
Trick Simulation Environment:

Advanced Topics

5/23/2011 Trick Advanced Training 1

John Penn (L-3Com/ER7)
Danny Strauss (L-3Com/ER7)

Alex Lin (NASA/ER7)

also authored by
Scott Killingsworth (NASA/ER7)

Eddie Paddock (NASA/ER7)
Les Quiocho (NASA/ER7)

Keith Vetter (Spoonbill Services/ER7)

Agenda/Schedule

• Realtime and Distributed Topics
1. Trickcomm and the Variable Server
2. Multiprocessing and Realtime
3. Master/Slave Import/Export
4. Real World Realtime/Multiprocessing/Master/Slave example
5. Monte Carlo
6. Generic Malfunction Insertion
7. Units Upgrade

5/23/2011 Trick Advanced Training 2

7. Units Upgrade
8. Wide Character Support

• Additional Material
1. External Clocks and Timers
2. External Libraries and Trick Math Library

Trickcomm and the Variable Server

5/23/2011 Trick Advanced Training 3

Trickcomm and the Variable Server

• Objective
– Describe the Trickcomm package
– Describe the Variable server

• Prerequisites
– Knowledge of sockets

5/23/2011 Trick Advanced Training 4

Trickcomm

• Trickcomm is a C library built on top of the system TCP/IP
socket library.

• Originally, Trickcomm was provided as a consistent “stream”
interface over sockets, reflective memory, and shar ed memory.

• Over the past few years, Sockets have proved fast e nough so

5/23/2011 Trick Advanced Training 5

• Over the past few years, Sockets have proved fast e nough so
Trickcomm only supports sockets now.

• Trickcomm can be used as a standalone package.
– Usable as a library to non-Trick sims
– Usable under Windows

Trickcomm

• Provided functions – Connecting (Server)
– tc_init(TCDevice * listen_device) ;

• Initializes a listen socket and begins listening for a client connection.
• listen_device.port must be specified. Uses unix listen().

– tc_listen(TCDevice * listen_device) ;
• Returns true if a client is trying to connect on the listen socket.
• Uses unix poll().

– tc_accept(TCDevice *listen_device, TCDevice *device) ;

5/23/2011 Trick Advanced Training 6

– tc_accept(TCDevice *listen_device, TCDevice *device) ;
• Accepts the client connection request from listen_device onto device .

• Will block until client connects. Endianness of client is recorded.
• Uses unix accept().

• Provided function – Connecting (Client)
– tc_connect(TCDevice *device);

• Connects to a listening socket. Endianness of server is recorded.
• listen_device.port & hostname must be specified. Uses unix

connect().

Trickcomm

• Provided functions – Connecting (Server and Client)
– tc_multiconnect(TCdevice *device, char *connection_ tag, char

*my_tag, TrickErroHndlr *error_handler) ;
• Both the server and client call tc_multiconnect
• Each side provides connection_tag which must be equal
• Each side provides my_tag which must be different

• tc_multiconnect will use multicasting sockets to find other connections that
have the same connection_tag and different my_tag

5/23/2011 Trick Advanced Training 7

have the same connection_tag and different my_tag

• tc_multiconnect will determine who is the server and client and call
tc_accept and tc_connect with appropriate port numbers to establish a
connection (user does not specify port)

• tc_multiconnect returns when the connection is made

process 1:
tc_multiconnect(dev , “important_comm!” , “side a” , err_hndlr) ;

process 2:
tc_multiconnect(dev , “important_comm!” , “side b” , err_hndlr) ;

Trickcomm

• Provided functions – Read/Write
– tc_read(TCDevice * device, char *buffer, int size) ;

• Reads size number of bytes

– tc_write(TCDevice * device, char *buffer, int size) ;
• Writes size number of bytes

– tc_read_byteswap(TCDevice * device, char *buffer, i nt size,
ATTRIBUTES *attr) ;

5/23/2011 Trick Advanced Training 8

• Calls tc_read. If other side of connection is opposite endianness, takes
structure information of buffer from attr and byteswaps buffer .

• attr is generated for each structure by ICG (in S_source.c)

– tc_write_byteswap(TCDevice * device, char *buffer, int size,
ATTRIBUTES *attr) ;

• If other side of connection is opposite endianness, takes structure
information of buffer from attr and byteswaps buffer . Calls tc_write.

• attr is generated for each structure by ICG (in S_source.c)

Trickcomm - Blocking

• Provided Functions - Blocking
– tc_blockio(TCDevice * device, TCCommBlocking blockf lag);

• Sets the socket blocking type
• Blocking

– A connection that "blocks" on a read/write will wait until it has read/written all the
data over its connection before proceeding. Blocking will force a system call and
put itself to sleep and wait on the OS to wake it up.

• No blocking
– "Non-blocking" is asynchronous in nature and will read/write whatever it can

offering no guarantee that it has finished.

5/23/2011 Trick Advanced Training 9

offering no guarantee that it has finished.

• Timed blocking
– The timed block will block for a specified period of time, and give up if time

expires. The "timed block" will consume CPU time as the read waits for data.

• “All or nothing" blocking
– The "all or nothing" block will not block until there is something to read. Once

something is on the pipe, it will block indefinitely until it receives all data it
expects. The "all or nothing" approach will consume CPU time as it waits.

– tc_set_blockio_timeout_limit(TCDevice *device, doub le limit) ;
• Sets the time a Timed blocking socket will wait for data

Trickcomm

• Provided Functions
– tc_pending(TCDevice * device) ;

• Checks to see if any data is available for reading

– tc_isValid(TCDevice * device) ;
• Checks to see if the socket is still connected

– tc_error(TCDevice *device, int on_off) ;
• Turns on/off error messages from trickcomm activity

5/23/2011 Trick Advanced Training 10

– tc_disconnect(TCDevice * device) ;
• Disconnects a socket

Trick Communications

Server

Initialize Listen Device
tc_init(TCDevice * listen_device) ;
Server sets up a socket called a "listen device" to listen for
client connections. This listen is done on a predetermined
port agreed upon by server and client. Returns when a
connection is ready to made on the listen device

Accept Client
tc_accept(TCDevice *listen_dev , TCDevice *dev)

Client

Connect To Server
tc_connect(TCDevice *)
Client connects to server over socket. Connection is done
over predetermined port.

Server/Client Communication Sequence

5/23/2011 Trick Advanced Training 11

tc_accept(TCDevice *listen_dev , TCDevice *dev)
Accept client on listen device socket. Returns dev

Setup Blocking
tc_blockio(TCDevice *dev, TCCommBlocking block);
Set the socket to blocking/timed/non blocking/all or nothing

Read and Write
tc_read(TCDevice *dev, char *buffer, int size);
tc_write(TCDevice *dev, char *buffer, int size) ;
Send and receive data

Close Conection
tc_disconnect(TCDevice *dev);
Shutdown the socket

over predetermined port.

Setup Blocking
tc_blockio(TCDevice *dev, TCCommBlocking block);
Set the socket to blocking/timed/non blocking/all or nothing

Close Conection
tc_disconnect(TCDevice *dev);
Shutdown the socket

Read and Write
tc_read(TCDevice *dev, char *buffer, int size);
tc_write(TCDevice *dev, char *buffer, int size) ;
Send and receive data

Trick Communications

Server

Connect to other side
tc_multiconnect(TCDevice *, char *t1, char *t2…) ;
Finds other machine/port number. Determines who is
server/client. Connects and returns device

Client

Communication Sequence with tc_multiconnect

Connect to other side
tc_multiconnect(TCDevice *, char *t1, char *t2…) ;
Finds other machine/port number. Determines who is
server/client. Connects and returns device

5/23/2011 Trick Advanced Training 12

Setup Blocking
tc_blockio(TCDevice *dev, TCCommBlocking block);
Set the socket to blocking/timed/non blocking/all or nothing

Read and Write
tc_read(TCDevice *dev, char *buffer, int size);
tc_write(TCDevice *dev, char *buffer, int size) ;
Send and receive data

Close Conection
tc_disconnect(TCDevice *dev);
Shutdown the socket

Setup Blocking
tc_blockio(TCDevice *dev, TCCommBlocking block);
Set the socket to blocking/timed/non blocking/all or nothing

Close Conection
tc_disconnect(TCDevice *dev);
Shutdown the socket

Read and Write
tc_read(TCDevice *dev, char *buffer, int size);
tc_write(TCDevice *dev, char *buffer, int size) ;
Send and receive data

Variable Server

• What is the variable server?
– The variable server is a TCP/IP server (using Trick comm) which

runs in an asynchronous simulation thread. Clients may connect
to the server and set/get simulation parameters.

• Why use it?
– Nice for interactive GUIs
– Simple asynchronous way to drive the simulation

5/23/2011 Trick Advanced Training 13

– Simple asynchronous way to drive the simulation
– Simple interface for probing states for graphics d isplays or

stripcharts
– Useful for crew training when an instructor needs t o introduce a

specific scenario on-the-fly
– Useful for debugging

Variable Server

• Where to connect?
– Clients connect to the port

sys.exec.work.var_serve_listen_dev.port which is usually 7000.
– Clients must be Trickcomm clients or emulate the ha ndshaking.

5/23/2011 Trick Advanced Training 14

Variable Server

• Variable server sends all commands through the inpu t
processor
– All valid input processor commands available

• Setting variables with assignment statements (e.g. mystruct.x = 5.0;)

• Command sim to run/freeze/dump checkpoint (sim_control panel)
• Call jobs

5/23/2011 Trick Advanced Training 15

Variable Server

• In addition to handling all valid input processor c ommands, the
variable server has specific commands to handle sen ding back data to
the client at a semi-regular frequency

– var_add <var_name> ;
• Add a variable name to the list to send back to the client

– get <var_name> ;
• Synonym for var_add

– var_remove
• Remove a variable name from the list

– var_send ;

5/23/2011 Trick Advanced Training 16

– var_send ;
• Send data back once instead of cyclically (typically used when “var_pause” is in effect)

– var_clear ;
• Clear list of variables

– var_cycle = <freq> ;
• Set frequency of data being sent

– var_pause ;
• Pauses variable server from returning data

– var_unpause
• Unpauses variable server

– var_exit
• Exits the variable server for that client

Variable Server

• Returned values from variable server
– Whitespace delimited ASCII
– Asynchronously snapshotted from simulation
– No guarantee of a regular return frequency
– No guarantee of data homogeneity. Values can be fr om different

frames of execution

5/23/2011 Trick Advanced Training 17

• Variable server updated in Trick 07
– Return values can be binary
– Whole data structures can be returned
– Synchronous option added where data is colleted and sent to the

variable server clients with the main simulation lo op
• Synchronous data is as regular as the sim keeps time
• Guaranteed to be homogeneous

Variable Server

• Other variable server commands
– var_units <param_name> <units> ;

• Send back param_name with the specified units

– var_debug = <0,1,2,3> ;
• Print out increasing amounts of debugging information

• New in Trick 07

5/23/2011 Trick Advanced Training 18

•
– var_ascii

• Send back data in ascii (default)

– var_binary
• Send back data in binary

– var_sync = (Yes|No) ;
• Send data back synchronously

Variable Server

• All of Trick’s runtime GUIs use the variable server
– Sim control panel
– Trick View (TV)
– Malfunction Trick View (MTV)
– Stripcharts

5/23/2011 Trick Advanced Training 19

Variable Server

• Trick provides a Tcl/Tk package to connect and use the variable server

Tcl/Tk stub to include Simcom, the variable server comm package

Add Trick's path the the search path for packages
global auto_path
set auto_path [linsert $auto_path 0 $env(TRICK_HOME)/bin/tcl]

Trick's Simcom connect package
package require Simcom

5/23/2011 Trick Advanced Training 20

package require Simcom

Variable Server

• Tcl/Tk variable server demonstration program
#!/usr/bin/wish

This is a small demonstration program to show how to connect to a
simulation using the variable server.

The GUI is a single slider bar. The slider sets a relatively unused
variable sys.exec.in.sync_port_offset when it changes in value
and reads the value back from the sim at ~10Hz

Add Trick's path to the search path for packages

5/23/2011 Trick Advanced Training 21

Add Trick's path to the search path for packages
global auto_path
set auto_path [linsert $auto_path 0 $env(TRICK_HOME)/bin/tcl]

Trick's Simcom connect package
package require Simcom

write out the return from the sim
proc get_sim_state { } {

global my_sock

gets $my_sock result
puts "result = $result"

}
<continued on next page>

Variable Server

callback to send the new value of the slider to the sim
proc update_slider { y } {

global my_sock

y contains the value of the slider, send it to the sim
Simcom::send_cmd $my_sock "sys.exec.in.sync_port_offset = $y ;"
puts "sending sys.exec.in.sync_port_offset = $y"

}

######## start of main #########
connect to sim on localhost
set my_sock [Simcom::connect localhost 7000]

5/23/2011 Trick Advanced Training 22

set up callback for reading results
fileevent $my_sock readable [list get_sim_state]

uncomment to show variable_server debug messages
#Simcom::var_server_debug $my_sock 2

set variable server to send back sync_port_offset. Use default rate of ~10Hz
Simcom::send_cmd $my_sock ”var_add sys.exec.in.sync_port_offset ;"
Simcom::send_cmd $my_sock ”var_send ;"

make a simple slider bar to set the sync_port_offset
scale .yslider -from 0 -to 200 -orient horizontal -variable y -command update_slider
pack .yslider -side top -pady 2m

Trick Real-Time

5/23/2011 Trick Advanced Training 23

• Trick's definition of a real-time simulation:
– A simulation that can consistently and repetitively execute its

scheduled math models to completion within some
predetermined interval time frame for an indefinite period of
time. This predetermined interval time frame is ref erred to as the
real-time frame, and it is typically determined by real-world
SW/HW or some output data requirement such as 30 Hz graphics
or a hardware control frequency.

Real-Time Clocks

5/23/2011 Trick Advanced Training 24

• By default, Trick uses the Linux system call clock_gettime()
for its real-time clock reference - (legacy call wa s to
gettimeofday())

• By default, during an under run the Trick executive spins on
calls to clock_gettime() at the end of each real-time frame
(rt_software_frame) to wait for real-time to catch up to sim

• Let's look at Trick real-time control parameters

Real-Time

sys.exec.in.rt_software_frame = <double> ;
• defines real-time frame

sys.exec.in.rt_clock = (Gettimeofday|EXTERNAL);
• Exec_Clock enumerated type

• Gettimeofday – default system clock (uses
clock_gettime())
• EXTERNAL for external clock function

5/23/2011 Trick Advanced Training 25

• EXTERNAL for external clock function
• We will talk about this later

• Let's look at Trick real-time control parameters -- itimers

Real-Time

sys.exec.in.rt_itimer = (Yes|No) ;
• Flag to enable itimers

sys.exec.in.rt_itimer_frame = <double> ;
• defines interval for signal

sys.exec.in.rt_itimer_pause = (Yes|No) ;
• enables pause() to release process control at end

5/23/2011 Trick Advanced Training 26

• enables pause() to release process control at end
of RT scheduling frame before itimer signal (if not
set, the executive spins on clock)

sys.exec.in.rt_nap = (Yes|No) ;
• releases process control from executive while
executive is waiting for resource after itimer
signal

Realtime

rt_frame n rt_frame n+1rt_frame n-1

Itimer set here Itimer expires

rt_nap

5/23/2011 Trick Advanced Training 27

Scheduled Jobs Pause()

rt_itimer_frame- 2 ms

2 ms

• Variable for simulation RT performance analysis

Real-Time

sys.exec.in.frame_log = (Yes|No) ;
• Performance intrusive (increases executive overhead) flag that

will log real-time analysis data for simulation
– Note that job performance data will be very accurat e

5/23/2011 Trick Advanced Training 28

• Real-time process, processor and memory control var iables

Real-Time

sys.exec.in.rt_cpu_number[#] = <int> ;
• assign CPU number to process/thread ID #, CPU numbe rs begin at 0
• # refers to the simulation process or thread ID; 0 is reserved for clock

(SGI platform allows control of clock process), 1 i s the main thread, 2 is
the first child thread, n ... child threads

sys.exec.in.rt_lock_to_cpu[#] = (Yes|No) ;
• Yes to lock thread ID # to the CPU no. defined in r t_cpu_number above

5/23/2011 Trick Advanced Training 29

• Yes to lock thread ID # to the CPU no. defined in r t_cpu_number above

sys.exec.in.rt_lock_memory[#] = (Yes|No) ;
• Yes to lock thread ID # into memory

sys.exec.in.rt_semaphores[#] = (Yes|No) ;
• Yes to use pthread mutexes for thread ID # synchron ization (semaphore

legacy syntax)
• No will use default of spinlocks (CPU hog)

• More real-time process/processor control variables

Real-Time

sys.exec.in.rt_nond_pri[#] = (Yes|No) ;
• Yes to set the non-degrading real-time priority (de fined in

rt_priority below) for thread ID #

sys.exec.in.rt_priority[#] = <int> ;
• Real-time priority integer for thread ID # (1 is t he highest, 2 is

the second highest, ..., n)

5/23/2011 Trick Advanced Training 30

the second highest, ..., n)
» Note that priority setting requires root privilege

Real-Time

• Several of the realtime features require the simula tion to run as
root

• Ways to give root privilege to sim
– Run as root, or
– Change owner of executable to root and set user id bit

• su to root or use sudo command (see man page) to give root privileges
using chown and chmod commands

5/23/2011 Trick Advanced Training 31

> chown root S_main_Linux_3.4_234.exe
> chmod 4775 S_main_Linux_3.4_234.exe

• Recommended services to turn off to protect against system
interrupts and process context switching

– Turn off everything but:
• acpid, anacron, atd, autofs, crond, cups, gpm, kudz u, lm_sensors,

messagebus, netfs, nfslock, portmap, rawdevices, ss hd, syslog,
xinet.d

• IMPORTANT service to turn off!
– If left on, the irqbalance service can change processor interrupt

Interrupt Topics

5/23/2011 Trick Advanced Training 32

– If left on, the irqbalance service can change processor interrupt
assignments during simulation execution

• Cat /proc/interrupts to see interrupt to processor mapping
– This may help in your Trick process to processor re al-time

assignments for muti-processor platforms
• Assign Trick real-time process to processors that d o not have

interrupts assigned to them

Isolate Processors

• Set “isolcpus” option in “/boot/grub/menu.lst” to i solate CPU
from UNIX scheduler

title Fedora Core ISOLATE_CPU_1
root (hd0,2)
kernel /vmlinuz-2.6.12-1.1376_FC3 ro
root=/dev/VolGroup00/LogVol00 rhgb quiet isolcpus=1
initrd /initrd-2.6.12-1.1376_FC3.img

5/23/2011 Trick Advanced Training 33

Interrupts cont.

• Interrupts can be mapped to specific processors to optimize
processor and hardware I/O performance
– /proc/interrupts

• Dynamically updated file showing current interrupts and CPU mapping

– /proc/irq/*
• Directories where * is the interrupt number that is shown in /proc/interrupts
• Each irq directory contains a “special file” named smp_affinity which

contains the bit wise number for the processor designation

5/23/2011 Trick Advanced Training 34

contains the bit wise number for the processor designation
• smp_affinity files get reset every time you reboot so you need an

initialization script to configure them
• Interrupt balancing service (irqbalance) may need to be turned off

– In general, interrupts not relevant to your real-ti me process should
be redirected away from your real-time processor

MultiProcess (threaded) Simulations

5/23/2011 Trick Advanced Training 35

• Bring up trick_ui panel and select SIM_cannon_multi
– CP SIM_cannon_multi

Multi-Processing

5/23/2011 Trick Advanced Training 36

Multi-Processing

• Real-time features typically controlled from
Modified_data/realtime.d

• Add to RUN_grav/input file just for this lesson

sys.exec.in.frame_log = Yes ;
sys.exec.in.rt_software_frame {s} = 0.01 ;
sys.exec.in.rt_itimer = Yes ;
sys.exec.in.rt_itimer_pause = Yes ;
sys.exec.in.rt_itimer_frame {s} = 0.01 ;

5/23/2011 Trick Advanced Training 37

– 10 millisecond frame (rt_software_frame) with itimers enabled
• Itimers and itimer pause keep sim from spinning on clock during underrun;

prevents thrashing on single CPU machines

– frame_log parameter turns on real-time analysis log ging

• Select RUN_grav and “Run” sim

• Bring up Data Products from trick_ui (DP button)
• Expand SIM_cannon_multi and select RUN_grav from sim

pane and select DP_rt_frame from Data Product pane
• Launch single plot (square) from upper left menu ba r

– Real-Time Scheduling Frame
• Gives overrun/underrun in terms of overrun

– Overrun value is negative mirror of underrun

Multi-Processing

5/23/2011 Trick Advanced Training 38

– Overrun value is negative mirror of underrun
– Add plotted overrun value to RT frame to get used processing time

» e.g.: if overrun value is -0.00995 for a 0.01 second frame,
then only 0.00005 or 50 microseconds of the 10 ms frame
was used

– Try zooming plot with middle mouse drag
– Changing axis scale with left mouse drag
– Right mouse resets plot

• Other Real-Time Scheduling Frame Plots
– Frame Scheduling Time

• Executive overhead plot

– Asynchronous Must Finish (AMF), Child Start and Com plete,
Depends On, and Master/Slave Sync Wait Time Plots

• Measures wait times

– Data Recording
• Measures time spent in data recording

Multi-Processing

5/23/2011 Trick Advanced Training 39

• Measures time spent in data recording

• Exit Real-Time Scheduling plot set from “Exit Plots ” pop up
dialog

• Deselect (dbl click) DP_rt_frame from Data Product pane
• Select (dbl click) DP_rt_itimer, DP_rt_jobs & DP_rt_timeline

from Data Product pane
• Launch single plot (square) from upper left menu ba r

– Job Execution Times
• Each job plot point contains an accumulative sum of time the job has

executed in each RT frame
• Also gives executive overhead plot

Multi-Processing

5/23/2011 Trick Advanced Training 40

• Also gives executive overhead plot
– Execution Timelines

• Shows Job ID with respect to Real-Time (bar chart)
• set sys.exec.in.frame_log_max_samples to increase logging time

• Exit plots

• Since the sim still runs real-time, let's add a sleep(1) system
call to the cannon_print_position2() function to induce an
overrun

– Use the trick_ui to edit cannon_print_position2.c

• Turn off itimers in RUN_grav/input to prevent interval timer
signal from interrupting sleep

Multi-Processing

sys.exec.in.rt_itimer = No ;

5/23/2011 Trick Advanced Training 41

• Make SIM_cannon_multi (No need to re-CP since S_define
did not change)

• Select and execute SIM_cannon_multi with RUN_grav again
– Notice constant overrun state
– Freeze and shut down the simulation

sys.exec.in.rt_itimer = No ;

• Bring up real-time frame plot (DP_rt_frame) again to show
plot of continuous overrun (first deselect other pl ots)

• Now bring up DP_rt_jobs plot to show each job’s execution
performance for each RT frame

– Notice 1 second overruns in cannon_print_position2() job plot

Multi-Processing

5/23/2011 Trick Advanced Training 42

• Exit plots

• Let's use Trick pthreads multi-processing capabilit y to
solve overrun problem

– Trick Multi-threaded simulations are called process groups
– With trick_ui, edit S_define and add a C1 (Child thread 1) to the

front of the cannon_print_position2() job call
• This will cause this job to run in parallel for the 0.1 second job

frame

– Re-CP SIM_cannon_multi

Multi-Processing

5/23/2011 Trick Advanced Training 43

– Re-CP SIM_cannon_multi
– Turn itimers back on (threaded child processes do n ot receive

itimer signals)
• Edit RUN_grav/input

– Rerun RUN_grav
– Note that the overruns did not go away

• What can we change about the parallel job to make the overruns go
away?

• Why didn’t the overruns go away?
– The Trick simulation executive still waits for each

“synchronous” job at the end of each job frame before moving
to the next job frame

• Edit the S_define file and change the
cannon_print_position2 job class to asynchronous

Multi-Processing

5/23/2011 Trick Advanced Training 44

– This will cause the executive scheduler to not wait for job to
complete and only reschedule after completion

• asynchonous_must_finish job class will cause the executive to
wait for the job to finish if it is time to resched ule it

• After saving the S_define file, Re-CP, and rerun to see that
overruns go away

– Look at DP_rt_frame plots again

• Real-time parameters for cannon multi-process simul ation

Multi-Processing

#define CLOCK 0
#define PARENT 1
#define CHILD_THR 2
sys.exec.in.rt_nap = Yes;
sys.exec.in.rt_semaphores[CHILD_THR] = Yes;
sys.exec.in.rt_cpu_number[PARENT] = 0;
sys.exec.in.rt_cpu_number[CHILD_THR] = 0;
sys.exec.in.rt_lock_to_cpu[PARENT] = Yes;

5/23/2011 Trick Advanced Training 45

• Uncomment these real-time control parameters in
RUN_grav/input

sys.exec.in.rt_lock_to_cpu[PARENT] = Yes;
sys.exec.in.rt_lock_to_cpu[CHILD_THR] = Yes;
sys.exec.in.rt_nond_pri[PARENT] = Yes;
sys.exec.in.rt_priority[PARENT] = 1;

Multi-Processing

• Change owner of executable to root and set user id bit
– su to root or use sudo command (see man page) to gi ve root

privileges using chown and chmod commands

– Configure simulation with root access

> cd ~/trick_sims/SIM_cannon_multi
> sudo su
> chown root S_main_${TRICK_HOST_CPU}.exe
> chmod 4775 S_main_${TRICK_HOST_CPU}.exe

5/23/2011 Trick Advanced Training 46

– Configure simulation with root access
– Rerun simulation
– Look at RT plots and notice tight repeatable perfor mance (should

be no abnormal spikes)

Master/Slave Import/Export

5/23/2011 Trick Advanced Training 47

• Trick uses a master/slave start up and sync design
– Multiple S_defines, one master process and up to 16 slave

processes
• Master launches slaves with remote (rsh) or secure (ssh) shell
• Slave process clocks are synced to the master over sockets

– Frequency of sync defined with sys.exec.in.rt_sync_frame
– rt_sync_frame may be equal to or larger than rt_software_frame,

but it must be a multiple of it

Distributed Processing

5/23/2011 Trick Advanced Training 48

but it must be a multiple of it
– Itimer pause capability on slaved processes is deactivated

because of master sync
– External timers with pause capability can be used on slaves

• By default, the master/slave processes will go to s leep (socket
select call) waiting for handshake synchronization

– Each master or slave process can also use Trick pth read or
child multi-process capability (called a process gr oup)

– There is S_define syntax for importing and exporting data
between master/slave process groups

• Trickcomm code is auto generated (uses tc_multiconn ect)

• Let's look at a master/slave distributed sim across two
S_defines, and import/export data between them

– SIM_master_imp_exp and SIM_slave_imp_exp
– Bring up the trick_ui and let's look at the two sim ulations

• First, look at the S_define for both sims
– Simple single sim_object with initialization and scheduled jobs

» Notice P# syntax for phased initialization job sequencing
» Notice import/export syntax - exported messages are

Distributed Processing

5/23/2011 Trick Advanced Training 49

» Notice import/export syntax - exported messages are
attached to the job before its syntax and imported messages
are attached to the job that immediately follows its syntax

• Use trick_ui to view simple src and include files for simulations
• Finally, let's look at the input file setup for both simulations

– Notice the setup for master/slave configuration

• CP both SIM_master_imp_exp and SIM_slave_imp_exp sims
with the trick_ui

– Check for and resolve any errors

• Configure sim & shell to use secure shell for slave startup
– Under SIM_master_imp_exp , edit RUN_Master/input

• Add the line

Distributed Processing

5/23/2011 Trick Advanced Training 50

• You may also need to add “./” to S_main_name to resolve the
executable path if “.” is not in your environment shell path

sys.exec.in.remote_shell = TRICK_SSH ;

• Continue secure shell configuration
– From terminal and home directory:

Distributed Processing

% ssh-keygen -t dsa
(3 questions will be asked, hit return for all 3)

% cd ~/.ssh
% cp id_dsa identity
% cp id_dsa.pub authorized_keys

5/23/2011 Trick Advanced Training 51

– Run ssh command twice to create known_hosts and test that
ssh command works with no password prompt:

% ssh localhost ls
<asks a question> Answer “yes”
<listing>
% ssh localhost ls
<listing given without questions>

• Add “sys.exec.in.echo_job = Yes;” to the input file for both
Sim_master_imp_exp/RUN_Master and
Sim_slave_imp_exp/RUN_Slave

– This will show verbose print outs of job execution time

• Also, comment out the stop time in RUN_Master/input
– We can use the sim control panel to freeze and shutd own

• Run Sim_master_imp_exp with RUN_Master from the

Distributed Processing

5/23/2011 Trick Advanced Training 52

• Run Sim_master_imp_exp with RUN_Master from the
trick_ui

• Notice that since sys.exec.in.enable_init_stepping is turned
on in the master's input file, the control panel is waiting to
step through the phased initialization class jobs

– Step through phased init jobs to get to freeze, then run
– Freeze and shutdown the sim after about 20 seconds

• View Status Messages pane in sim control panel for execution
history of Master/Slave run

• Exit sim control and bring up DP from the trick_ui
• Select SIM_master_imp_exp/RUN_master from the Sims/Runs

pane and DP_test from the Data Product pane

• Then click on the single plot icon in the upper lef t to bring up plot

Distributed Processing

5/23/2011 Trick Advanced Training 53

• Then click on the single plot icon in the upper lef t to bring up plot
of import/export test data

– Do these values make sense?

• Also look at the DP_rt plots

• A few words about dynamic connections between sims
– Users can build their own connection managers with Trick by using

child threads and asynchronous class jobs

• Job Phasing (of regularly scheduled jobs)
– S_define Syntax (P#) is identical to initialization job phasing
– Initialization class job phases are synchronized acro ss

distributed simulations, but regularly scheduled ph ased jobs
only perform a reorder sync within a single S_defin e

– When regularly scheduled jobs use phasing (P#), the sort order
becomes class, phase, and top down order in S_defin e

– Phasing gives users another mechanism for schedulin g order of

Phasing & Job Times

5/23/2011 Trick Advanced Training 54

– Phasing gives users another mechanism for schedulin g order of
like class jobs that is independent of top down ord er in S_define

• Start (or offset) and stop times can also be define d for each
job entry in the S_define file

• See Trick user's guide for more info on job syntax in the
S_define

Trick Simulation Environment:
Real World Real Time HIL Application

Alex Lin (NASA/ER7)
February 14 th-16th, 2006

5/23/2011 55Trick Advanced Training

MRMDF Introduction

• The Multi-use Remote Manipulator Development Facili ty
(MRMDF) is an International Space Station ground fa cility
supporting
– Astronaut training
– Procedures development
– Engineering evaluations associated with the operati ons of the

Space Station Remote Manipulator System (SSRMS)

5/23/2011 Trick Advanced Training 56

• Full scale functional replica of the SSRMS designed to operate
in the 1-g environment
– Hydraulically actuated arm
– Arm control and safety electronics
– Functional End Effector
– Test Director Console
– SSRMS simulation

MRMDF Introduction

5/23/2011 Trick Advanced Training 57

MRMDF Introduction

• Part 1
– Machine hardware and software configuration
– MRMDF real-time parameter settings

• Part 2
– Real time performance analysis using Data Products

5/23/2011 Trick Advanced Training 58

MRMDF Introduction

• MRMDF is a distributed system using 5 computers
– Test Directors Console (TDC)

• Desktop Dell 2GHz Xeon workstation
• Test Director interface

– Facility Control System Electronics (FCSE)
• VMIC 7750 VME Single Board computer 1.26Ghz Pentium III

– 2 Manipulator Control System Electronics (MCSEA) an d (MCSEB)
• VMIC 7750 VME Single Board computer 1.26Ghz Pentium III

5/23/2011 Trick Advanced Training 59

• VMIC 7750 VME Single Board computer 1.26Ghz Pentium III

– SSRMS simulation or Basic Operational Robotics Inst ructional
System (BORIS) simulation

• Desktop Dell Dual 2GHz Xeon workstation
• Astronaut/Trainer interface

• Facility is on an isolated 1Gbs network
– All network cards are 100Mbs

MRMDF Machine Configuration

• All computers running RedHat Enterprise Linux 4 (RH EL4)
– Non-updated straight from the RHEL4 CD installation
– Embedded computers set to boot to run level 3 (mult i-user text

only)
– TDC and BORIS computers set to run level 5

5/23/2011 Trick Advanced Training 60

• Some services turned off because they are non-essen tial or
may hurt real-time performance
– irqbalance
– cpuspeed
– sendmail

MRMDF Machine Configuration

• Output of services still running on embedded comput ers

> chkconfig --list | grep "3:on" | sort
acpid 0:off 1:off 2:off 3:on 4:on 5:on 6:off
anacron 0:off 1:off 2:on 3:on 4:on 5:on 6:off
atd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
autofs 0:off 1:off 2:off 3:on 4:on 5:on 6:off
crond 0:off 1:off 2:on 3:on 4:on 5:on 6:off
cups 0:off 1:off 2:on 3:on 4:on 5:on 6:off
gpm 0:off 1:off 2:on 3:on 4:on 5:on 6:off
kudzu 0:off 1:off 2:off 3:on 4:on 5:on 6:off

5/23/2011 Trick Advanced Training 61

kudzu 0:off 1:off 2:off 3:on 4:on 5:on 6:off
lm_sensors 0:off 1:off 2:on 3:on 4:on 5:on 6:off
messagebus 0:off 1:off 2:off 3:on 4:on 5:on 6:off
netfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off
network 0:off 1:off 2:on 3:on 4:on 5:on 6:off
nfslock 0:off 1:off 2:off 3:on 4:on 5:on 6:off
portmap 0:off 1:off 2:off 3:on 4:on 5:on 6:off
rawdevices 0:off 1:off 2:off 3:on 4:on 5:on 6:off
sshd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off
xfs 0:off 1:off 2:on 3:on 4:on 5:on 6:off
xinetd 0:off 1:off 2:off 3:on 4:on 5:on 6:off

MRMDF Machine Configuration

• Output of “lsmod” command

> lsmod
Module Size Used by
nfs 218309 0
lockd 63977 1 nfs
sunrpc 157093 3 nfs,lockd
vme_vmitmrf 11752 0
vme_universe 108708 0
md5 4033 1
ipv6 232705 12

5/23/2011 Trick Advanced Training 62

ipv6 232705 12
parport_pc 24705 0
lp 12077 0
parport 37129 2 parport_pc,lp
autofs4 23237 1
i2c_dev 11329 0
i2c_core 22081 1 i2c_dev
dm_mod 54741 0
uhci_hcd 31065 0
hw_random 5845 0
e100 39493 0
mii 4673 1 e100
floppy 58481 0
ext3 116809 1
jbd 71257 1 ext3

MRMDF Machine Configuration

• irqbalance service turned off the BORIS computer
– irqbalance is a service that tries to spread interr upt handling to all

available processors
• Reassigns interrupts to specific processors
• If a simulation is “burning” all CPU cycles, any interrupt assigned to that

CPU will not be serviced. The machine will appear “locked up”

5/23/2011 Trick Advanced Training 63

MRMDF Machine Configuration

• Output of “cat /proc/interrupts” with irqbalance on

> cat /proc/interrupts

CPU0 CPU1
0: 686551361 690211955 IO-APIC-edge timer
1: 65200 64966 IO-APIC-edge i8042
8: 1 0 IO-APIC-edge rtc
9: 0 0 IO-APIC-level acpi

12: 0 0 IO-APIC-edge i8042
14: 273884 283455 IO-APIC-edge ide0
15: 10380479 10961469 IO - APIC- edge ide1

5/23/2011 Trick Advanced Training 64

15: 10380479 10961469 IO - APIC- edge ide1
169: 8677476 8633408 IO-APIC-level uhci_hcd
177: 7127 7074 IO-APIC-level Intel 82801BA-ICH2
185: 32970665 0 IO-APIC-level uhci_hcd, eth0
193: 55050079 55390831 IO-APIC-level ohci1394, nvidia
201: 30 0 IO-APIC-level aic7xxx
209: 1678484 1679598 IO-APIC-level aic7xxx
NMI: 0 0
LOC: 1376788791 1376785050
ERR: 10
MIS: 0

MRMDF Machine Configuration

• Output of “cat /proc/interrupts” with irqbalance of f on the
BORIS computer

> cat /proc/interrupts

CPU0 CPU1
0: 451274705 0 IO-APIC-edge timer
1: 552 0 IO-APIC-edge i8042
8: 1 0 IO-APIC-edge rtc
9: 0 0 IO-APIC-level acpi

12: 506838 0 IO-APIC-edge i8042
14: 79358 0 IO - APIC- edge ide0

5/23/2011 Trick Advanced Training 65

14: 79358 0 IO - APIC- edge ide0
15: 4058658 0 IO-APIC-edge ide1

169: 0 0 IO-APIC-level uhci_hcd
177: 1278 0 IO-APIC-level Intel 82801BA-ICH2
185: 9368789 0 IO-APIC-level eth0, uhci_hcd
193: 27195681 0 IO-APIC-level nvidia
NMI: 0 0
LOC: 451282615 451282536
ERR: 2
MIS: 0

MRMDF Trick Real-time Features

• All machines in the MRMDF use a modified Trick 05.6 .1
– All MRMDF specific changes merged back into Trick 0 5.7.0

• MRMDF uses many of the real-time features in Trick
– Scheduling

• 30Hz sync frame (0.033330 sec)
• 300Hz real time loop (0.003333 sec)

5/23/2011 Trick Advanced Training 66

• 300Hz real time loop (0.003333 sec)

– Distributed application across 5 computers
– Master/Slave synchronization
– Clock/timers - External timers
– Real-time controls and parameters
– Multi-threaded applications

MRMDF Real-time Scheduling

• Scheduling
– 30Hz sync frame and 300Hz real time loop
– Paritial S_define listing from an MCSE

#define HZ30 0.033330 /*--- MRM SW FREQUENCY CYCLE TIME ---*/

sim_object {

<data structures and init jobs>

(HZ30) mcse/device: mcse_rs422_write(…) ;

5/23/2011 Trick Advanced Training 67

(HZ30) mcse/device: mcse_rs422_write(…) ;
(HZ30,0.003333) mcse/comm: mcse_tdc_read(…) ;
(HZ30,0.006666) mcse/device: mcse_rs422_read(…);
(HZ30,0.006666) mcse/device: mcse_device_read(…) ;
(HZ30,0.006666) mcse/mrm: mcse_exec(…) ;
(HZ30,0.013332) mcse/mee: mee_exec(…);
(HZ30,0.013332) mcse/poa: poa_exec(…);
(HZ30,0.016665) mcse/comm: mcse_fcse_read(…) ;
(HZ30,0.016665) mcse/comm: mcse_simhost_read(…) ;
(HZ30,0.016665) mcse/manipulator: manipulator_exec(…);
(HZ30,0.016665) mcse/jbce_sim: jbce_sim(…);
(HZ30,0.016665) mcse/comm: mcse_simhost_write(…) ;
(HZ30,0.016665) mcse/comm: mcse_fcse_export(…) ;

} mcse ;

MRMDF Real-time Scheduling

• To set the frequencies in the S_define file is not enough to run
real-time. Real time performance is greatly shape d by one
parameter in the input file.

– Setting rt_software_frame to 3.333ms tells Trick to schedule jobs
for the next 3.333ms to run and wait (if underrunni ng) for the next

sys.exec.in.rt_software_frame {s} = 0.0033330 ;

5/23/2011 Trick Advanced Training 68

for the next 3.333ms to run and wait (if underrunni ng) for the next
frame

m
cs

e_
rs

42
2_

w
rit

e

0 6.6663.333 9.999 13.332 16.665 19.998 23.331 26.664 29.997 33.330

m
cs

e_
td

c_
re

ad

m
cs

e_
rs

42
2_

re
ad

m
cs

e_
de

vi
ce

_r
ea

d
m

cs
e_

ex
ec

m
ee

_e
xe

c
po

a_
ex

ec

m
cs

e_
fc

se
_r

ea
d

m
cs

e_
si

m
ho

st
_r

ea
d

m
an

ip
ul

at
or

_e
xe

c
jb

ce
_s

im
m

cs
e_

si
m

ho
st

_w
rit

e
m

cs
e_

fc
se

_e
xp

or
t

Time(ms)

MRMDF Real-time Scheduling

– If we had set rt_software_frame to 33.33ms, all job s within each
33.33ms would be scheduled to run in succession.

m
cs

e_
rs

42
2_

w
rit

e
m

cs
e_

td
c_

re
ad

m
cs

e_
rs

42
2_

re
ad

m
cs

e_
de

vi
ce

_r
ea

d
m

cs
e_

ex
ec

m
ee

_e
xe

c
po

a_
ex

ec
m

cs
e_

fc
se

_r
ea

d
m

cs
e_

si
m

ho
st

_r
ea

d
m

an
ip

ul
at

or
_e

xe
c

jb
ce

_s
im

m
cs

e_
si

m
ho

st
_w

rit
e

m
cs

e_
fc

se
_e

xp
or

t
0 6.6663.333 9.999 13.332 16.665 19.998 23.331 26.664 29.997 33.330

5/23/2011 Trick Advanced Training 69

0 6.6663.333 9.999 13.332 16.665 19.998 23.331 26.664 29.997 33.330

MRMDF Master/Slave Configuration

• Master/Slave synchronization
– MRMDF requires 4 computers to communicate synchrono usly
– To ensure that all simulations are working with to the same clock

we use Trick’s Master/Slave synchronization capabili ties
– 4 of the 5 computers participate in the Master/Slav e setup

• FCSE Master
• MCSEA Slave
• MCSEB Slave

5/23/2011 Trick Advanced Training 70

• MCSEB Slave
• SSRMS/BORIS Slave

• The 5 th computer, the TDC is asynchronously connected to al l
systems
– Controls simulation mode of the system

Master/Slave

MRMDF Master/Slave configuration

TDC

FCSE (Master)

MCSEA (slave)

M
od

in
g

M
as

te
r/

S
la

ve

5/23/2011 Trick Advanced Training 71

MCSEB (slave)

BORIS (slave)

M
od

in
g

M
as

te
r/

S
la

ve

Master/Slave Configuration

• Partial input file detailing Master/Slave activatio n and synchronization (FCSE)

/* Activation */
sys.exec.in.ms_sync = Master_sync ;
sys.exec.in.remote_shell = TRICK_SSH ;

int num_slaves = 0 ;

sys.exec.in.activate_slave[num_slaves] = Yes ;
sys.exec.in.slaves[num_slaves].machine_name = "${MCSEA_HOST}" ;
sys.exec.in.slaves[num_slaves].sim_path = "${MCSEA_SIM_DIR}" ;
sys.exec.in.slaves[num_slaves].S_main_args[0] = "${MCSEA_RUN_DIR}/input" ;
num_slaves++ ;

5/23/2011 Trick Advanced Training 72

num_slaves++ ;

<similar code for mcse_b and boris>

sys.exec.in.slave_cnt = num_slaves ;

/* Synchronization */
sys.exec.work.slave_sync_at_init = Yes ;
sys.exec.in.sync_error_terminate = No ;

Master/Slave Configuration

• Partial input file detailing Master/Slave activatio n and synchronization (FCSE)

/* Activation */
sys.exec.in.ms_sync = Master_sync ;
sys.exec.in.remote_shell = TRICK_SSH ;

int num_slaves = 0 ;

sys.exec.in.activate_slave[num_slaves] = Yes ;
sys.exec.in.slaves[num_slaves].machine_name = "${MCSEA_HOST}" ;
sys.exec.in.slaves[num_slaves].sim_path = "${MCSEA_SIM_DIR}" ;
sys.exec.in.slaves[num_slaves].S_main_args[0] = "${MCSEA_RUN_DIR}/input" ;
num_slaves++ ;

5/23/2011 Trick Advanced Training 73

num_slaves++ ;

<similar code for mcse_b and boris>

sys.exec.in.slave_cnt = num_slaves ;

/* Synchronization */
sys.exec.work.slave_sync_at_init = Yes ;
sys.exec.in.sync_error_terminate = No ;

– Turns on Master/Slave sync. Choices are
• Master_sync
• Slave_Sync
• No_sync

Master/Slave Configuration

• Partial input file detailing Master/Slave activatio n and synchronization (FCSE)

/* Activation */
sys.exec.in.ms_sync = Master_sync ;
sys.exec.in.remote_shell = TRICK_SSH ;

int num_slaves = 0 ;

sys.exec.in.activate_slave[num_slaves] = Yes ;
sys.exec.in.slaves[num_slaves].machine_name = "${MCSEA_HOST}" ;
sys.exec.in.slaves[num_slaves].sim_path = "${MCSEA_SIM_DIR}" ;
sys.exec.in.slaves[num_slaves].S_main_args[0] = "${MCSEA_RUN_DIR}/input" ;
num_slaves++ ;

5/23/2011 Trick Advanced Training 74

num_slaves++ ;

<similar code for mcse_b and boris>

sys.exec.in.slave_cnt = num_slaves ;

/* Synchronization */
sys.exec.work.slave_sync_at_init = Yes ;
sys.exec.in.sync_error_terminate = No ;

– Which remote shell to use to start slave simulation s. Choices are
• TRICK_SSH
• TRICK_RSH

Master/Slave Configuration

• Partial input file detailing Master/Slave activatio n and synchronization (FCSE)

/* Activation */
sys.exec.in.ms_sync = Master_sync ;
sys.exec.in.remote_shell = TRICK_SSH ;

int num_slaves = 0 ;

sys.exec.in.activate_slave[num_slaves] = Yes ;
sys.exec.in.slaves[num_slaves].machine_name = "${MCSEA_HOST}" ;
sys.exec.in.slaves[num_slaves].sim_path = "${MCSEA_SIM_DIR}" ;
sys.exec.in.slaves[num_slaves].S_main_args[0] = "${MCSEA_RUN_DIR}/input" ;
num_slaves++ ;

5/23/2011 Trick Advanced Training 75

num_slaves++ ;

<similar code for mcse_b and boris>

sys.exec.in.slave_cnt = num_slaves ;

/* Synchronization */
sys.exec.work.slave_sync_at_init = Yes ;
sys.exec.in.sync_error_terminate = No ;

– Activate this slave at initialization?
• Yes = Master will use a remote shell to automatically start slave simulation
• No = Master will not start the slave, but will synchronize with the slave when connected

Master/Slave Configuration

• Partial input file detailing Master/Slave activatio n and synchronization (FCSE)

/* Activation */
sys.exec.in.ms_sync = Master_sync ;
sys.exec.in.remote_shell = TRICK_SSH ;

int num_slaves = 0 ;

sys.exec.in.activate_slave[num_slaves] = Yes ;
sys.exec.in.slaves[num_slaves].machine_name = "${MCSEA_HOST}" ;
sys.exec.in.slaves[num_slaves].sim_path = "${MCSEA_SIM_DIR}" ;
sys.exec.in.slaves[num_slaves].S_main_args[0] = "${MCSEA_RUN_DIR}/input" ;
num_slaves++ ;

5/23/2011 Trick Advanced Training 76

num_slaves++ ;

<similar code for mcse_b and boris>

sys.exec.in.slave_cnt = num_slaves ;

/* Synchronization */
sys.exec.work.slave_sync_at_init = Yes ;
sys.exec.in.sync_error_terminate = No ;

– Machine name to start the slave on.
• In this case ${MCSEA_HOST} is an environment variable

Master/Slave Configuration

• Partial input file detailing Master/Slave activatio n and synchronization (FCSE)

/* Activation */
sys.exec.in.ms_sync = Master_sync ;
sys.exec.in.remote_shell = TRICK_SSH ;

int num_slaves = 0 ;

sys.exec.in.activate_slave[num_slaves] = Yes ;
sys.exec.in.slaves[num_slaves].machine_name = "${MCSEA_HOST}" ;
sys.exec.in.slaves[num_slaves].sim_path = "${MCSEA_SIM_DIR}" ;
sys.exec.in.slaves[num_slaves].S_main_args[0] = "${MCSEA_RUN_DIR}/input" ;
num_slaves++ ;

5/23/2011 Trick Advanced Training 77

num_slaves++ ;

<similar code for mcse_b and boris>

sys.exec.in.slave_cnt = num_slaves ;

/* Synchronization */
sys.exec.work.slave_sync_at_init = Yes ;
sys.exec.in.sync_error_terminate = No ;

– Full path to slave simulation directory on remote m achine
• In this case ${MCSEA_SIM_DIR} is an environment variable

Master/Slave Configuration

• Partial input file detailing Master/Slave activatio n and synchronization (FCSE)

/* Activation */
sys.exec.in.ms_sync = Master_sync ;
sys.exec.in.remote_shell = TRICK_SSH ;

int num_slaves = 0 ;

sys.exec.in.activate_slave[num_slaves] = Yes ;
sys.exec.in.slaves[num_slaves].machine_name = "${MCSEA_HOST}" ;
sys.exec.in.slaves[num_slaves].sim_path = "${MCSEA_SIM_DIR}" ;
sys.exec.in.slaves[num_slaves].S_main_args[0] = "${MCSEA_RUN_DIR}/input" ;
num_slaves++ ;

5/23/2011 Trick Advanced Training 78

num_slaves++ ;

<similar code for mcse_b and boris>

sys.exec.in.slave_cnt = num_slaves ;

/* Synchronization */
sys.exec.work.slave_sync_at_init = Yes ;
sys.exec.in.sync_error_terminate = No ;

– Relative path from slave simulation directory to ru n directory
• In this case ${MCSEA_RUN_DIR} is an environment variable

Master/Slave Configuration

• Partial input file detailing Master/Slave activatio n and synchronization (FCSE)

/* Activation */
sys.exec.in.ms_sync = Master_sync ;
sys.exec.in.remote_shell = TRICK_SSH ;

int num_slaves = 0 ;

sys.exec.in.activate_slave[num_slaves] = Yes ;
sys.exec.in.slaves[num_slaves].machine_name = "${MCSEA_HOST}" ;
sys.exec.in.slaves[num_slaves].sim_path = "${MCSEA_SIM_DIR}" ;
sys.exec.in.slaves[num_slaves].S_main_args[0] = "${MCSEA_RUN_DIR}/input" ;
num_slaves++ ;

5/23/2011 Trick Advanced Training 79

num_slaves++ ;

<similar code for mcse_b and boris>

sys.exec.in.slave_cnt = num_slaves ;

/* Synchronization */
sys.exec.work.slave_sync_at_init = Yes ;
sys.exec.in.sync_error_terminate = No ;

– Number of slaves the master will synchronize
• In MRMDF num_slaves = 3

Master/Slave Configuration

• Partial input file detailing Master/Slave activatio n and synchronization (FCSE)

/* Activation */
sys.exec.in.ms_sync = Master_sync ;
sys.exec.in.remote_shell = TRICK_SSH ;

int num_slaves = 0 ;

sys.exec.in.activate_slave[num_slaves] = Yes ;
sys.exec.in.slaves[num_slaves].machine_name = "${MCSEA_HOST}" ;
sys.exec.in.slaves[num_slaves].sim_path = "${MCSEA_SIM_DIR}" ;
sys.exec.in.slaves[num_slaves].S_main_args[0] = "${MCSEA_RUN_DIR}/input" ;
num_slaves++ ;

5/23/2011 Trick Advanced Training 80

num_slaves++ ;

<similar code for mcse_b and boris>

sys.exec.in.slave_cnt = num_slaves ;

/* Synchronization */
sys.exec.work.slave_sync_at_init = Yes ;
sys.exec.in.sync_error_terminate = No ;

– Will the Master wait at time=0 for all slaves to st art before
proceeding

Master/Slave Configuration

• Partial input file detailing Master/Slave activatio n and synchronization (FCSE)

/* Activation */
sys.exec.in.ms_sync = Master_sync ;
sys.exec.in.remote_shell = TRICK_SSH ;

int num_slaves = 0 ;

sys.exec.in.activate_slave[num_slaves] = Yes ;
sys.exec.in.slaves[num_slaves].machine_name = "${MCSEA_HOST}" ;
sys.exec.in.slaves[num_slaves].sim_path = "${MCSEA_SIM_DIR}" ;
sys.exec.in.slaves[num_slaves].S_main_args[0] = "${MCSEA_RUN_DIR}/input" ;
num_slaves++ ;

5/23/2011 Trick Advanced Training 81

num_slaves++ ;

<similar code for mcse_b and boris>

sys.exec.in.slave_cnt = num_slaves ;

/* Synchronization */
sys.exec.work.slave_sync_at_init = Yes ;
sys.exec.in.sync_error_terminate = No ;

– Will the simulation terminate if loss of sync conne ction detected
• No = continue to run, but as a standalone sim.
• In MRMDF, Loss of sync will send the facility to “safe” mode through a user model

Real-time Input Parameters

• MRMDF runs with 33.33ms major frame with 3.333ms mi nor
frame

• When running we want executables to run at maximum non-
degrading real-time priority

5/23/2011 Trick Advanced Training 82

Real-time Input Parameters

• Partial input file for real-time input parameters (FCSE)

#define SW_FRAME 0.0333300
#define RT_FRAME 0.0033330

/* SIM-TO-WALL-CLOCK SYNCHRONIZATION */
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = No ;
sys.exec.in.rt_software_frame {s} = RT_FRAME ;
sys.exec.in.rt_sync_frame {s} = SW_FRAME ;

5/23/2011 Trick Advanced Training 83

sys.exec.in.rt_sync_frame {s} = SW_FRAME ;
sys.exec.in.sync_wait_limit {s} = 0.050 ;

/* MAXIMUM NON-DEGRADING PRIORITY */
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;

Real-time Input Parameters

• Partial input file for real-time input parameters (FCSE)

#define SW_FRAME 0.0333300
#define RT_FRAME 0.0033330

/* SIM-TO-WALL-CLOCK SYNCHRONIZATION */
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = No ;
sys.exec.in.rt_software_frame {s} = RT_FRAME ;
sys.exec.in.rt_sync_frame {s} = SW_FRAME ;

5/23/2011 Trick Advanced Training 84

sys.exec.in.rt_sync_frame {s} = SW_FRAME ;
sys.exec.in.sync_wait_limit {s} = 0.050 ;

/* MAXIMUM NON-DEGRADING PRIORITY */
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;

– Allows the sim to sleep when we need to wait for ev ents
• We want the simulation to “burn” for instant response

Real-time Input Parameters

• Partial input file for real-time input parameters (FCSE)

#define SW_FRAME 0.0333300
#define RT_FRAME 0.0033330

/* SIM-TO-WALL-CLOCK SYNCHRONIZATION */
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = No ;
sys.exec.in.rt_software_frame {s} = RT_FRAME ;
sys.exec.in.rt_sync_frame {s} = SW_FRAME ;

5/23/2011 Trick Advanced Training 85

sys.exec.in.rt_sync_frame {s} = SW_FRAME ;
sys.exec.in.sync_wait_limit {s} = 0.050 ;

/* MAXIMUM NON-DEGRADING PRIORITY */
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;

– Don’t use an itimer to check for frame overruns
• Before Linux 2.6 kernels and Trick 5.6, using itimers with frames under 10ms

was not possible.

Real-time Input Parameters

• Partial input file for real-time input parameters (FCSE)

#define SW_FRAME 0.0333300
#define RT_FRAME 0.0033330

/* SIM-TO-WALL-CLOCK SYNCHRONIZATION */
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = No ;
sys.exec.in.rt_software_frame {s} = RT_FRAME ;
sys.exec.in.rt_sync_frame {s} = SW_FRAME ;

5/23/2011 Trick Advanced Training 86

sys.exec.in.rt_sync_frame {s} = SW_FRAME ;
sys.exec.in.sync_wait_limit {s} = 0.050 ;

/* MAXIMUM NON-DEGRADING PRIORITY */
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;

– Allows the sim to sleep during underrunning frames
• rt_itimer_pause not applicable if rt_itimer is off

Real-time Input Parameters

• Partial input file for real-time input parameters (FCSE)

#define SW_FRAME 0.0333300
#define RT_FRAME 0.0033330

/* SIM-TO-WALL-CLOCK SYNCHRONIZATION */
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = No ;
sys.exec.in.rt_software_frame {s} = RT_FRAME ;
sys.exec.in.rt_sync_frame {s} = SW_FRAME ;

5/23/2011 Trick Advanced Training 87

sys.exec.in.rt_sync_frame {s} = SW_FRAME ;
sys.exec.in.sync_wait_limit {s} = 0.050 ;

/* MAXIMUM NON-DEGRADING PRIORITY */
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;

– Setting rt_software_frame to 3.333ms tells Trick to schedule jobs
for the next 3.333ms to run and wait (if underrunni ng) for the next
frame

Real-time Input Parameters

• Partial input file for real-time input parameters (FCSE)

#define SW_FRAME 0.0333300
#define RT_FRAME 0.0033330

/* SIM-TO-WALL-CLOCK SYNCHRONIZATION */
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = No ;
sys.exec.in.rt_exttimer = Yes ;
sys.exec.in.rt_sync_frame {s} = SW_FRAME ;

5/23/2011 Trick Advanced Training 88

sys.exec.in.rt_sync_frame {s} = SW_FRAME ;
sys.exec.in.sync_wait_limit {s} = 0.050 ;

/* MAXIMUM NON-DEGRADING PRIORITY */
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;

– How often we check the realtime status with the ext ernal timer

Real-time Input Parameters

• Partial input file for real-time input parameters (FCSE)

#define SW_FRAME 0.0333300
#define RT_FRAME 0.0033330

/* SIM-TO-WALL-CLOCK SYNCHRONIZATION */
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = No ;
sys.exec.in.rt_software_frame {s} = RT_FRAME ;
sys.exec.in.rt_sync_frame {s} = SW_FRAME ;

5/23/2011 Trick Advanced Training 89

sys.exec.in.rt_sync_frame {s} = SW_FRAME ;
sys.exec.in.sync_wait_limit {s} = 0.050 ;

/* MAXIMUM NON-DEGRADING PRIORITY */
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;

– Maximum time to wait for synchronization response
• If no response after 50ms, then the master breaks the sync connection and

sends the facility to “safe”

Real-time Input Parameters

• Partial input file for real-time input parameters (FCSE)

#define SW_FRAME 0.0333300
#define RT_FRAME 0.0033330

/* SIM-TO-WALL-CLOCK SYNCHRONIZATION */
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = No ;
sys.exec.in.rt_software_frame {s} = RT_FRAME ;
sys.exec.in.rt_sync_frame {s} = SW_FRAME ;

5/23/2011 Trick Advanced Training 90

sys.exec.in.rt_sync_frame {s} = SW_FRAME ;
sys.exec.in.sync_wait_limit {s} = 0.050 ;

/* MAXIMUM NON-DEGRADING PRIORITY */
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;

– Lock all memory in RAM. Cannot be paged to swap fi le.
• Must be root to use this parameter

Real-time Input Parameters

• Partial input file for real-time input parameters (FCSE)

#define SW_FRAME 0.0333300
#define RT_FRAME 0.0033330

/* SIM-TO-WALL-CLOCK SYNCHRONIZATION */
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = No ;
sys.exec.in.rt_software_frame {s} = RT_FRAME ;
sys.exec.in.rt_sync_frame {s} = SW_FRAME ;

5/23/2011 Trick Advanced Training 91

sys.exec.in.rt_sync_frame {s} = SW_FRAME ;
sys.exec.in.sync_wait_limit {s} = 0.050 ;

/* MAXIMUM NON-DEGRADING PRIORITY */
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;

– Set the simulation to run with a non-degrading real -time priority.
• Must be root to use this parameter

Real-time Input Parameters

• Partial input file for real-time input parameters (FCSE)

#define SW_FRAME 0.0333300
#define RT_FRAME 0.0033330

/* SIM-TO-WALL-CLOCK SYNCHRONIZATION */
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = No ;
sys.exec.in.rt_software_frame {s} = RT_FRAME ;
sys.exec.in.rt_sync_frame {s} = SW_FRAME ;

5/23/2011 Trick Advanced Training 92

sys.exec.in.rt_sync_frame {s} = SW_FRAME ;
sys.exec.in.sync_wait_limit {s} = 0.050 ;

/* MAXIMUM NON-DEGRADING PRIORITY */
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;

– Sets the priority.
• Setting rt_priority = 1 will set the process to run at maximum priority on any platform
• Warning: Setting rt_priority = 1 on a single processor computer with no “napping” will

completely shut out all shells and input devices, i.e. mouse, keyboard

MRMDF Multithreaded Applications

• BORIS is an all-in-one generic robotics trainer
– Arm simulation
– Operator GUIs built into the simulation

5/23/2011 Trick Advanced Training 93

MRMDF Multithreaded Applications

• The BORIS simulation has 2 requirements forcing a m ulti-
threaded design
– Communication deadlines to meet with the facility
– Handling updates to the GUIs for operator

• X-Windows event handling
– Button presses

5/23/2011 Trick Advanced Training 94

– Button presses
– Text field updates
– Window scrolling
– Window resizing…
– Some actions can generate thousands of events requi ring seconds

to complete

MRMDF Multithreaded Applications

• BORIS requires a dual processor computer
– Use one processor for keeping the simulation synchr onized with

the rest of the facility
– Use the second to handle X-window updates through a “child”

process.
• Child terminology held over from when Trick used parent/child forking and

execing to run multiprocess applications

5/23/2011 Trick Advanced Training 95

• Assigning job to child thread in S_define:

– C1 = Assign the job to run in the first child proce ss
– asynchronous = do not worry about job completion ti me
– 0.1 sec. cycle time = when job is finished reschedu le the job to run

the next 0.1 second boundary
• This particular job never returns so the cycle time is irrelevant

C1 (0.01, asynchronous) xgrt: grt_event_loop(…);

MRMDF Multithreaded Applications

• Data locks or mutexes are not provided by Trick
– BORIS’ main thread and child thread both make X fun ction calls
– The application will core dump if more than one thr ead tries to

make X calls simultaneously
– Added a pthread mutex that locks out other threads when making

X calls
– For this child job we also added code to ensure tha t no X updates

occur once we are past 80% finished in the frame

5/23/2011 Trick Advanced Training 96

occur once we are past 80% finished in the frame
• This is to make sure that we finish all X updates in time so the main thread

will only have to wait a minimal time to acquire the mutex.

MRMDF Multithreaded Applications

• Excerpt from child process
while (1) {

/* we do not want to update the GUI if we are nearing time to call
grt_update_values, don't update if we are over 80% through the frame */

rem = fmod (exec_get_sim_time() , job_call_time) ;
if (rem != 0.0 && rem < (job_call_time * 0.80)) {

/* lock the mutex if we can */
if (pthread_mutex_trylock(&grt_info->x_lock) == 0) {

/* dispatch 5 events */
for (ii = 0 ; ii < 5 ; ii++) {

if (XtAppPending(grt_if->app_context) & XtIMXEvent){
XtAppNextEvent(grt_if - >app_context , &next_event) ;

5/23/2011 Trick Advanced Training 97

XtAppNextEvent(grt_if - >app_context , &next_event) ;
XtDispatchEvent(&next_event) ;

}
}
/* unlock the mutex so grt_update_values can run */
pthread_mutex_unlock(&grt_info->x_lock);

}
}
else {

/* we are nearing or on the cycle to run grt_update_values,
sleep a little to allow grt_update_values to run */

usleep(100) ;
}

}

MRMDF Multithreaded Applications

• Partial input file parameters associated with real- time (BORIS)

#define SW_FRAME 0.0333300

sys.exec.in.rt_itimer = No ;
sys.exec.in.rt_itimer_pause = Yes ;
sys.exec.in.rt_nap = No ;
sys.exec.in.rt_itimer_frame {s} = SW_FRAME ;
sys.exec.in.rt_software_frame {s} = SW_FRAME ;
sys.exec.in.rt_enable_clock_reset = Yes ;
sys.exec.in.sync_error_terminate = 0 ;

5/23/2011 Trick Advanced Training 98

sys.exec.in.sync_error_terminate = 0 ;

sys.exec.in.rt_lock_to_cpu[1] = Yes ;
sys.exec.in.rt_cpu_number[1] = 1 ;
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;
sys.exec.in.rt_lock_to_cpu[2] = Yes ;
sys.exec.in.rt_cpu_number[2] = 0 ;

MRMDF Multithreaded Applications

• Partial input file parameters associated with real- time (BORIS)

– rt_cpu_number[1] = Master thread process. We assig n this to processor 1

sys.exec.in.rt_lock_to_cpu[1] = Yes ;
sys.exec.in.rt_cpu_number[1] = 1 ;
sys.exec.in.rt_lock_memory[1] = Yes ;
sys.exec.in.rt_nond_pri[1] = Yes ;
sys.exec.in.rt_priority[1] = 1 ;
sys.exec.in.rt_lock_to_cpu[2] = Yes ;
sys.exec.in.rt_cpu_number[2] = 0 ;

5/23/2011 Trick Advanced Training 99

– rt_cpu_number[1] = Master thread process. We assig n this to processor 1
where there are no interrupts being handled. We wa nt to make sure that
the Child thread is assigned to the other processor

> cat /proc/interrupts

CPU0 CPU1
0: 451274705 0 IO-APIC-edge timer
1: 552 0 IO-APIC-edge i8042
8: 1 0 IO-APIC-edge rtc
9: 0 0 IO-APIC-level acpi

12: 506838 0 IO-APIC-edge i8042
14: 79358 0 IO-APIC-edge ide0
…

MRMDF Multithreaded Applications

• Using ps to confirm we are locked down on the corre ct processor
– Use ps arguments to show extra information

• PID
– Process ID

> ps -eLo pid,class,rtprio,ni,pri,psr,pcpu,stat,wchan:14,comm

PID CLS RTPRIO NI PRI PSR %CPU STAT WCHAN COMMAND
7789 FF 99 - 139 1 1.7 SLl pause S_main_Linux_3.
7789 TS - 0 20 0 0.0 SLl - S_main_Linux_3.

5/23/2011 Trick Advanced Training 100

– Process ID
– All threads of same sim will show same PID

• CLS
– Scheduling class of the process

• TS = SCHED_OTHER
• FF = SCHED_FIFO (realtime scheduler)

• RTPRIO
– Realtime priority

• For Linux 99 = highest priority

• PSR
– Processor that process is currently assigned to.

• %CPU
– Percentage of that individual CPU used

Part 2: MRMDF Real-Time Performance Analysis

• Use data products to
• Interpret and analyze real-time performance graphs
• Pinpoint functions causing overruns

5/23/2011 Trick Advanced Training 101

MRMDF Real-Time Performance

• When things go right:
– The printout at sim termination shows zero overruns:

SIMULATION TERMINATED IN
PROCESS: 1
JOB/ROUTINE: 1/master.c

DIAGNOSTIC:
Sim Control Shutdown.

LAST JOB CALLED: mcse.mcse_tdc_read(&mcse.mcse)
TOTAL OVERRUNS: 0

5/23/2011 Trick Advanced Training 102

TOTAL OVERRUNS: 0
PERCENTAGE REALTIME OVERRUNS: 0.000%

SIMULATION START TIME: 0.000
SIMULATION STOP TIME: 517.755

SIMULATION ELAPSED TIME: 517.755
ACTUAL ELAPSED TIME: 517.755

ACTUAL CPU TIME USED: 57.649
SIMULATION / ACTUAL TIME: 1.000

SIMULATION / CPU TIME: 8.981
ACTUAL INITIALIZATION TIME: 0.000

INITIALIZATION CPU TIME: 0.128

MRMDF Real-Time Performance Analysis

• Each Trick sim automatically generates 4 DP files d edicated for real-time
analysis: DP_rt_frame, DP_rt_itimer, DP_rt_jobs, an d DP_rt_timeline

5/23/2011 Trick Advanced Training 103

MRMDF Real-Time Performance Analysis

• Selecting the DP_rt_frame graph brings up 4 pages
– First graph on the first page shows Frame Overrun/U nderrun times
– Negative points are underruns, minimum value = -sys .exec.in.rt_software_frame (-3.333ms)
– Positive points are overruns
– Spike at time ~= 395, but not an overrun

5/23/2011 Trick Advanced Training 104

MRMDF Real-Time Performance Analysis

• The bottom graph shows how long the Trick executive took to
execute each frame

5/23/2011 Trick Advanced Training 105

MRMDF Real-Time Performance Analysis

• Another graph of interest in DP_rt_frame is the Mas ter/Slave Sync Time graph
– Normally takes 200us to sync this sim to the Master
– Corresponding spike at time ~= 395

5/23/2011 Trick Advanced Training 106

MRMDF Real-Time Performance Analysis

• Selecting the DP_rt_jobs file will bring up multipl e pages
detailing how long each job took in each frame
– On average mcse_rs422_read takes 30us or less

5/23/2011 Trick Advanced Training 107

MRMDF Real-Time Performance

• Selecting the DP_rt_timeline file will bring up a s ingle graph
plotting job currently executing vs. real-time
– Stretched to show first 33.33ms frame

5/23/2011 Trick Advanced Training 108

MRMDF Real-Time Performance

• To translate Job IDs to function names see RUN_mcse _sim/S_job_execution
– S_job execution lists out all jobs, their frequenci es at init…

Enabled | PID | Start | Cycle | Stop | ID | Job Name
===
automatic Jobs:

1 | 1 | 0.000000 | 0.000000 | 1e+37 | 0 | sys.input_processor(&sys.exec)
scheduled Jobs:

1 | 1 | 0.003333 | 0.033330 | 1e+37 | 1 | mcse.mcse_tdc_read(&mcse.mcse)
1 | 1 | 0.006666 | 0.033330 | 1e+37 | 2 | mcse.mcse_rs422_read(&mcse.mcse)
1 | 1 | 0.000000 | 0.033330 | 1e+37 | 3 | mcse.mcse_rs422_write(&mcse.mcse)
1 | 1 | 0.006666 | 0.033330 | 1e+37 | 4 | mcse.mcse_device_read(&mcse.mcse)
1 | 1 | 0.006666 | 0.033330 | 1e+37 | 5 | mcse.mcse_exec(&mcse.mcse)

5/23/2011 Trick Advanced Training 109

1 | 1 | 0.006666 | 0.033330 | 1e+37 | 5 | mcse.mcse_exec(&mcse.mcse)
1 | 1 | 0.013332 | 0.033330 | 1e+37 | 6 | mcse.mee_exec(&mcse.mcse)
1 | 1 | 0.013332 | 0.033330 | 1e+37 | 7 | mcse.meece_sim(&mcse.mcse)
1 | 1 | 0.013332 | 0.033330 | 1e+37 | 8 | mcse.poa_exec(&mcse.mcse)
1 | 1 | 0.013332 | 0.033330 | 1e+37 | 9 | mcse.poace_sim(&mcse.mcse)
1 | 1 | 0.016665 | 0.033330 | 1e+37 | 10 | mcse.mcse_fcse_read(&mcse.mcse)
1 | 1 | 0.016665 | 0.033330 | 1e+37 | 11 | mcse.mcse_simhost_read(&mcse.mcse)
1 | 1 | 0.016665 | 0.033330 | 1e+37 | 12 | mcse.manipulator_exec(&mcse.mcse)
1 | 1 | 0.016665 | 0.033330 | 1e+37 | 13 | mcse.jbce_sim(&mcse.mcse)
1 | 1 | 0.016665 | 0.033330 | 1e+37 | 14 | mcse.mcse_simhost_write(&mcse.mcse)
1 | 1 | 0.016665 | 0.033330 | 1e+37 | 15 | mcse.mcse_fcse_export(&mcse.mcse)
1 | 1 | 0.023331 | 0.333300 | 1e+37 | 16 | mcse.mcse_tdc_export(&mcse.mcse)

logging Jobs:
1 | 1 | 0.000000 | 0.033330 | 1e+37 | 17 | mcse.data_record_pack(&mcse.mcse)

MRMDF Real-Time Performance

• Close-up of the timeline near 0.016665sec

5/23/2011 Trick Advanced Training 110

m
cs

e_
fc

se
_r

ea
d

m
cs

e_
si

m
ho

st
_r

ea
d

manipulator_exec

jb
ce

_s
im

m
cs

e_
si

m
ho

st
_w

rit
e

m
cs

e_
fc

se
_e

xp
or

t

MRMDF Real-Time Performance

• When there are overruns
– The printout at sim termination shows the number of overruns:

SIMULATION TERMINATED IN
PROCESS: 1
JOB/ROUTINE: 1/master.c

DIAGNOSTIC:
Sim Control Shutdown.

LAST JOB CALLED: mcse.mcse_tdc_read(&mcse.mcse)
TOTAL OVERRUNS: 6

5/23/2011 Trick Advanced Training 111

TOTAL OVERRUNS: 6
PERCENTAGE REALTIME OVERRUNS: 0.006%

SIMULATION START TIME: 0.000
SIMULATION STOP TIME: 345.672

SIMULATION ELAPSED TIME: 345.672
ACTUAL ELAPSED TIME: 345.672

ACTUAL CPU TIME USED: 50.899
SIMULATION / ACTUAL TIME: 1.000

SIMULATION / CPU TIME: 6.791
ACTUAL INITIALIZATION TIME: 0.000

INITIALIZATION CPU TIME: 0.151

MRMDF Real-Time Performance

• Selecting DP_rt_frame shows the overruns within the first second

5/23/2011 Trick Advanced Training 112

MRMDF Real-Time Performance

• Close up of Frame Overrun/Underrun
– About 2.5ms overruns, 5.8ms (2.5+3.33) total run ti me for these frames

5/23/2011 Trick Advanced Training 113

MRMDF Real-Time Performance

• Looking at DP_rt_jobs at mcse_rs422_read we see the same spike

5/23/2011 Trick Advanced Training 114

MRMDF Real-Time Performance

• Close up of mcse_rs422_read
– About 5.7ms running time for the overrun frames

5/23/2011 Trick Advanced Training 115

MRMDF Real-Time Performance

• In this case, it is known that in the first second, there are large
initialization packets passed which can cause the j ob to take a
couple of extra milliseconds to complete.

5/23/2011 Trick Advanced Training 116

MRMDF Real-Time Lessons Learned

• All inter-simulation communications should be non-b locking or
have a time out limit.
– Trick provides both non blocking sockets or ones wi th timed

blocking

• All simulations that include X-Windows GUIs should run on
multi-CPU machines.
– Simulation and X-event loop should be separated int o 2 threads

5/23/2011 Trick Advanced Training 117

• Simulation should run on processor by itself
• X-Windows event loop should be assigned to different processor

• Good to run non-specialized hardware/software confi gurations

Monte Carlo

5/23/2011 Trick Advanced Training 118

Overview

• This tutorial briefly focuses on input file require ments to allow
Trick to perform “Monte Carlo” simulation

• In Chapter 12 of the Trick User Training Guide, it was shown
how to use Trick to vary jet firing sequences for t he cannon jet
control problem, both using ‘hard-coded’ inline dat a and
Gaussian randomly generated data

5/23/2011 Trick Advanced Training 119

Gaussian randomly generated data

• Here we look at our spring mass damper system simul ation
(SIM_spring , which has now been copied as SIM_spring_mc)
and allow Trick to perform Monte Carlo for two spec ific
examples

Monte Carlo Input Review

• Monte Carlo input files begin with M_* at the sim level

• Input file syntax:
– NUM_RUNS: maximum number of runs
– VARS: list of parameters (Trick variables) to vary
– FILE_DATA: tells Trick to run with data from the D ATA: list
– DATA: values for the above Trick variables

5/23/2011 Trick Advanced Training 120

– DATA: values for the above Trick variables

• Once this file is created, Trick basically parses t his input file
and generates multiple runs under a new subdirector y called
MONTE_RUN_* (where * corresponds to the name in the input
file M_<file_name>)

% vi M_smd_inline

NUM_RUNS: 100 <= maximum number of runs

VARS:

smd.spring.input.damping {N*s/m} FILE_DATA ; <= damping coeff

DATA: <= inline variation from undamped to overdamped sys tem
0.0000

Example 1 – Varying Damping (Inline)

5/23/2011 Trick Advanced Training 121

0.0000

2.0000

4.0000

8.0000

16.0000

32.0000

64.0000

128.0000

256.0000

512.0000

% vi M_smd_gaussian

NUM_RUNS: 50

VARS:

smd.spring.input.mass {kg}

gaussian(seed = 1, sigma = 0.6862, mu = 8.0, rel_min = -2.0, rel_max = 2.0) ;

smd.spring.input.stiffness {N/m}
gaussian(seed = 1, sigma = 0.6862, mu = 128.0, rel_min = -64.0, rel_max = 64.0);

Example 2 – Varying M, K, C (Gaussian)

5/23/2011 Trick Advanced Training 122

smd.spring.input.damping {N*s/m}
gaussian(seed = 1, sigma = 0.6862, mu = 8.0, rel_min = -4.0, rel_max = 48.0) ;

DATA: <= notice that data fields are empty; being randoml y generated above

• Here we use syntax to set up a Gaussian distributio n of mass,
stiffness, and damping (notice seed (initializes ran dom number
generator), sigma (std dev), mu (mean), rel_min and rel_max)

• For this example, Trick randomly generates the run data through an
interface to the GNU Scientific Library (trick_gsl_rand.c)

• To execute either of these examples, two flags must be set in
the input file (e.g., RUN_monte.inline/input):

– sys.exec.monte.in.active = Yes ;

– sys.exec.monte.input_files[0] = “M_smd_inline” ; (or “M_smd_gaussian”)

• Run the sim for the first example:
– S_main_* RUN_monte.inline/input

• This capability was originally designed to be distr ibuted across

Monte Carlo Execution

5/23/2011 Trick Advanced Training 123

• This capability was originally designed to be distr ibuted across
multiple machines on a network, ssh is used to run slave sims
across the network. Ssh may ask for a password.

• Notice the new RUN_MONTE_monte.inline which contains the
output data (can visualize multiple curves through trick_dp)

• Now run the sim for the second example:
– S_main_* RUN_monte.gauss/input

• Notice the new RUN_MONTE_monte.gauss which contains the
output data (again, multiple curves can then be vis ualized
through trick_dp)

Monte Carlo Execution (cont.)

5/23/2011 Trick Advanced Training 124

Monte Carlo Slaves

• Previous examples used only a single worker
• Trick’s Monte Carlo capability optimized for multip le workers

Monte Slave

Monte SlaveMonte Slave

Monte Slave

5/23/2011 Trick Advanced Training 125

Monte Master

Monte Slave Monte Slave

Monte SlaveMonte Slave

Monte Slave Monte Slave

Monte Carlo Slaves

• To add slaves, allocate space for sys.exec.monte.in.slaves
– Unlimited number of slaves can be specified

• Trick will automatically start each slave simulatio n with ssh

sys.exec.monte.in.slaves = alloc(4) ;
sys.exec.monte.in.slaves[0].machine_name = “slave_1 " ;
sys.exec.monte.in.slaves[1].machine_name = “slave_2 " ;
sys.exec.monte.in.slaves[2].machine_name = “slave_3 " ;
sys.exec.monte.in.slaves[3].machine_name = “slave_3 " ;

5/23/2011 Trick Advanced Training 126

• Trick will automatically start each slave simulatio n with ssh
• Slaves ask the master for work when they are ready for work

– Faster slave machines will do more work

• You can start multiple slaves on the same machine
– Useful for machines with multiple processors

• You can specify which remote shell to use and add a dditional
arguments to the remote shell call for each slave

sys.exec.monte.in.slaves[1].remote_shell = TRICK_RS H ;
sys.exec.monte.in.slaves[1].remote_shell_args = “-l user”;

Job Classes

• Monte Carlo specific job classes to handle master/s lave interations
– Monte_Master_Init

• Runs when master sim is initialized

– Monte_Master_Pre
• Runs before new data is dispatched to slave sim
• Useful for calculating/optimizing next run values if desired

– Monte_Master_Post
• Runs after result is returned from slave
• Useful for calculating statistics for returning results

5/23/2011 Trick Advanced Training 127

– Monte_Master_Shutdown
• Runs when master shuts down

– Monte_Slave_Init
• Runs when slave sim is initialized

– Monte_Slave_Pre
• Runs after new data is received from master

– Monte_Slave_Post
• Runs after slave sim is completed (sends result to master)

– Monte_Slave_Shutdown
• Runs when monte carlo master comm is lost and slave shuts down

Monte Carlo Master/Slave Interaction

Read M* file

Start Slaves

Read input file

monte_master_init
class jobs

Run monte_slave_init
class jobs

Monte Master
Start

Monte Slaves
Start

All results returned
monte_master_shutdown

Class jobs
and exit

N

Y

5/23/2011 Trick Advanced Training 128

Request work

monte_master_pre
class jobs and

Send init data to slave

Any Results

Collect results and run
Monte_master_post

Class jobs

Any requests

Run monte_slave_pre
class jobs

Any work
monte_slave_shutdown

Class jobs
and exit

Execute run,
monte_slave_post,

Send results

N

Y

N

Y

N Y

N

Monte Slaves

• The master sets a timeout value sys.exec.monte.in.timeout
– Default timeout is 120 seconds

• Each slave must return a result within its individu ally timed
timeout period
– If no result is returned, the slave is assumed dead and the run’s

initial data is redispatched to the next available slave
– Slaves can be “killed” and no results will be lost

5/23/2011 Trick Advanced Training 129

Monte Carlo Notes

• A dry run flag was recently added: sys.exec.monte.in.dryrun
– Useful for generating random distributions without actually doing

the runs

• All data recording for all runs is saved.
– Large data sets can generate enormous amounts of da ta.
– Take care on what to data record

5/23/2011 Trick Advanced Training 130

– Take care on what to data record

• Almost too easy to add slaves
– Tendency to add machines which seem unused
– Monte Carlo slaves tend to use 99.9% of CPU
– Don’t use too many machines in your lab!

Generic Malfunction Insertion

5/23/2011 Trick Advanced Training 131

Generic Malfunction Insertion

• The Generic Malfunction Insertion capability allows users to
override the value of any simulation variable or ca ll a
malfunction job at any time during the simulation

• Two new job classes
– malfunction
– malfunction_trigger

5/23/2011 Trick Advanced Training 132

– malfunction_trigger

– Neither new class has a calling frequency
– Associated with jobs within the S_define file withi n the malfunction

definition in the input file
– Called whenever associated jobs are called

Malfunction Syntax

• Input file malfunction syntax
begin malfunction <malf_name> {

trigger {
condition: <condition> ;

or
job: “<malf_trigger name from S_default.dat>” ;
insert_(before|after): “<job from S_default.dat>” ;
hold: (Yes|No) ;

}

5/23/2011 Trick Advanced Training 133

}

<param> {
insert_(before|after): “<job from S_default.dat>” ;
units: <units>
scale_factor: <value> ;
bias: <value> ;

}

call “<malf job from S_default>” (before|after) “<j ob from S_default>” ;
job “<job from S_default>” = (On|Off) ;

}

Triggers

• Triggers can be either a condition statement or a c all to a new
class of “malfunction_trigger” class job.
– malfunction_trigger jobs are faster to execute but must be

compiled and declared in the S_define file
– Condition statements are easily modified but suffer a performance

penalty when they are parsed each time the conditio n is evaluated

• Triggers can be associated with any job in the simu lation

5/23/2011 Trick Advanced Training 134

• Triggers are evaluated each time the associated job is run
• Triggers may be evaluated before or after its assoc iated job
• Triggers can be held, meaning once triggered the ma lfunction

is always on from that point on

Trigger Examples

• Trigger Examples
trigger {

condition: <condition> ;
or

job: “<malf_trigger name from S_default.dat>” ;
insert_(before|after): “<job from S_default.dat>” ;
hold: (Yes|No) ;

}

5/23/2011 Trick Advanced Training 135

trigger {
condition: sys.exec.out.time >= 30.0 ;
insert_before: “dyn.cannon_integ(&dyn.cannon)” ;
hold: Yes ;

}

trigger {
job: “dyn.cannon_malfunction_trigger(&dyn.cannon)” ;
insert_after: “dyn.cannon_integ(&dyn.cannon)” ;
hold: No ;

}

Malfunction Syntax

• Parameter example
<param> {

insert_(before|after): “<job from S_default.dat>” ;
units: <units>
scale_factor: <value> ;
bias: <value> ;

}

dyn.cannon.vel[0] {
insert_after: “dyn.cannon_integ(&dyn.cannon)” ;

5/23/2011 Trick Advanced Training 136

insert_after: “dyn.cannon_integ(&dyn.cannon)” ;
units: “m/s”
scale_factor: 0.0 ;
bias: 1.0 ;

}

Malfunction Syntax

• Calling a malfunction job

• Turning jobs on/off

call “<malf job from S_default>” (before|after) “<j ob from S_default>” ;

call “dyn.cannon_malf(&dyn.cannon)” after “dyn.cann on_integ(&dyn.cannon)”;

5/23/2011 Trick Advanced Training 137

job “<malf job from S_default>” = (On|Off) ;

job “dyn.cannon_abort(&dyn.cannon) = On ;

Malfunction Syntax

• Manually turn malfunctions on/off within the input processor or
commanded from a variable server client

• Remove manual override and return to evaluating tri ggers

malfunction_cmd my_malf manual_on ;

malfunction_cmd my_malf manual_off ;

5/23/2011 Trick Advanced Training 138

• Remove manual override and return to evaluating tri ggers

malfunction_cmd my_malf remove_manual ;

Units Upgrade

5/23/2011 Trick Advanced Training 139

Units upgrades

• Larger set units accepted in 07
– Many SI prefixes accepted for metric units

• Exception is kft

– Meters is now “m”
– “M” still accepted for meters for backwards compatibi lity
– Multiplier operators are strongly encouraged to avo id ambiguities

• e.g. Is “mm” millimeters or meters*meters?

5/23/2011 Trick Advanced Training 140

ICG –u output

Trick Measurement Units Summary

Time: s min hr day
Angular Displacement: r d as am rev

Voltage: v
Amperage: amp

Resistance: ohm
Sound: dB

Unitless: -- cnt one

English System Units

Linear Displacement: ft in yd mi n.m.
Mass: sl lbm

Force: oz lbf
Temperature: R F

5/23/2011 Trick Advanced Training 141

Temperature: R F

Metric System Units

Linear Displacement: m
Mass: g mt

Force: N
Temperature: C K

Prefixes for Multiples and Submultiples
(Not valid for English system units)

10**-1 d 10 da
10**-2 c 10**2 h
10**-3 m 10**3 k
10**-6 u 10**6 M
10**-9 n 10**9 G
10**-12 p 10**12 T

Wide Character (Unicode) Support

5/23/2011 Trick Advanced Training 142

Wide Character Support

• For Internationalization (and/or many other Unicode characters) :
– Trick 07 supports type wchar_t .

• Fully supported by Checkpoint / Reload.

5/23/2011 Trick Advanced Training 143

Pre-requisite: Setup your Locale

A locale specifies the national / cultural / langua ge conventions
that you would like your (locale aware apps) to fol low.

setenv LC_CTYPE en_US.utf8 ���� Specifies character encoding.

setenv LC_COLLATE POSIX ���� Specifies string sorting order.

Wide Character Support

5/23/2011 Trick Advanced Training 144

setenv LC_COLLATE POSIX ���� Specifies string sorting order.

LC_CTYPE is required by Trick and must specify a UT F-8 locale (at
least while the input processor is running).

There are additional locale environment variables. It’s not required
that you set them all. For more information: % man locale

• Wide-character strings in a structure definition.

Wide Character Support

5/23/2011 Trick Advanced Training 145

Wide Character Support

• A .d file to initialize the wide-strings.

• An alternate .d file which does exactly the same th ing.

5/23/2011 Trick Advanced Training 146

• An alternate .d file which does exactly the same th ing.

• If you can’t remember how to enter the Unicode char acter in
your editor.

Wide Character Support

• Terminal Output

5/23/2011 Trick Advanced Training 147

Wide Character Support

• Sim Control Panel Output

5/23/2011 Trick Advanced Training 148

Wide Character Support

• Wide character strings in a checkpoint file

5/23/2011 Trick Advanced Training 149

Wide Character Support

• Convenience routines to convert to and from Wide-ch aracter to
Narrow-character strings.

5/23/2011 Trick Advanced Training 150

Additional Material

5/23/2011 Trick Advanced Training 151

External Clocks and Timers

5/23/2011 Trick Advanced Training 152

• A Trick simulation can be configured with interval timers (or
itimers) that use setitimer(), pause() and a signal handler to
manage a “go to sleep” and “wake up” at the end of each
configured itimer frame

– Itimers are suited to facilitate processor sharing
– This itimer frame can be larger than the RT frame, but it must be

a multiple of it
– Since UNIX signals (SIGALRM) are used, this feature increases

Clocks & Itimers

5/23/2011 Trick Advanced Training 153

– Since UNIX signals (SIGALRM) are used, this feature increases
executive overhead, and itimer frames smaller than 10
milliseconds are not recommended

• By default, during an overrun the Trick executive l ogs the
over run and keeps going to try to catch up to real -time.

– Sim can be configured to terminate or freeze when a maximum
number of over runs in a row occur, or when a singl e over run
surpasses a specified time limit

• executive clock calls
– double clock_time (GMT_STRUCT*)

• This function returns the simulation's current real -time clock value
in total seconds from the simulations reference tim e mark

– void clock_reset (double ref)
• This function resets the simulation clock reference mark by

subtracting the passed reference time (total second s) from the
current time returned by a clock_time() call.

Executive Clock Calls

5/23/2011 Trick Advanced Training 154

– These function also works with external clocks.

• Trick supports the use of external clocks
– To configure an external clock:

• Input file: sys.exec.in.rt_clock = EXTERNAL ;
• In an initialization job, set function pointers to user defined

functions for external clock initialization and tim e acquisition:
– sys.exec.in.trick_external_clock_init

» Make necessary systems calls to initialize external clock device
and load the passed argument with total seconds (gmt-
>y_secs), which will be used by the executive for a clock

External Clocks/Timers

5/23/2011 Trick Advanced Training 155

>y_secs), which will be used by the executive for a clock
reference point. This function is of type void and the single
passed argument is a pointer of type GMT_STRUCT.

» void trick_external_clock_init (GMT_STRUCT * gmt)
– sys.exec.in.trick_external_clock_time

» Make necessary external clock calls to load the passed
argument with the current time in total seconds (gmt->y_secs),
which will be used by the executive for the elapsed clock time
calculation (current time minus the reference point established
in trick_external_clock_init()). This function is of type void and
the single passed argument is a pointer of type GMT_STRUCT.

» void trick_external_clock_time (GMT_STRUCT * gmt)

• Trick also supports the use of external timers
– To configure an external timer:

• Input file: sys.exec.in.rt_exttimer = On ;
• In an initialization job, set function pointers to user defined

functions for external timer start, reset, stop & p ause:
– sys.exec.in.trick_external_timer_start

» This function should make necessary systems calls to start the user
defined external interval timer. The Trick executive will call this user
provided function one time in initialization at the beginning of the real-

External Clocks/Timers

5/23/2011 Trick Advanced Training 156

provided function one time in initialization at the beginning of the real-
time frame. The interval frame time must be defined in the Trick
sys.exec.in.rt_itimer_frame variable. Trick itimers can not be used in
conjunction with external timers. The trick_external_timer can be set up
as a one-time timer with the next interval being reset at the end of each
frame with the external function trick_external_timer_reset(), or it could
be set up with reoccurring intervals without using the reset function. The
function trick_external_timer_pause() will be defined by the user to wait
for the timer. This function is of type void and the single passed
argument is a pointer of type void. This same voided pointer argument is
passed to all of the external timer routines.

» void trick_external_timer_start (void *)

– sys.exec.in.trick_external_timer_reset
» This function should make necessary systems calls to reset the user

defined external interval timer (started by trick_external_timer_start()).
The Trick executive will call this user provided function to set the next
timing interval after real-time has caught up in the under run condition. If
the sim is in an overrun condition, this function will not be called called,
but the external_timer_stop function will be called. The interval frame
time must be defined in the Trick sys.exec.in.rt_itimer_frame variable.
Trick itimers can not be used in conjunction with external timers. The
function trick_external_timer_pause() will be defined by the user to wait
for the timer. This function is of type void and the single passed

External Clocks/Timers

5/23/2011 Trick Advanced Training 157

for the timer. This function is of type void and the single passed
argument is a pointer of type void. This same voided pointer argument is
passed to all of the external timer routines.

» void trick_external_timer_reset (void *)

– sys.exec.in.trick_external_timer_stop
» This function should make necessary systems calls to allow the external

timers to recover from an overrun condition. The Trick executive will call
this user provided function at the end of the simulation real-time frame
when an overrun occurs. This function is of type void and the single
passed argument is a pointer of type void. This same voided pointer
argument is passed to all of the external timer routines.

» void trick_external_timer_stop (void *)

– sys.exec.in.trick_external_timer_pause
» This function should make the necessary systems calls to wait

for the user defined external interval timer (defined by
trick_external_timer_start() and/or trick_external_timer_reset()).
The Trick executive will call trick_external_timer_pause() at the
end of each simulation itimer frame (defined by
sys.exec.in.rt_itimer_frame) to wait for the real-time clock to
catch up. When Trick is set up to use itimers, it simply uses the
UNIX pause() to wait for the SIGALRM. If external timers are
used, trick_external_timer_pause() is called in place of pause,

External Clocks/Timers

5/23/2011 Trick Advanced Training 158

used, trick_external_timer_pause() is called in place of pause,
which is used for Trick itimers. This wait can be implemented
by what ever means are available to detect the timer from the
timer device drivers. Again, external timers can not be used in
conjunction with Trick itimers. This function is of type void and
the single passed argument is a pointer of type void. This same
voided pointer argument is passed to all of the external timer
routines.

» void trick_external_timer_pause (void *)

• Example of initialization job setting up external c lock/timer
functions in SIM_master_timer/RUN_master

– Let's look at the src file init_ext_clock_timers.c
• View file with editor in trick_ui or terminal

– Also, view S_define with trick_ui or terminal
• See addition of init_ext_clock_timers() initialization job call

External Clocks/Timers

5/23/2011 Trick Advanced Training 159

– CP SIM_master_timer
• Correct any errors

(initialization) extclocktimer: init_ext_clock_time rs();

• Example of initialization job setting up external c lock/timer
functions in SIM_master_timer/RUN_master

– Add to input file

External Clocks/Timers

sys.exec.in.rt_clock = EXTERNAL ;
sys.exec.in.rt_exttimer = On ;

– note that itimer frame that is required is already set to 0.05 in
Modified_data/realtime.d

sys.exec.in.rt_itimer = Off ;

5/23/2011 Trick Advanced Training 160

– No changes necessary in slaved simulation
• It will just keep syncing to master through sockets

– Run SIM_master_timer /RUN_master to test external clock and
external timer capability

sys.exec.in.rt_itimer = Off ;
– external timers and itimers conflict with each othe r

External Libraries and the Trick Math Library

5/23/2011 Trick Advanced Training 161

Set up the Environment

• Objective
– Setup Trick Environment

• Prerequisites
– Login credentials

5/23/2011 Trick Advanced Training 162

Adding External Libraries

• There may be situations where we want Trick just to include a
pre-built library or include an entire directory wi th one library
dependency. To accomplish that, Trick has multipl e ways of
including external libraries

• Libraries that do not need to be compiled
– Preferred: Add the library to the environment varia ble

5/23/2011 Trick Advanced Training 163

– Preferred: Add the library to the environment varia ble
TRICK_USER_LINK_LIBS

– Non-preferred: Add the library to the LIBRARY_DEPE NDENCY list
of a module included in the simulation

setenv TRICK_USER_LINK_LIBS = -L/path/to/my/lib –lm y_lib

/* TRICK_HEADER
PURPOSE: (no purpose)
LIBRARY_DEPENDENCIES: ((lib_to_include.a))
*/

Adding External Libraries

• Libraries that do need to be compiled
– Preferred: Include a file called S_overrides.mk in your sim directory that

adds a dependency to your library, compiles it and includes it for linking
– Great flexibility using this method, allows custom makefiles in library

directories

S_overrides.mk

TRICK_USER_LINK_LIBS += -L${HOME}/trick_models/ball/L1/object_${TRICK_HOST_CPU} -lball

5/23/2011 Trick Advanced Training 164

${S_MAIN}: ${HOME}/trick_models/ball/L1/object_${TRICK_HOST_CPU}/libball.a

clean: clean_build_ball

${HOME}/trick_models/ball/L1/Makefile:
cd ${HOME}/trick_models/ball/L1 ; make_build lib libball.a

${HOME}/trick_models/ball/L1/object_${TRICK_HOST_CPU}/libball.a:
${HOME}/trick_models/ball/L1/Makefile

cd ${HOME}/trick_models/ball/L1 ; ${MAKE}

clean_build_ball:
cd ${HOME}/trick_models/ball/L1 ; ${MAKE} clean

Adding External Libraries

• Libraries that do need to be compiled
– Non-preferred: Add the library to the LIBRARY_DEPE NDENCY list

of a module included in the simulation. Include a “relative” path to
the library so Trick can find it.

– Trick will gather all source files in the library p ath and compile
them to the lib name specified in the LIBRARY_DEPEN DENCY

– All source code in the directory must compile with standard
TRICK_CFLAGS

5/23/2011 Trick Advanced Training 165

TRICK_CFLAGS

/* TRICK_HEADER
PURPOSE: (no purpose)
LIBRARY_DEPENDENCIES: ((rel/path/to/lib/lib_to_incl ude.a))
*/

• The Trick mathematical support library provides num erous
built-in utility functions for a variety of modelin g tasks

• This library can be found in the following director y:

$TRICK_HOME/trick_source/trick_utils/math/src

Trick Math Library

5/23/2011 Trick Advanced Training 166

• List contents of the math library

% ls $TRICK_HOME/trick_source/trick_utils/math/src

deuler_123.c dmtxmt.c dvxm.c matxmat.c

deuler_132.c dmtxv.c dvxv_add.c matxtrans.c

deuler_213.c dmxm.c dvxv_sub.c matxvec.c

deuler_231.c dmxmt.c eigen_hh_red.c quat_mult.c

deuler_312.c dmxv.c eigen_jacobi_4.c quat_norm.c

deuler_321.c drandom_gaussian.c eigen_jacobi.c quat_norm_integ.c

dLU_Choleski.c dS_function.c eigen_ql.c quat_to_mat.c

Trick Math Library (cont.)

5/23/2011 Trick Advanced Training 167

dLU_Choleski.c dS_function.c eigen_ql.c quat_to_mat.c

dLU_solver.c dsingle_axis_rot.c euler_matrix.c rand_num.c

dm_add.c dv_add.c gauss_rnd_bell.c roundoff.c

dm_copy.c dv_copy.c gauss_rnd_pseudo.c tm_print_error.c

dm_ident.c dv_cross.c LU_bksb.c transxmat.c

dm_init.c dv_dot.c LU_dcmp.c transxtrans.c

dm_invert.c dv_init.c LUD_inv.c transxvec.c

dm_invert_symm.c dv_mag.c LUT_inv.c trick_gsl_rand.c

dm_orthonormal.c dv_norm.c makefile trns_fnct_1o.c

dm_print.c dv_print.c mat_copy.c trns_fnct_2o.c

dm_scale.c dv_scale.c mat_permute.c uniform_rnd_1.c

dm_sub.c dv_skew.c mat_print.c uniform_rnd_triple.c

dm_trans.c dv_store.c mat_to_quat.c vec_print.c

dmtxm.c dv_sub.c mat_trans.c wave_form.c

• Vector/Matrix algebra (3x3) – dv_*.c, dvx*.c, dm*.c and dmt*.c

• Matrix algebra (nxn) – mat_*.c, matx*.c and transx*. c

• Linear equation solvers - dLU*.c, dm_invert*.c, and LU*.c

• Euler transformations – euler_matrix.c, deuler_*.c, and
dsingle_axis_rot.c

Trick Math Library Summary

5/23/2011 Trick Advanced Training 168

• Quaternion transformations – quat_*.c

• Eigensolvers - eigen_*.c

• Random number generation – drandom_gaussian.c, gauss *.c, rand*.c,
trick_gsl_rand.c, and uniform*.c

• Other odds and ends functions (e.g., wave form gene rator)

• Access to the Trick math library can be achieved by adding the
following prototype definition to the your source c ode:

#include “trick_utils/math/include/trick_math_proto .h”

• Several other library type routines exist throughou t the suite of
Trick -based sim packages (e.g., robotics, GN&C, mechanism s)

Trick Math Library Summary (cont.)

5/23/2011 Trick Advanced Training 169

Trick -based sim packages (e.g., robotics, GN&C, mechanism s)
and are planned to be folded back into this library for upcoming
Trick releases

• Additional capabilities/requests are always welcome !

• Perhaps as important as the individual math subrout ines is the
functionality provided through the Trick math heade r files

• Macros were originally created to provide execution speed over
their subroutine counterparts (using the C preproce ssor for
inline code expansion)

% ls - 1 $TRICK_HOME/trick_source/trick_utils/math/include

Trick Math Headers

5/23/2011 Trick Advanced Training 170

% ls - 1 $TRICK_HOME/trick_source/trick_utils/math/include

complex.h
matrix_macros.h
quat_macros.h
rand_generator.d
rand_generator.h
reference_frame.h
trick_math_error.h
trick_math.h
trick_math_proto.h
vector_macros.h
wave_form.h

• In addition to early speed benefits, many Trick mat h models
were implemented through macros to make code more
readable as well as provide easy mapping back to
formulation/equations (e.g., refer to the matrix_ma cros and
vector_macros headers)

• Euler and Quaternion transformations rely on both t he

Trick Math Headers (cont.)

5/23/2011 Trick Advanced Training 171

• Euler and Quaternion transformations rely on both t he
reference_frame.h and quat_macros.h header files, r espectively

• Access to the Trick math headers can be achieved by adding
the following to your source code:

#include "trick_utils/math/include/trick_math.h”

