate()](#method-Integrator::undo_integrate) Undo the effect of the last integration step. ![undo_integrate](images/undo_step.png) <a id=method-FirstOrderODEIntegrator::load_from_outState></a> #### ```void load_from_outState()``` Load ```inState``` from ```outState```, rather than from the variables referenced by ```in_vars```. ![load_from_outState](images/load_from_outState.png) <a id=method-FirstOrderODEIntegrator::set_in_vars></a> #### ```double** set_in_vars( double* in_vars[])``` This function specifies the variables from which ```inState``` values are to be copied, when ```load()``` is called. The number of elements in this array must equal the number of state variables. Return a pointer to the previous array so that it can be deleted if necessary. ![set_in_vars](images/set_in_vars.png) <a id=method-FirstOrderODEIntegrator::set_out_vars></a> #### ```double** set_out_vars( double* out_vars[])``` This function specifies the variables to which ```outState``` values are to be copied, when ```unload()``` is called. The number of elements in this array must equal the number of state variables. Return a pointer to the previous array so that it can be deleted if necessary. ![set_out_vars](images/set_out_vars.png) <a id=method-FirstOrderODEIntegrator::getIndyVar></a> #### ```double getIndyVar()``` **Inherited** from [Integrator::getIndyVar()](#method-Integrator::getIndyVar) <a id=method-FirstOrderODEIntegrator::setIndyVar></a> #### ```double setIndyVar()``` **Inherited** from [Integrator::setIndyVar()](#method-Integrator::setIndyVar) ### Protected Member Functions #### ```advanceIndyVar()``` **Inherited** from [Integrator::advanceIndyVar()](#method-Integrator::advanceIndyVar) <a id=typedef-RootErrorFunc></a> ## typedef RootErrorFunc ### Description This typedef defines a type of C/C++ function whose purpose is to specify the job of a [```RootFinder```](#class-RootFinder). ``` typedef double (*RootErrorFunc)( double x, double state[], RootFinder* root_finder, void* udata); ``` where: |Parameter |Type |Direction|Description| |------------|-----------------|---|--------| |x |```double``` |In | Independent variable | |state |```double*``` |In | Array of state variable values | |root_finder |[```RootFinder*```](#class-RootFinder)|In | Class for finding the roots of a function.| |udata |```void*``` |In | A pointer to user_data.| A function of type **RootErrorFunc** should: 1. Specify a (math) function f(x) whose roots [x : f(x)=0] the RootFinder is meant to find. - f(x) is usually a function of the state variables. State variables are themselves functions of x. 2. Call [```root_finder->find_roots(x, y)```](#member-find_roots), where y = f(x). If it returns 0.0, it's found a root of f(x). 3. Specify what to do as a result of finding a root. 4. Return the value returned by ```root_finder->find_roots()```. ### Example RootErrorFunc from the Cannonball example ``` double impact( double t, double state[], RootFinder* root_finder, void* udata) { double root_error = root_finder->find_roots(t, state[1]); if (root_error == 0.0) { root_finder->init(); state[2] = 0.9 * state[2]; state[3] = -0.9 * state[3]; } return (root_error); } ``` In this example : * the independent variable is t. * y = f(t) = state[1], that is the y (vertical) component of the cannonball position. * When ```root_finder->find_roots``` returns 0.0, then the result of finding the root (i.e, [t:state[1]=0]) is to "bounce" the cannon ball, by negating the y component of the velocity, and reducing the magnitude of the velocity by 10%. <a id=class-FirstOrderODEVariableStepIntegrator></a> ## class FirstOrderODEVariableStepIntegrator Derived from [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). ### Description This class represents a first order ODE integrator whose step-size can be varied. ### Data Members Those inherited from [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator) plus: |Member |Type |Access |Description| |--------------------|--------------------|---------|-----------| | root_finder |[```RootFinder*```](#class-RootFinder)|Private|Pointer to a RootFinder object.| | root\_error\_func |[```RootErrorFunc```](#typedef-RootErrorFunc)|Private|Function that specifies what happens when a function-root is found.| |last_h| ```double```|Protected| Value of h used in the last integration step. | ### Constructor ``` FirstOrderODEVariableStepIntegrator( double h, unsigned int N, double* in_vars[], double* out_vars[], DerivsFunc dfunc, void* udata); ``` [Constructor Parameters](#FOODEConstructorParameters) are those of [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). In addition to the above constructor, this class provides: * a copy constructor, * a destructor, * an assignment operator, * an insertion operator, * the public member functions inherited from [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator), * and the following public member functions: <a id=FirstOrderODEVariableStepIntegrator::publicMemberFunctions></a> ### Public Member Functions <a id=method-FirstOrderODEVariableStepIntegrator::load></a> #### ```void load()``` **Inherited** from [FirstOrderODEIntegrator::load()](#method-FirstOrderODEIntegrator::load) <a id=method-FirstOrderODEVariableStepIntegrator::unload></a> #### ```void unload()``` **Inherited** from [FirstOrderODEIntegrator::unload()](#method-FirstOrderODEIntegrator::unload) <a id=method-FirstOrderODEVariableStepIntegrator::step></a> #### ```void step()``` **Overrides** [FirstOrderODEIntegrator::step()](#method-FirstOrderODEIntegrator::step) This function calls the virtual function ```variable_step()``` (below) with the default step-size. Then, if a RootFinder has been specified using ```add_Rootfinder()``` (below), search that interval for roots . <a id=method-FirstOrderODEVariableStepIntegrator::integrate></a> #### ```void integrate()``` **Inherited** from [Integrator::integrate()](#method-Integrator::integrate) <a id=method-FirstOrderODEVariableStepIntegrator::undo_integrate></a> #### ```double undo_integrate()``` **Overrides** [FirstOrderODEIntegrator::undo_integrate()](#method-FirstOrderODEIntegrator::undo_integrate) Call ```FirstOrderODEIntegrator::undo_integrate()```, and then return ```last_h```. <a id=method-FirstOrderODEVariableStepIntegrator::load_from_outState></a> #### ```load_from_outState()``` **Inherited** from [FirstOrderODEIntegrator::load\_from\_outState()](#method-FirstOrderODEIntegrator::load_from_outState) <a id=method-FirstOrderODEVariableStepIntegrator::set_in_vars></a> #### ```set_in_vars()``` **Inherited** from [FirstOrderODEIntegrator::set\_in\_vars()](#method-FirstOrderODEIntegrator::set_in_vars) <a id=method-FirstOrderODEVariableStepIntegrator::set_out_vars></a> #### ```set_out_vars()``` **Inherited** from [FirstOrderODEIntegrator::set\_out\_vars()](#method-FirstOrderODEIntegrator::set_out_vars) <a id=method-FirstOrderODEVariableStepIntegrator::variable_step></a> #### ```virtual void variable_step( double h)``` |Parameter |Type |Description| |------------|-------------|-----------------------| | h |```double``` | Integration step-size that overrides the default step-size.| Derived classes should override this method to calculate ```outState``` using some integration algorithm, given ```h```, ```X_in```, ```inState```, and ```derivs_func```. The over-riding method should also pass the ```user_data``` when calling the ```DerivsFunc```. ![step](images/step.png) <a id=method-FirstOrderODEVariableStepIntegrator::add_Rootfinder></a> #### ```void add_Rootfinder( RootFinder* root_finder, RootErrorFunc rfunc)``` |Parameter |Type |Description| |------------|-------------|-----------------------| | root_finder|[```RootFinder*```](#class-RootFinder)| RootFinder object. | | rfunc |[```RootErrorFunc```](#typedef-RootErrorFunc)| User supplied function whose purpose is to specify the job of a RootFinder. | Configure the integrator to find roots of state-element vs. independent-variable functions. <a id=method-FirstOrderODEIntegrator::getIndyVar></a> #### ```double getIndyVar()``` **Inherited** from [Integrator::getIndyVar()](#method-Integrator::getIndyVar) <a id=method-FirstOrderODEIntegrator::setIndyVar></a> #### ```double setIndyVar()``` **Inherited** from [Integrator::setIndyVar()](#method-Integrator::setIndyVar) ### Protected Member Functions #### ```advanceIndyVar()``` **Inherited** from [Integrator::advanceIndyVar()](#method-Integrator::advanceIndyVar) <a id=class-EulerIntegrator></a> ## class EulerIntegrator Derived from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). ### Description The Euler method is a first order numerical integration method. It is the simplest, explicit [Runge-Kutta](https://en.wikipedia.org/wiki/Runge–Kutta_methods) method. ### Data Members Those inherited from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). ### Constructor ``` EulerIntegrator( double h, int N, double* in_vars[], double* out_vars[], DerivsFunc func, void* user_data) ``` Constructor Parameters are those of [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). In addition to the above constructor, this class provides: * a copy constructor, * a destructor, * an assignment operator, * an insertion operator, * the public member functions inherited from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator), * and the following public member functions: ### Public Member Functions * All of the [Public Member Functions of FirstOrderODEVariableStepIntegrator](#FirstOrderODEVariableStepIntegrator::publicMemberFunctions), plus : <a id=method-FirstOrderODEVariableStepIntegrator::variable_step></a> #### ```void variable_step( double h)``` **Overrides** [FirstOrderODEVariableStepIntegrator::variable_step()](#method-FirstOrderODEVariableStepIntegrator::variable_step) Calculates ```outState``` from ```h```, ```X_in```, ```inState```, and ```derivs_func```, using the Euler method. <a id=class-HeunsMethod></a> ## class HeunsMethod Derived from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). ### Description This integrator implements [Heun's Method](https://en.wikipedia.org/wiki/Heun%27s_method). ### Data Members Those inherited from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). ### Constructor ``` HeunsMethod( double h, int N, double* in_vars[], double* out_vars[], DerivsFunc func, void* user_data) ``` [Constructor Parameters](#FOODEConstructorParameters) are those of [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). In addition to the above constructor, this class provides: * a copy constructor, * a destructor, * an assignment operator, * an insertion operator, * the public member functions inherited from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator), * and the following public member functions: ### Public Member Functions * All of the [Public Member Functions of FirstOrderODEVariableStepIntegrator](#FirstOrderODEVariableStepIntegrator::publicMemberFunctions). <a id=method-FirstOrderODEVariableStepIntegrator::variable_step></a> #### ```void variable_step( double h)``` **Overrides** [FirstOrderODEVariableStepIntegrator::variable_step()](#method-FirstOrderODEVariableStepIntegrator::variable_step) Calculates ```outState``` from ```h```, ```X_in```, ```inState```, and ```derivs_func```, using the Heun's method. <a id=class-RK2Integrator></a> ## class RK2Integrator Derived from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). ### Description ```RK2Integrator``` implements the second order, explicit, [Runge-Kutta](https://en.wikipedia.org/wiki/Runge–Kutta_methods) method whose Butcher tableau is as follows. ![RK2_tableau](images/RK2_tableau.png) ### Data Members Those inherited from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). ### Constructor ``` RK2Integrator( double h, int N, double* in_vars[], double* out_vars[], DerivsFunc func, void* user_data) ``` [Constructor Parameters](#FOODEConstructorParameters) are those of [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). In addition to the above constructor, this class provides: * a copy constructor, * a destructor, * an assignment operator, * an insertion operator, * the public member functions inherited from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator), * and the following public member functions: ### Public Member Functions * All of the [Public Member Functions of FirstOrderODEVariableStepIntegrator](#FirstOrderODEVariableStepIntegrator::publicMemberFunctions). <a id=method-FirstOrderODEVariableStepIntegrator::variable_step></a> #### ```void variable_step( double h)``` **Overrides** [FirstOrderODEVariableStepIntegrator::variable_step()](#method-FirstOrderODEVariableStepIntegrator::variable_step) Calculates ```outState``` from ```h```, ```X_in```, ```inState```, and ```derivs_func```, using the Runge-Kutta 2 method. <a id=class-RK4Integrator></a> ## class RK4Integrator Derived from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). ### Description ```RK4Integrator``` implements the fourth order, explicit, [Runge-Kutta](https://en.wikipedia.org/wiki/Runge–Kutta_methods) method whose Butcher tableau is as follows. ![RK4_tableau](images/RK4_tableau.png) ### Data Members Those inherited from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). ### Constructor ``` RK4Integrator( double h, int N, double* in_vars[], double* out_vars[], DerivsFunc func, void* user_data) ``` [Constructor Parameters](#FOODEConstructorParameters) are those of [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). In addition to the above constructor, this class provides: * a copy constructor, * a destructor, * an assignment operator, * an insertion operator, * the public member functions inherited from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator), * and the following public member functions: ### Public Member Functions * All of the [Public Member Functions of FirstOrderODEVariableStepIntegrator](#FirstOrderODEVariableStepIntegrator::publicMemberFunctions). <a id=method-FirstOrderODEVariableStepIntegrator::variable_step></a> #### ```void variable_step( double h)``` **Overrides** [FirstOrderODEVariableStepIntegrator::variable_step()](#method-FirstOrderODEVariableStepIntegrator::variable_step) Calculates ```outState``` from ```h```, ```X_in```, ```inState```, and ```derivs_func```, using the Runge-Kutta 4 method. <a id=class-RK3_8Integrator></a> ## class RK3_8Integrator Derived from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). ### Description ```RK3_8Integrator``` implements the fourth order, explicit, [Runge-Kutta](https://en.wikipedia.org/wiki/Runge–Kutta_methods) method whose Butcher tableau is as follows. ![RK38_tableau](images/RK38_tableau.png) ### Data Members Those inherited from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator). ### Constructor ``` RK3_8Integrator( double h, int N, double* in_vars[], double* out_vars[], DerivsFunc func, void* user_data) ``` [Constructor Parameters](#FOODEConstructorParameters) are those of [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). In addition to the above constructor, this class provides: * a copy constructor, * a destructor, * an assignment operator, * an insertion operator, * the public member functions inherited from [FirstOrderODEVariableStepIntegrator](#class-FirstOrderODEVariableStepIntegrator), * and the following public member functions: ### Public Member Functions * All of the [Public Member Functions of FirstOrderODEVariableStepIntegrator](#FirstOrderODEVariableStepIntegrator::publicMemberFunctions). <a id=method-FirstOrderODEVariableStepIntegrator::variable_step></a> #### ```void variable_step( double h)``` **Overrides** [FirstOrderODEVariableStepIntegrator::variable_step()](#method-FirstOrderODEVariableStepIntegrator::variable_step) Calculates ```outState``` from ```h```, ```X_in```, ```inState```, and ```derivs_func```, using the Runge-Kutta 3/8 method. <a id=class-ABM2Integrator></a> ## class ABM2Integrator Derived from [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). ### Description The ABM2Integrator implements the second-order Adams-Bashforth-Moulton predictor/corrector method. Adams methods maintain a history of derivatives rather than calculating intermediate values like Runge-Kutta methods. ### Data Members Those inherited from [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). ### Constructor ``` ABM2Integrator ( double h, int N, double* in_vars[], double* out_vars[], DerivsFunc func, void* user_data) ``` [Constructor Parameters](#FOODEConstructorParameters) are those of [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). In addition to the above constructor, this class provides: * a copy constructor, * a destructor, * an assignment operator, * an insertion operator, * the public member functions inherited from [[FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). <a id=class-ABM4Integrator></a> ## class ABM4Integrator Derived from [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). ### Description The ABM2Integrator implements the second-order Adams-Bashforth-Moulton predictor/corrector method. Adams methods maintain a history of derivatives rather than calculating intermediate values like Runge-Kutta methods. ### Data Members Those inherited from [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). ### Constructor ``` ABM4Integrator ( double h, int N, double* in_vars[], double* out_vars[], DerivsFunc func, void* user_data) ``` [Constructor Parameters](#FOODEConstructorParameters) are those of [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). In addition to the above constructor, this class provides: * a copy constructor, * a destructor, * an assignment operator, * an insertion operator, * the public member functions inherited from [FirstOrderODEIntegrator](#class-FirstOrderODEIntegrator). <a id=typedef-Derivs2Func></a> ## typedef Derivs2Func ### Description This typedef defines a type of C/C++ function whose purpose is to populate an array of accelerations, given velocities and positions. ``` typedef void (*Derivs2Func)( double t, double x[], double v[], double a[], void* udata); ``` where: |Parameter|Type |Direction|Description| |---------|-------------|---------|-----------| |t |```double``` |IN |Independent variable.| |x |```double*```|IN |Array of position values.| |v |```double*```|IN |Array of velocity values.| |a |```double*```|OUT |Array into which accelerations are to be returned.| |udata |```void*``` |IN |Pointer to user_data.| #### Example ``` void G( double t, double x[], double v[], double g_out[], void* udata) { MassSpringDamper* msd = (MassSpringDamper*)udata; g_out[0] = -(msd->k/msd->mass) * x[0] -(msd->c/msd->mass) * v[0]; } ``` <a id=class-EulerCromerIntegrator></a> ## class EulerCromerIntegrator Derived from [Integrator](#class-Integrator). ### Description EulerCromer is integration method that conserves energy in oscillatory systems better than Runge-Kutta. So, it's good for mass-spring-damper systems, and orbital systems. It calculates the next state, from the current state as follows: ![EulerCromerEqs](images/EulerCromerEqs.png) **a(v(n), x(n), t)** [above] is the function of type [```Derivs2Func```](#typedef-Derivs2Func) below. ### Data Members Those inherited from [Integrator](#class-Integrator) plus: |Member |Type |Access |Description | |-----------|------------------|---------|------------| |nDimensions|```unsigned int```|Protected|Number of dimensions in position, velocity, and acceleration vectors. Typically 1,2, or 3.| | pos_p |```double**``` |Protected|Array of pointers to variables from which we ```load()``` and to which we ```unload()``` the position values .| | vel_p |```double**``` |Protected|Array of pointers to variables from which we ```load()``` and to which we ```unload()``` the velocity values .| | pos_in |```double*``` |Protected|Position input array.| | vel_in |```double*``` |Protected|Velocity input array.| | pos_out |```double*``` |Protected|Position output array.| | vel_out |```double*``` |Protected|Velocity output array.| | g_out |```double*``` |Protected|Array of accelerations returned from gderivs.| | gderivs |[```Derivs2Func```](#typedef-Derivs2Func)|Protected|A function that returns accelerations.| | last_h |```double```|Value of h used in the last integration step.| ### Constructor ``` EulerCromerIntegrator(double dt, int N, double* xp[], double* vp[], Derivs2Func gfunc, void* user_data) ``` |Parameter |Type |Description| |-----------|-------------|-----------------------| | dt |```double``` |Default time step value. Sets Integrator::default_h. | | N |```int``` |Sets nDimensions above.| | xp |```double*```|Sets pos_p above.| | vp |```double*```|Sets vel_p above.| | gfunc |[```Derivs2Func```](#typedef-Derivs2Func)| Sets gderivs above. | |user_data |```void*``` | Sets Integrator::user_data. | In addition to the above constructor, this class provides: * a copy constructor, * a destructor, * an assignment operator, * an insertion operator, * the public member functions inherited from [Integrator](#class-Integrator). ### Public Member Functions #### ```void step( double dt)``` |Parameter |Type |Description| |------------|-------------|-----------------------| | dt |```double``` | Integration step-size that overrides the default step-size.| This function calculates ```pos_out``` and ```vel_out``` from ```dt```, ```X_in```, ```pos_in```, ```vel_in```, ```f_func```, and ```gfunc``` using the Euler-Cromer method. #### ```void step()``` This function calls ```step(dt)``` (above) with the default step-size. #### ```void load()``` **Overrides** [Integrator::integrate()](#method-Integrator::integrate) Load the integrator's initial state from the variables specified by **xp**, and **vp**. Set the initial value of the independent variable for the next step to the final value of the previous step. #### ```void unload()``` **Overrides** [Integrator::integrate()](#method-Integrator::integrate) Unload the integrator's result state (**pos\_out**, and **vel\_out**) to the variables specified by **xp**, and **vp**. #### ```void integrate()``` **Inherited** from [Integrator::integrate()](#method-Integrator::integrate) #### ```double undo_integrate()``` **Overrides** [Integrator::undo_integrate()](#method-Integrator::undo_integrate) Undo the effect of the last integration step. <a id=method-FirstOrderODEIntegrator::getIndyVar></a> #### ```double getIndyVar()``` **Inherited** from [Integrator::getIndyVar()](#method-Integrator::getIndyVar) <a id=method-FirstOrderODEIntegrator::setIndyVar></a> #### ```double setIndyVar()``` **Inherited** from [Integrator::setIndyVar()](#method-Integrator::setIndyVar) ### Protected Member Functions #### ```advanceIndyVar()``` **Inherited** from [Integrator::advanceIndyVar()](#method-Integrator::advanceIndyVar) <a id=enum-SlopeConstraint></a> ## enum SlopeConstraint ### Description | Value | Meaning | |-------------------|---------| | Negative | Require slope of the function to be negative at the root.| | Unconstrained | No slope constraint.| | Positive | Require slope of the function to be positive at the root.| <a id=class-RootFinder></a> ## class RootFinder ### Description The RootFinder class uses the [Regula-Falsi](https://en.wikipedia.org/wiki/Regula_falsi) method to find roots of a math function. A root is a value of **x** such that **f(x)=0**. ### Data Members |Member |Type |Access |Description | |------------------|------------|-------|------------| | f_upper |```double```|Private|Error-function value upper bound.| | x_upper |```double```|Private|Independent variable value upper bound.| | upper_set |```bool``` |Private|True = bound is valid. False = not valid.| | f_lower |```double```|Private|Error-function value lower bound.| | x_lower |```double```|Private|Independent variable value lower bound.| | lower_set |```bool``` |Private|True = bound is valid. False = not valid.| | prev\_f_error |```double```|Private|Absolute value of the previous root function value.| | f\_error\_tol |```double```|Private|How close is close enough.| | iterations |```int``` |Private|Number of Regula Falsi iterations.| | slope_constraint |[```SlopeConstraint```](#enum-SlopeConstraint)|Private|Find roots with this slope sign.| | f_slope |[```SlopeConstraint```](#enum-SlopeConstraint)|Private|Current root function slope.| ### Constructors #### ```RootFinder()``` Default constructor that calls ```void RootFinder::init()``` below. #### ```RootFinder(double tolerance, SlopeConstraint constraint)``` |Parameter |Type |Description| |------------|-------------|-----------------------| | tolerance |```double``` | Error tolerance. | | constraint |[```SlopeConstraint```](#enum-SlopeConstraint)| | ### Public Member Functions #### ```void init( double tolerance, SlopeConstraint constraint)``` Initialize the RootFinder with the given tolerance, and SlopeConstraint. #### ```void RootFinder::init()``` Initialize the RootFinder with the method above with: * tolerance = ```0.00000000001``` * slope_constraint = ```Unconstrained``` <a id=member-find_roots></a> #### ```double find_roots( double x, double f_error )``` * Returns **DBL_MAX** if no root is detected. * Returns **0.0** if a root is detected, and the estimated error in f(x) is within tolerance. * Returns **an estimated correction in x** if a root is detected, but the estimated error in f(x) is not within tolerance.