
Introduction
class Integrator
typedef DerivsFunc
class FirstOrderODEIntegrator
typedef RootErrorFunc
class FirstOrderODEVariableStepIntegrator
class EulerIntegrator
class HeunsMethod
class RK2Integrator
class RK4Integrator
class RK3_8Integrator
class EulerCromerIntegrator
class ABM2Integrator
class ABM4Integrator
enum SlopeConstraint
class RootFinder

The Stand-Alone Integration Library can be used within a Trick simulation, or independent of it.

Some examples of using these integrators can be found in the examples/ directory.

CannonBall uses the RK2Integrator.
MassSpringDamper uses the EulerCromerIntegrator.
Orbit uses the EulerCromerIntegrator.
DoubleIntegral shows an example of a double integral.

Stand-Alone Integration Library
Contents

Introduction

class Integrator

Description

file:///Users/penn/trick.git/trick_source/trick_utils/SAIntegrator/examples/CannonBall/README.md
file:///Users/penn/trick.git/trick_source/trick_utils/SAIntegrator/examples/MassSpringDamper/README.md
file:///Users/penn/trick.git/trick_source/trick_utils/SAIntegrator/examples/Orbit/README.md
file:///Users/penn/trick.git/trick_source/trick_utils/SAIntegrator/examples/DoubleIntegral/README.md

This base-class represents a numerical integrator.

Member Type Access Description

X_in double Protected Independent variable value of the input state.

X_out double Protected Independent variable value of the output state.

default_h double Protected Default integration step-size

user_data void* Protected
A pointer to user defined data that will be passed to user-
defined functions when called by the Integrator.

Parameter Type Description

h double Default integration step-size

udata void*
A pointer to user defined data that will be passed to user-defined functions
when called by the Integrator.

Derived classes should override this method to perform a numeric integration step, and then call
advanceIndyVar() to advance the independent variable. The default behavior of this member-function is

to call advanceIndyVar() .

Data Members

Constructor

Integrator(double h, void* udata);

Destructor

virtual ~Integrator() {}

Public Member Functions

virtual void step()

virtual void load()

Derived classes should override this method to load/prepare the integrator for the next integration step. The
default behavior is to set the input value of the independent variable to its previous output value, i.e,
X_in = X_out .

Derived classes should override this method to disseminate the values of the output state to their respective
destinations. The default behavior is to do nothing.

Call load() , step() , and unload() in order.

Derived classes should override this member function to undo the effect of integrate() and return that
last step-size. The behavior of this function is to set the output value of the independent variable to its previous
input value, i.e, X_out = X_in , and then return the default step-size default_h .

Returns the value of the independent variable (i.e, the variable over which you are integrating) If you are
integrating over time, this value will be the accumulated time.

Sets the value of the independent variable. (i.e, the variable over which you are integrating) If you are
integrating over time, this will be the accumulated time.

This member function advances the independent variable by the default integration step-size.

This typedef defines a type of C/C++ function whose purpose is to populate a state derivative array.

virtual void unload()

virtual void integrate()

virtual double undo_integrate()

double getIndyVar()

double setIndyVar(double t)

Protected Member Functions

void advanceIndyVar()

typedef DerivsFunc

Description

typedef	void	(*DerivsFunc)(double	x,	double	state[],	double	derivs[],	void*	udata);

where:

Parameter Type Direction Description

x double IN Independent variable.

state double* IN Array of state variable values.

derivs double* OUT Array into which derivatives are to be returned.

udata void* IN Pointer to user_data.

void	my_derivs(double	t,	double	state[],	double	deriv[],	void*	udata)	{	...	}

Derived from Integrator .

This class represents an integrator for a first order Ordinary Differential Equation.

Those inherited from Integrator plus:

Example

class FirstOrderODEIntegrator

Description

Data Members

file:///Users/penn/trick.git/trick_source/trick_utils/SAIntegrator/%5Bhttps://en.wikipedia.org/wiki/Ordinary_differential_equation

Member Type Access Description

state_size unsigned int Protected Size of the state vector.

inState double* Protected Input state vector to the integrator.

outState double* Protected Output state vector from the integrator.

inVars double** Protected
Array of pointers to the variables from which input
state vector values are copied.

outVars double** Protected
Array of pointers to the variables to which output
state vector values are copied.

derivs_func DerivsFunc Protected
Function thats generates the function (an array of
state derivatives) to be integrated.

This class introduces:

Input and output state arrays.
A function that calculates state-derivatives for the integration algorithm.
Array of pointers to variables from which to load the input state array, and array of pointers to variables to
which to unload the output state array.

FirstOrderODEIntegrator(double	h,
																									int	N,
																									double*	in_vars[],
																									double*	out_vars[],
																									DerivsFunc	func,
																									void*	user_data);	

where:

Constructor

Parameter Type Description

h double Default integration step-size.

N int Number of state variables to be integrated

in_vars double*

Array of pointers to the state variables from which we load() the
integrator state (in_vars and out_vars will generally point to
the same array of pointers.)

out_vars double*

Array of pointers to the state variables to which we unload() the
integrator state (in_vars and out_vars will generally point to
the same array of pointers.)

derivs_func DerivsFunc
Function thats generates the function (the derivatives) to be
integrated.

user_data void*
A pointer to user defined data that will be passed to a DerivsFunc
when called by the Integrator.

Overrides Integrator::load()

Load the integrator's initial state from the variables specified by in_vars. Set the initial value of the independent
variable for the next step to the final value of the previous step.

Public Member Functions

void load()

void unload()

Overrides Integrator::unload()

Unload the integrator's result state to the variables specified by out_vars.

Overrides Integrator::step()

Derived classes should override this method to calculate outState using some integration algorithm, using
X_in , inState , and derivs_func , and default_h . The over-riding method should also pass the
user_data when calling the DerivsFunc . The default algorithm is Euler.

Inherited from Integrator::integrate()

Overrides Integrator::undo_integrate()

Undo the effect of the last integration step.

virtual void step()

void integrate()

virtual void undo_integrate()

Load inState from outState , rather than from the variables referenced by in_vars .

This function specifies the variables from which inState values are to be copied, when load() is
called. The number of elements in this array must equal the number of state variables. Return a pointer to the
previous array so that it can be deleted if necessary.

void load_from_outState()

double** set_in_vars(double* in_vars[])

This function specifies the variables to which outState values are to be copied, when unload() is
called. The number of elements in this array must equal the number of state variables. Return a pointer to the
previous array so that it can be deleted if necessary.

Inherited from Integrator::getIndyVar()

Inherited from Integrator::setIndyVar()

double** set_out_vars(double* out_vars[])

double getIndyVar()

double setIndyVar()

Protected Member Functions

advanceIndyVar()

Inherited from Integrator::advanceIndyVar()

This typedef defines a type of C/C++ function whose purpose is to specify the job of a RootFinder .

typedef	double	(*RootErrorFunc)(double	x,	double	state[],	RootFinder*	root_finder,	void*	udata);

where:

Parameter Type Direction Description

x double In Independent variable

state double* In Array of state variable values

root_finder RootFinder* In Class for finding the roots of a function.

udata void* In A pointer to user_data.

A function of type RootErrorFunc should:

1. Specify a (math) function f(x) whose roots [x : f(x)=0] the RootFinder is meant to find.
f(x) is usually a function of the state variables. State variables are themselves functions of x.

2. Call root_finder->find_roots(x, y) , where y = f(x). If it returns 0.0, it's found a root of f(x).
3. Specify what to do as a result of finding a root.
4. Return the value returned by root_finder->find_roots() .

typedef RootErrorFunc

Description

Example RootErrorFunc from the Cannonball example

double	impact(double	t,	double	state[],	RootFinder*	root_finder,	void*	udata)	{
				double	root_error	=	root_finder->find_roots(t,	state[1]);
				if	(root_error	==	0.0)	{
								root_finder->init();
								state[2]	=		0.9	*	state[2];
								state[3]	=	-0.9	*	state[3];
				}
				return	(root_error);
}

In this example :

the independent variable is t.
y = f(t) = state[1], that is the y (vertical) component of the cannonball position.
When root_finder->find_roots returns 0.0, then the result of finding the root (i.e, [t:state[1]=0]) is
to "bounce" the cannon ball, by negating the y component of the velocity, and reducing the magnitude of
the velocity by 10%.

Derived from FirstOrderODEIntegrator.

This class represents a first order ODE integrator whose step-size can be varied.

Those inherited from FirstOrderODEIntegrator plus:

Member Type Access Description

root_finder RootFinder* Private Pointer to a RootFinder object.

root_error_func RootErrorFunc Private
Function that specifies what happens when a
function-root is found.

last_h double Protected Value of h used in the last integration step.

class FirstOrderODEVariableStepIntegrator

Description

Data Members

Constructor

Inherited from FirstOrderODEIntegrator::load()

Inherited from FirstOrderODEIntegrator::unload()

Overrides FirstOrderODEIntegrator::step()

This function calls the virtual function variable_step() (below) with the default step-size. Then, if a
RootFinder has been specified using add_Rootfinder() (below), search that interval for roots .

Inherited from Integrator::integrate()

Overrides FirstOrderODEIntegrator::undo_integrate()
Call FirstOrderODEIntegrator::undo_integrate() , and then return last_h .

Inherited from FirstOrderODEIntegrator::load_from_outState()

Inherited from FirstOrderODEIntegrator::set_in_vars()

Inherited from FirstOrderODEIntegrator::set_out_vars()

Public Member Functions

void load()

void unload()

void step()

void integrate()

double undo_integrate()

load_from_outState()

set_in_vars()

set_out_vars()

virtual void variable_step(double h)

Parameter Type Description

h double Integration step-size that overrides the default step-size.

Derived classes should override this method to calculate outState using some integration algorithm, given
h , X_in , inState , and derivs_func . The over-riding method should also pass the user_data

when calling the DerivsFunc .

Parameter Type Description

root_finder RootFinder* RootFinder object.

rfunc RootErrorFunc
User supplied function whose purpose is to specify the job of a
RootFinder.

Configure the integrator to find roots of state-element vs. independent-variable functions.

Inherited from Integrator::getIndyVar()

Inherited from Integrator::setIndyVar()

void add_Rootfinder(RootFinder* root_finder, RootErrorFunc rfunc)

double getIndyVar()

double setIndyVar()

Protected Member Functions

advanceIndyVar()

Inherited from Integrator::advanceIndyVar()

Derived from FirstOrderODEVariableStepIntegrator.

The Euler method is a first order numerical integration method. It is the simplest, explicit Runge-Kutta method.

Those inherited from FirstOrderODEVariableStepIntegrator.

EulerIntegrator(double	h,
																	int	N,
																	double*	in_vars[],
																	double*	out_vars[],
																	DerivsFunc	func,
																	void*	user_data)

Constructor Parameters are those of FirstOrderODEVariableStepIntegrator.

All of the Public Member Functions of FirstOrderODEVariableStepIntegrator, plus :

Overrides FirstOrderODEVariableStepIntegrator::variable_step()

Calculates outState from h , X_in , inState , and derivs_func , using the Euler method.

Derived from FirstOrderODEVariableStepIntegrator.

class EulerIntegrator

Description

Data Members

Constructor

Public Member Functions

void variable_step(double h)

class HeunsMethod

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

This integrator implements Heun's Method.

Those inherited from FirstOrderODEVariableStepIntegrator.

HeunsMethod(double	h,
													int	N,
													double*	in_vars[],
													double*	out_vars[],
													DerivsFunc	func,
													void*	user_data)

Constructor Parameters are those of FirstOrderODEIntegrator.

All of the Public Member Functions of FirstOrderODEVariableStepIntegrator.

Overrides FirstOrderODEVariableStepIntegrator::variable_step()

Calculates outState from h , X_in , inState , and derivs_func , using the Heun's method.

Derived from FirstOrderODEVariableStepIntegrator.

RK2Integrator implements the second order, explicit, Runge-Kutta method whose Butcher tableau is as
follows.

Description

Data Members

Constructor

Public Member Functions

void variable_step(double h)

class RK2Integrator

Description

https://en.wikipedia.org/wiki/Heun%27s_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

Those inherited from FirstOrderODEVariableStepIntegrator.

RK2Integrator(double	h,
															int	N,
															double*	in_vars[],
															double*	out_vars[],
															DerivsFunc	func,
											void*	user_data)

Constructor Parameters are those of FirstOrderODEIntegrator.

All of the Public Member Functions of FirstOrderODEVariableStepIntegrator.

Overrides FirstOrderODEVariableStepIntegrator::variable_step()

Calculates outState from h , X_in , inState , and derivs_func , using the Runge-Kutta 2
method.

Derived from FirstOrderODEVariableStepIntegrator.

RK4Integrator implements the fourth order, explicit, Runge-Kutta method whose Butcher tableau is as
follows.

Data Members

Constructor

Public Member Functions

void variable_step(double h)

class RK4Integrator

Description

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

Those inherited from FirstOrderODEVariableStepIntegrator.

RK4Integrator(double	h,
															int	N,
															double*	in_vars[],
															double*	out_vars[],
															DerivsFunc	func,
															void*	user_data)

Constructor Parameters are those of FirstOrderODEIntegrator.

All of the Public Member Functions of FirstOrderODEVariableStepIntegrator.

Overrides FirstOrderODEVariableStepIntegrator::variable_step()

Calculates outState from h , X_in , inState , and derivs_func , using the Runge-Kutta 4
method.

Derived from FirstOrderODEVariableStepIntegrator.

RK3_8Integrator implements the fourth order, explicit, Runge-Kutta method whose Butcher tableau is as

Data Members

Constructor

Public Member Functions

void variable_step(double h)

class RK3_8Integrator

Description

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

follows.

Those inherited from FirstOrderODEVariableStepIntegrator.

RK3_8Integrator(double	h,
																	int	N,
																	double*	in_vars[],
																	double*	out_vars[],
																	DerivsFunc	func,
																	void*	user_data)

Constructor Parameters are those of FirstOrderODEIntegrator.

All of the Public Member Functions of FirstOrderODEVariableStepIntegrator.

Overrides FirstOrderODEVariableStepIntegrator::variable_step()

Calculates outState from h , X_in , inState , and derivs_func , using the Runge-Kutta 3/8
method.

Derived from FirstOrderODEIntegrator.

Data Members

Constructor

Public Member Functions

void variable_step(double h)

class ABM2Integrator

Description

The ABM2Integrator implements the second-order Adams-Bashforth-Moulton predictor/corrector method.
Adams methods maintain a history of derivatives rather than calculating intermediate values like Runge-Kutta
methods.

Those inherited from FirstOrderODEIntegrator.

ABM2Integrator	(double	h,
																	int	N,
																	double*	in_vars[],
																	double*	out_vars[],
																	DerivsFunc	func,
																	void*	user_data)

Constructor Parameters are those of FirstOrderODEIntegrator.

Derived from FirstOrderODEIntegrator.

The ABM2Integrator implements the second-order Adams-Bashforth-Moulton predictor/corrector method.
Adams methods maintain a history of derivatives rather than calculating intermediate values like Runge-Kutta
methods.

Those inherited from FirstOrderODEIntegrator.

Data Members

Constructor

class ABM4Integrator

Description

Data Members

Constructor

ABM4Integrator	(double	h,
																	int	N,
																	double*	in_vars[],
																	double*	out_vars[],
																	DerivsFunc	func,
																	void*	user_data)

Constructor Parameters are those of FirstOrderODEIntegrator.

Derived from Integrator.

EulerCromer is integration method that conserves energy in oscillatory systems better than Runge-Kutta. So,
it's good for mass-spring-damper systems, and orbital systems.

Those inherited from Integrator plus:

class EulerCromerIntegrator

Description

Data Members

Member Type Access Description

nDimensions unsigned int Protected
Number of dimensions in position, velocity, and
acceleration vectors. Typically 1,2, or 3.

pos_p double** Protected
Array of pointers to variables from which we
load() and to which we unload() the

position values .

vel_p double** Protected
Array of pointers to variables from which we
load() and to which we unload() the

velocity values .

pos_in double* Protected Position input array.

vel_in double* Protected Velocity input array.

pos_out double* Protected Position output array.

vel_out double* Protected Velocity output array.

g_out double* Protected Array of accelerations returned from gderivs.

f_out double* Protected Array of velocities returned from fderivs.

gderivs DerivsFunc Protected A function that returns accelerations.

fderivs DerivsFunc Protected A function that returns velocities.

EulerCromerIntegrator(double	dt,
																						int	N,
																						double*	xp[],
																						double*	vp[],
																						DerivsFunc	gfunc,
																						DerivsFunc	ffunc,
																						void*	user_data)

Constructor

Parameter Type Description

dt double Default time step value. Sets Integrator::default_h.

N int Sets nDimensions above.

xp double* Sets pos_p above.

vp double* Sets vel_p above.

gfunc DerivsFunc Sets gderivs above.

ffunc DerivsFunc Sets fderivs above.

user_data void* Sets Integrator::user_data.

Parameter Type Description

dt double Integration step-size that overrides the default step-size.

This function calculates pos_out and vel_out from dt , X_in , pos_in , vel_in , f_func ,
and gfunc using the Euler-Cromer method.

This function calls step(dt) (above) with the default step-size.

Overrides Integrator::integrate() Load the integrator's initial state from the variables specified by xp, and vp.
Set the initial value of the independent variable for the next step to the final value of the previous step.

Overrides Integrator::integrate()

Unload the integrator's result state (pos_out, and vel_out) to the variables specified by xp, and vp.

Public Member Functions

void step(double dt)

void step()

void load()

void unload()

Inherited from Integrator::integrate()

Overrides Integrator::undo_integrate()

Undo the effect of the last integration step.

Inherited from Integrator::getIndyVar()

Inherited from Integrator::setIndyVar()

Inherited from Integrator::advanceIndyVar()

Value Meaning

Negative Require slope of the function to be negative at the root.

Unconstrained No slope constraint.

Positive Require slope of the function to be positive at the root.

void integrate()

double undo_integrate()

double getIndyVar()

double setIndyVar()

Protected Member Functions

advanceIndyVar()

enum SlopeConstraint

Description

class RootFinder

Description

The RootFinder class uses the Regula-Falsi method to find roots of a math function. A root is a value of x such
that f(x)=0.

Member Type Access Description

f_upper double Private Error-function value upper bound.

x_upper double Private Independent variable value upper bound.

upper_set bool Private True = bound is valid. False = not valid.

f_lower double Private Error-function value lower bound.

x_lower double Private Independent variable value lower bound.

lower_set bool Private True = bound is valid. False = not valid.

prev_f_error double Private
Absolute value of the previous root function
value.

f_error_tol double Private How close is close enough.

iterations int Private Number of Regula Falsi iterations.

slope_constraint SlopeConstraint Private Find roots with this slope sign.

f_slope SlopeConstraint Private Current root function slope.

Default constructor that calls void RootFinder::init() below.

Parameter Type Description

tolerance double Error tolerance.

constraint SlopeConstraint

Data Members

Constructors

RootFinder()

RootFinder(double tolerance, SlopeConstraint constraint)

https://en.wikipedia.org/wiki/Regula_falsi

Initialize the RootFinder with the given tolerance, and SlopeConstraint.

Initialize the RootFinder with the method above with:

tolerance = 0.00000000001

slope_constraint = Unconstrained

Returns DBL_MAX if no root is detected.
Returns 0.0 if a root is detected, and the estimated error in f(x) is within tolerance.
Returns an estimated correction in x if a root is detected, but the estimated error in f(x) is not within
tolerance.

Public Member Functions

void init(double tolerance, SlopeConstraint constraint)

void RootFinder::init()

double find_roots(double x, double f_error)

