#define protected public #include #include #include #include #include #include #include "gtest/gtest.h" #include "sim_services/Executive/include/Exec_exception.hh" #include "sim_services/Executive/include/Executive.hh" #include "sim_services/MonteCarlo/include/MonteCarlo.hh" #include "sim_services/MonteCarlo/include/MonteVar.hh" #include "sim_services/MonteCarlo/include/MonteVarCalculated.hh" #include "sim_services/MonteCarlo/include/MonteVarFile.hh" #include "sim_services/MonteCarlo/include/MonteVarFixed.hh" #include "sim_services/MonteCarlo/include/MonteVarRandom.hh" #include "sim_services/MonteCarlo/include/montecarlo_c_intf.h" #include "sim_services/Executive/include/exec_proto.h" #include "sim_services/Executive/include/exec_proto.hh" #include "sim_services/SimObject/include/SimObject.hh" #include "sim_services/MemoryManager/include/MemoryManager.hh" #include "sim_services/MemoryManager/include/memorymanager_c_intf.h" #include "trick_utils/math/include/rand_generator.h" #include "trick_utils/reqs/include/RequirementScribe.hh" void sig_hand(int sig) ; void child_handler(int sig) ; #if (__APPLE__ | __CYGWIN__ | __INTERIX ) void fpe_sig_handler(int sig) ; #else void fpe_sig_handler(int sig, siginfo_t * sip, void *uap) ; #endif namespace Trick { class testSimObject : public Trick::SimObject { public: int default_data_1() { return 0 ; } int initialization_1() { return 0 ; } int return_error() { return -1 ; } int throw_exception() { return exec_terminate("throw_exception", "exec_terminate called") ; } testSimObject() { int ii = 0 ; add_job(0, ii++, "monte_master_init", NULL, 1, "master_init", "TRK") ; add_job(0, ii++, "monte_master_pre", NULL, 1, "master_pre", "TRK") ; add_job(0, ii++, "monte_master_post", NULL, 1, "master_post", "TRK") ; add_job(0, ii++, "monte_master_shutdown", NULL, 1, "master_shutdown", "TRK") ; add_job(0, ii++, "monte_slave_init", NULL, 1, "slave_init", "TRK") ; add_job(0, ii++, "monte_slave_pre", NULL, 1, "slave_pre", "TRK") ; add_job(0, ii++, "monte_slave_post", NULL, 1, "slave_post", "TRK") ; add_job(0, ii++, "monte_slave_shutdown", NULL, 1, "slave_shutdown", "TRK") ; } virtual int call_function( Trick::JobData * curr_job ) ; virtual double call_function_double( Trick::JobData * curr_job ) { (void)curr_job ; return 0.0 ; } ; } ; int testSimObject::call_function( __attribute__((unused)) Trick::JobData * curr_job ) { int trick_ret = 0 ; return trick_ret ; } ; class MonteCarloTest : public ::testing::Test { protected: Trick::MonteCarlo exec; Trick::Executive executive; testSimObject so1 ; Trick::RequirementScribe req; Trick::MemoryManager mm ; MonteCarloTest() { exec_register_scheduler(&exec) ; } ~MonteCarloTest() { } virtual void SetUp() {} virtual void TearDown() {} int get_class_map_value(std::string job_class) { return exec.class_map[job_class] ; } Trick::ScheduledJobQueue * get_master_init_queue() { return &exec.master_init_queue ; } Trick::ScheduledJobQueue * get_master_pre_queue() { return &exec.master_pre_queue ; } Trick::ScheduledJobQueue * get_master_post_queue() { return &exec.master_post_queue ; } Trick::ScheduledJobQueue * get_master_shutdown_queue() { return &exec.master_shutdown_queue ; } Trick::ScheduledJobQueue * get_slave_init_queue() { return &exec.slave_init_queue ; } Trick::ScheduledJobQueue * get_slave_pre_queue() { return &exec.slave_pre_queue ; } Trick::ScheduledJobQueue * get_slave_post_queue() { return &exec.slave_post_queue ; } Trick::ScheduledJobQueue * get_slave_shutdown_queue() { return &exec.slave_shutdown_queue ; } } ; TEST_F(MonteCarloTest , Job_Queue_Master_Init) { req.add_requirement("722132127"); Trick::JobData * curr_job ; EXPECT_EQ(exec_get_time_tic_value() , 1000000) ; exec_add_sim_object(&so1 , "so1") ; curr_job = get_master_init_queue()->get_next_job() ; ASSERT_FALSE( curr_job == NULL ) ; EXPECT_STREQ( curr_job->name.c_str() , "so1.master_init") ; EXPECT_TRUE(executive.check_all_jobs_handled() == 0 ) ; } TEST_F(MonteCarloTest , Job_Queue_Master_Pre) { req.add_requirement("587551115"); Trick::JobData * curr_job ; EXPECT_EQ(exec_get_time_tic_value() , 1000000) ; exec_add_sim_object(&so1 , "so1") ; curr_job = get_master_pre_queue()->get_next_job() ; ASSERT_FALSE( curr_job == NULL ) ; EXPECT_STREQ( curr_job->name.c_str() , "so1.master_pre") ; EXPECT_TRUE(executive.check_all_jobs_handled() == 0 ) ; } TEST_F(MonteCarloTest , Job_Queue_Master_Post) { req.add_requirement("4165308678"); Trick::JobData * curr_job ; EXPECT_EQ(exec_get_time_tic_value() , 1000000) ; exec_add_sim_object(&so1 , "so1") ; curr_job = get_master_post_queue()->get_next_job() ; ASSERT_FALSE( curr_job == NULL ) ; EXPECT_STREQ( curr_job->name.c_str() , "so1.master_post") ; EXPECT_TRUE(executive.check_all_jobs_handled() == 0 ) ; } TEST_F(MonteCarloTest , Job_Queue_Master_Shutdown) { req.add_requirement("3461634900"); Trick::JobData * curr_job ; EXPECT_EQ(exec_get_time_tic_value() , 1000000) ; exec_add_sim_object(&so1 , "so1") ; curr_job = get_master_shutdown_queue()->get_next_job() ; ASSERT_FALSE( curr_job == NULL ) ; EXPECT_STREQ( curr_job->name.c_str() , "so1.master_shutdown") ; EXPECT_TRUE(executive.check_all_jobs_handled() == 0 ) ; } TEST_F(MonteCarloTest , Job_Queue_Slave_Init) { req.add_requirement("1412318284"); Trick::JobData * curr_job ; EXPECT_EQ(exec_get_time_tic_value() , 1000000) ; exec_add_sim_object(&so1 , "so1") ; curr_job = get_slave_init_queue()->get_next_job() ; ASSERT_FALSE( curr_job == NULL ) ; EXPECT_STREQ( curr_job->name.c_str() , "so1.slave_init") ; EXPECT_TRUE(executive.check_all_jobs_handled() == 0 ) ; } TEST_F(MonteCarloTest , Job_Queue_Slave_Pre) { req.add_requirement("3301658297"); Trick::JobData * curr_job ; EXPECT_EQ(exec_get_time_tic_value() , 1000000) ; exec_add_sim_object(&so1 , "so1") ; curr_job = get_slave_pre_queue()->get_next_job() ; ASSERT_FALSE( curr_job == NULL ) ; EXPECT_STREQ( curr_job->name.c_str() , "so1.slave_pre") ; EXPECT_TRUE(executive.check_all_jobs_handled() == 0 ) ; } TEST_F(MonteCarloTest , Job_Queue_Slave_Post) { req.add_requirement("3882184138"); Trick::JobData * curr_job ; EXPECT_EQ(exec_get_time_tic_value() , 1000000) ; exec_add_sim_object(&so1 , "so1") ; curr_job = get_slave_post_queue()->get_next_job() ; ASSERT_FALSE( curr_job == NULL ) ; EXPECT_STREQ( curr_job->name.c_str() , "so1.slave_post") ; EXPECT_TRUE(executive.check_all_jobs_handled() == 0 ) ; } TEST_F(MonteCarloTest , Job_Queue_Slave_Shutdown) { req.add_requirement("350185460"); Trick::JobData * curr_job ; EXPECT_EQ(exec_get_time_tic_value() , 1000000) ; exec_add_sim_object(&so1 , "so1") ; curr_job = get_slave_shutdown_queue()->get_next_job() ; ASSERT_FALSE( curr_job == NULL ) ; EXPECT_STREQ( curr_job->name.c_str() , "so1.slave_shutdown") ; EXPECT_TRUE(executive.check_all_jobs_handled() == 0 ) ; } TEST_F(MonteCarloTest , Good_Initialization) { req.add_requirement("1452306647"); exec_add_sim_object(&so1 , "so1") ; EXPECT_EQ(exec.execute_monte() , 0 ) ; } TEST_F(MonteCarloTest , TestDefaultValues) { EXPECT_EQ(exec.get_enabled(), false) ; EXPECT_EQ(exec.get_dry_run(), false) ; EXPECT_EQ(exec.get_localhost_as_remote(), false) ; EXPECT_EQ(exec.get_custom_slave_dispatch(), false) ; EXPECT_EQ(exec.get_timeout(), 120) ; EXPECT_EQ(exec.get_max_tries(), 2) ; EXPECT_EQ(exec.get_verbosity(), exec.INFORMATIONAL) ; EXPECT_EQ(exec.get_num_runs(), 0) ; EXPECT_EQ(exec.get_slave_id(), 0) ; EXPECT_EQ(exec.actual_num_runs, 0) ; EXPECT_EQ(exec.num_results, 0) ; } TEST_F(MonteCarloTest, TestSettingValues) { req.add_requirement("2840823120"); exec.set_enabled(true) ; EXPECT_EQ(exec.get_enabled(), true) ; exec.set_dry_run(true) ; EXPECT_EQ(exec.get_dry_run(), true) ; exec.set_localhost_as_remote(true) ; EXPECT_EQ(exec.get_localhost_as_remote(), true) ; exec.set_custom_slave_dispatch(true) ; EXPECT_EQ(exec.get_custom_slave_dispatch(), true) ; exec.set_timeout(60) ; EXPECT_EQ(exec.get_timeout(), 60) ; exec.set_max_tries(4) ; EXPECT_EQ(exec.get_max_tries(), 4) ; exec.set_verbosity(exec.NONE) ; EXPECT_EQ(exec.get_verbosity(), exec.NONE) ; exec.set_verbosity(exec.ERROR) ; EXPECT_EQ(exec.get_verbosity(), exec.ERROR) ; exec.set_verbosity(exec.INFORMATIONAL) ; EXPECT_EQ(exec.get_verbosity(), exec.INFORMATIONAL) ; exec.set_verbosity(exec.ALL) ; EXPECT_EQ(exec.get_verbosity(), exec.ALL) ; } TEST_F(MonteCarloTest, TestRanges) { exec.set_num_runs(25) ; EXPECT_EQ(exec.get_num_runs(), 25) ; EXPECT_EQ(exec.actual_num_runs, 25) ; exec.add_range(3, 5) ; EXPECT_EQ(exec.actual_num_runs, 3) ; exec.add_range(20) ; EXPECT_EQ(exec.actual_num_runs, 4) ; EXPECT_EQ(exec.in_range(exec.runs[3]) , true) ; EXPECT_EQ(exec.in_range(exec.runs[10]), false) ; } TEST_F(MonteCarloTest, TestSlaves) { req.add_requirement("1098748189"); Trick::MonteSlave slave0("localhost") ; Trick::MonteSlave slave1("WonderWoman") ; EXPECT_EQ(exec.slaves.empty(), true) ; EXPECT_EQ(exec.get_slave_index(1), -1) ; exec.add_slave(&slave0) ; EXPECT_EQ(exec.slaves.empty(), false) ; EXPECT_EQ(exec.slaves.size(), 1) ; exec.add_slave(&slave1) ; EXPECT_EQ(exec.slaves.size(), 2) ; EXPECT_EQ(slave0.id, 1) ; EXPECT_EQ(slave1.id, 2) ; EXPECT_EQ(exec.get_slave_index(1), 0) ; EXPECT_EQ(exec.get_slave_index(2), 1) ; EXPECT_EQ(slave0.state, Trick::MonteSlave::UNINITIALIZED) ; EXPECT_EQ(slave1.state, Trick::MonteSlave::UNINITIALIZED) ; exec.disable_slave("WonderWoman", true) ; EXPECT_EQ(slave1.state, Trick::MonteSlave::STOPPED) ; EXPECT_EQ(exec.slaves.size(), 2) ; exec.disable_slave("WonderWoman", false) ; EXPECT_EQ(slave1.state, Trick::MonteSlave::UNINITIALIZED) ; EXPECT_EQ(slave0.machine_name, "localhost") ; EXPECT_EQ(slave1.machine_name, "WonderWoman") ; } TEST_F(MonteCarloTest, MonteVarFile) { std::string buffer; std::string buffer2; req.add_requirement("3932595803"); // Test MonteVarFile Trick::MonteVarFile var0("time_to_fire_1", "M_jet_firings_inline", 2) ; EXPECT_EQ(exec.variables.size(), 0) ; exec.add_variable(&var0) ; EXPECT_EQ(var0.get_next_value(), "time_to_fire_1 = 1") ; EXPECT_EQ(exec.variables.size(), 1) ; } TEST_F(MonteCarloTest, MonteVarRandom_Gaussian) { std::string str; double value; req.add_requirement("3932595803"); // Test MonteVarRandom // Gaussian Trick::MonteVarRandom var1("time_to_fire_1", Trick::MonteVarRandom::GAUSSIAN) ; var1.set_mu(4.0) ; var1.set_min(-4.0) ; var1.set_max(4.0) ; var1.set_seed(12345); var1.set_sigma_range(0) ; exec.add_variable(&var1) ; var1.get_next_value(); str = var1.value; std::stringstream sstream(str); sstream >> value; EXPECT_LE(value, 8); EXPECT_GE(value, 0); EXPECT_EQ(var1.name, "time_to_fire_1") ; EXPECT_EQ(var1.distribution, 0) ; EXPECT_EQ(var1.randist.mu, 4.0) ; EXPECT_EQ(var1.randist.min, -4.0) ; EXPECT_EQ(var1.randist.max, 4.0) ; EXPECT_EQ(var1.unit, "") ; EXPECT_EQ(exec.variables.size(), 1) ; } TEST_F(MonteCarloTest, MonteVarRandom_Poisson) { std::string str; double value; req.add_requirement("3932595803"); // Test MonteVarRandom // Poisson Trick::MonteVarRandom var2("time_to_fire_1", Trick::MonteVarRandom::POISSON, "s") ; var2.set_mu(4.0) ; var2.set_min(-4.0) ; var2.set_max(4.0) ; var2.set_min_is_relative(0); var2.set_max_is_relative(0); var2.set_seed(12345); var2.set_sigma_range(0) ; exec.add_variable(&var2) ; var2.get_next_value(); str = var2.value; std::stringstream sstream(str); sstream >> value; #if _HAVE_GSL EXPECT_GE(value, 0); EXPECT_LE(value, 4); #else EXPECT_EQ(value, 0); #endif EXPECT_EQ(var2.name, "time_to_fire_1") ; EXPECT_EQ(var2.distribution, 2) ; EXPECT_EQ(var2.unit, "s") ; EXPECT_EQ(exec.variables.size(), 1) ; } TEST_F(MonteCarloTest, MonteVarRandom_Flat) { std::string str; double value; req.add_requirement("3932595803"); // Test MonteVarRandom // Flat Trick::MonteVarRandom var3("time_to_fire_4", Trick::MonteVarRandom::FLAT) ; var3.set_mu(4.0) ; var3.set_min(-4.0) ; var3.set_max(4.0) ; var3.set_seed(12345); var3.set_sigma_range(0) ; exec.add_variable(&var3) ; var3.get_next_value(); str = var3.value; std::stringstream sstream(str); sstream >> value; EXPECT_GE(value, 0); EXPECT_LE(value, 8); EXPECT_EQ(var3.name, "time_to_fire_4") ; EXPECT_EQ(var3.distribution, 1) ; EXPECT_EQ(var3.unit, "") ; EXPECT_EQ(exec.variables.size(), 1) ; } TEST_F(MonteCarloTest, MonteVarRandom_NonGSL) { req.add_requirement("3932595803"); Trick::MonteVarRandom var4("time_to_fire_1", Trick::MonteVarRandom::GAUSSIAN) ; var4.set_mu(4.0) ; var4.set_min(-4.0) ; var4.set_max(4.0) ; var4.set_seed(12345); // for this test, let sigma_range default to 1 var4.set_sigma_range(0) ; exec.add_variable(&var4) ; // Test MonteVarRandom // non GSL library variables EXPECT_EQ(var4.randist.uniform, LCG1) ; var4.set_uniform_generator(TRIPLE) ; EXPECT_EQ(var4.randist.uniform, 1) ; var4.set_uniform_generator(LCG1) ; EXPECT_EQ(var4.randist.uniform, LCG1) ; EXPECT_EQ(var4.randist.sigma_range, 1) ; var4.set_sigma_range(8) ; EXPECT_EQ(var4.randist.sigma_range, 8) ; } TEST_F(MonteCarloTest, MonteVarFixed) { req.add_requirement("3932595803"); // Test MonteVarFixed Trick::MonteVarFixed var5("time_to_fire_5", 3.1415) ; exec.add_variable(&var5) ; EXPECT_EQ(var5.get_next_value(), "time_to_fire_5 = 3.1415") ; EXPECT_EQ(var5.name, "time_to_fire_5") ; EXPECT_EQ(var5.unit, "") ; EXPECT_EQ(exec.variables.size(), 1) ; } ///@brief check that the final distribution is correct. (Bug 6950: The non-GSL was wrong for GAUSSIAN and FLAT) TEST_F(MonteCarloTest, MonteVarRandom_Gaussian_distributionMatchesSpec) { req.add_requirement("3932595803"); std::string str ; double value ; Trick::MonteVarRandom var6("time_to_fire_1", Trick::MonteVarRandom::GAUSSIAN) ; exec.add_variable(&var6) ; double expected_mean = 10.0 ; double expected_sigma = 2.0 ; var6.set_seed(12345) ; var6.set_mu(expected_mean) ; var6.set_sigma(expected_sigma) ; var6.set_min(-10.0) ; var6.set_max(10.0) ; var6.set_sigma_range(0) ; // maintain running sums for calculating mean and variance double mean = 0.0 ; double sum_variance = 0.0 ; int n = 0 ; double delta = 0.0 ; int numRuns = 100 ; for (int ii = 0; ii <= numRuns; ++ii) { { var6.get_next_value() ; str = var6.value ; std::stringstream sstream(str) ; sstream >> value ; } n++ ; delta = value - mean ; mean += delta / (double)n ; sum_variance += delta * (value - mean) ; } // final statistics double variance = sum_variance / (double) (n - 1) ; double sigma = sqrt(variance) ; EXPECT_NEAR(expected_mean, mean, 0.05 * expected_mean) ; EXPECT_NEAR(expected_sigma, sigma, 0.10 * expected_sigma) ; } #ifndef _HAVE_GSL ///@brief set_sigma_range(int) feature was only implemented for nonGsl with non-C++11 fallbacks TEST_F(MonteCarloTest, MonteVarRandom_Gaussian_nonGslSigmaRangeDefaulted_maxDeviationFromMeanIs1Sigma) { req.add_requirement("3932595803"); std::string str ; double value ; Trick::MonteVarRandom var7("time_to_fire_1", Trick::MonteVarRandom::GAUSSIAN) ; exec.add_variable(&var7) ; double expected_mean = 10.0 ; double expected_sigma = 2.0 ; var7.set_seed(12345) ; var7.set_mu(expected_mean) ; var7.set_sigma(expected_sigma) ; var7.set_min(-10.0) ; var7.set_max(10.0) ; // without this call, default sigma_range is 1 // var7.set_sigma_range(0) ; int num_runs = 100 ; double sigmas_max_deviation_from_mean = 0.0 ; double deviation_sigmas = 0.0 ; for (int ii = 0; ii <= num_runs; ++ii) { { var7.get_next_value() ; str = var7.value ; std::stringstream sstream(str) ; sstream >> value ; } deviation_sigmas = fabs( (value - expected_mean) / expected_sigma ) ; if (deviation_sigmas > sigmas_max_deviation_from_mean) { sigmas_max_deviation_from_mean = deviation_sigmas ; } } // Loose constraint: anything .LE. 1 will pass. // (Doesn't require the largest deviations to be around 1. // In other words, even max deviations of zero would pass.) //EXPECT_LE(sigmas_max_deviation_from_mean, 1.0) ; // tighter constraint: the max deviation with 100 runs // should be pretty close to but still <= 1.0. // This specifies the range 0.9 .. 1.0 EXPECT_NEAR(sigmas_max_deviation_from_mean, 0.95, 0.05) ; } ///@brief test set_sigma_range feature works for STL random TEST_F(MonteCarloTest, MonteVarRandom_StlGaussian_nonGslSigmaRangeDefaulted_maxDeviationFromMeanIs1Sigma) { req.add_requirement("3932595803"); std::string str ; double value ; Trick::MonteVarRandom var9("time_to_fire_1", Trick::MonteVarRandom::GAUSSIAN, "", Trick::MonteVarRandom::TRICK_DEFAULT_ENGINE) ; exec.add_variable(&var9) ; double expected_mean = 10.0 ; double expected_sigma = 2.0 ; var9.set_seed(12345) ; var9.set_mu(expected_mean) ; var9.set_sigma(expected_sigma) ; var9.set_min(-10.0) ; var9.set_max(10.0) ; // without this call, default sigma_range is 1 // var9.set_sigma_range(0) ; int num_runs = 1000 ; double sigmas_max_deviation_from_mean = 0.0 ; double deviation_sigmas = 0.0 ; for (int ii = 0; ii <= num_runs; ++ii) { { var9.get_next_value() ; str = var9.value ; std::stringstream sstream(str) ; sstream >> value ; } deviation_sigmas = fabs( (value - expected_mean) / expected_sigma ) ; if (deviation_sigmas > sigmas_max_deviation_from_mean) { sigmas_max_deviation_from_mean = deviation_sigmas ; } } // Loose constraint: anything .LE. 1 will pass. // (Doesn't require the largest deviations to be around 1. // In other words, even max deviations of zero would pass.) //EXPECT_LE(sigmas_max_deviation_from_mean, 1.0) ; // tighter constraint: the max deviation with 100 runs // should be pretty close to but still <= 1.0. // This specifies the range 0.9 .. 1.0 EXPECT_NEAR(sigmas_max_deviation_from_mean, 0.95, 0.05) ; } #endif // not _HAVE_GSL #if (defined(_HAVE_TR1_RANDOM) || defined(_HAVE_STL_RANDOM)) TEST_F(MonteCarloTest, MonteVarRandom_StlGaussian_distributionMatchesSpec) { req.add_requirement("3932595803"); std::string str ; double value ; Trick::MonteVarRandom var8("time_to_fire_1", Trick::MonteVarRandom::GAUSSIAN, "--", Trick::MonteVarRandom::TRICK_DEFAULT_ENGINE) ; exec.add_variable(&var8) ; double expected_mean = 10.0 ; double expected_sigma = 2.0 ; var8.set_seed(12345) ; var8.set_sigma_range(0) ; var8.set_mu(expected_mean) ; var8.set_sigma(expected_sigma) ; var8.set_min(-10.0) ; var8.set_max(10.0) ; // maintain running sums for calculating mean and variance double mean = 0.0 ; double sum_variance = 0.0 ; int n = 0 ; double delta = 0.0 ; int numRuns = 100 ; for (int ii = 0; ii <= numRuns; ++ii) { { var8.get_next_value() ; str = var8.value ; std::stringstream sstream(str) ; sstream >> value ; } n++ ; delta = value - mean ; mean += delta / (double)n ; sum_variance += delta * (value - mean) ; } // final statistics double variance = sum_variance / (double) (n - 1) ; double sigma = sqrt(variance) ; EXPECT_NEAR(expected_mean, mean, 0.05 * expected_mean) ; EXPECT_NEAR(expected_sigma, sigma, 0.10 * expected_sigma) ; } ///@breif test relative min/max work as expected for STL TEST_F(MonteCarloTest, MonteVarRandom_StlGaussian_relativeMinMaxWorks) { req.add_requirement("3932595803"); std::string str ; double value ; Trick::MonteVarRandom var6("time_to_fire_1", Trick::MonteVarRandom::GAUSSIAN) ; exec.add_variable(&var6) ; double expected_mean = 10.0 ; double expected_sigma = 2.0 ; var6.set_seed(12345) ; var6.set_sigma_range(0) ; var6.set_mu(expected_mean) ; var6.set_sigma(expected_sigma) ; var6.set_min(-1.0) ; var6.set_max(1.0) ; var6.set_min_is_relative(true) ; var6.set_max_is_relative(true) ; // maintain running sums for calculating mean and variance int numRuns = 100 ; double saw_min = 1000.0; double saw_max = -1000.0; for (int ii = 0; ii <= numRuns; ++ii) { { var6.get_next_value() ; str = var6.value ; std::stringstream sstream(str) ; sstream >> value ; } if (value < saw_min) { saw_min = value; } if (value > saw_max) { saw_max = value; } } // these conditions should be true if valid // relative min/max range of 10 +/- 1 is being imposed EXPECT_NEAR(9.05, saw_min, 0.05) ; EXPECT_NEAR(10.95, saw_max, 0.05) ; } ///@breif test relative min/max works after calling set_mu, as expected for STL TEST_F(MonteCarloTest, MonteVarRandom_StlGaussian_callSetMu_relativeMinMaxWorks) { req.add_requirement("3932595803"); std::string str ; double value ; Trick::MonteVarRandom var11("time_to_fire_1", Trick::MonteVarRandom::GAUSSIAN) ; exec.add_variable(&var11) ; double expected_mean = 10.0 ; double expected_sigma = 2.0 ; var11.set_seed(12345) ; var11.set_sigma_range(0) ; var11.set_mu(expected_mean + 100.0) ; var11.set_sigma(expected_sigma) ; var11.set_min(-1.0) ; var11.set_max(1.0) ; var11.set_min_is_relative(true) ; var11.set_max_is_relative(true) ; var11.set_mu(expected_mean) ; // maintain running sums for calculating mean and variance int numRuns = 100 ; double saw_min = 1000.0; double saw_max = -1000.0; for (int ii = 0; ii <= numRuns; ++ii) { { var11.get_next_value() ; str = var11.value ; std::stringstream sstream(str) ; sstream >> value ; } if (value < saw_min) { saw_min = value; } if (value > saw_max) { saw_max = value; } } // these conditions should be true if valid // relative min/max range of 10 +/- 1 is being imposed EXPECT_NEAR(9.05, saw_min, 0.05) ; EXPECT_NEAR(10.95, saw_max, 0.05) ; } ///@breif test absolute min/max works after changing from relative, as expected for STL TEST_F(MonteCarloTest, MonteVarRandom_StlGaussian_changeToAbsolute_MinMaxWorks) { req.add_requirement("3932595803"); std::string str ; double value ; Trick::MonteVarRandom var11("time_to_fire_1", Trick::MonteVarRandom::GAUSSIAN) ; exec.add_variable(&var11) ; double expected_mean = 10.0 ; double expected_sigma = 2.0 ; var11.set_seed(12345) ; var11.set_sigma_range(0) ; var11.set_mu(expected_mean) ; var11.set_sigma(expected_sigma) ; var11.set_min(9.0) ; var11.set_max(11.0) ; var11.set_min_is_relative(false) ; var11.set_max_is_relative(false) ; // maintain running sums for calculating mean and variance int numRuns = 100 ; double saw_min = 1000.0; double saw_max = -1000.0; for (int ii = 0; ii <= numRuns; ++ii) { { var11.get_next_value() ; str = var11.value ; std::stringstream sstream(str) ; sstream >> value ; } if (value < saw_min) { saw_min = value; } if (value > saw_max) { saw_max = value; } } // these conditions should be true if valid // relative min/max range of 10 +/- 1 is being imposed EXPECT_NEAR(9.05, saw_min, 0.05) ; EXPECT_NEAR(10.95, saw_max, 0.05) ; } ///@brief test that the sequence repeats after calling set_seed TEST_F(MonteCarloTest, MonteVarRandom_StlGaussian_setSeed_TakesEffect) { req.add_requirement("3932595803"); std::string str ; double value ; Trick::MonteVarRandom var10("time_to_fire_1", Trick::MonteVarRandom::GAUSSIAN) ; exec.add_variable(&var10) ; double expected_mean = 10.0 ; double expected_sigma = 2.0 ; var10.set_seed(12345) ; var10.set_sigma_range(0) ; var10.set_mu(expected_mean) ; var10.set_sigma(expected_sigma) ; var10.set_min(-10.0) ; var10.set_max(10.0) ; var10.set_min_is_relative(true) ; var10.set_max_is_relative(true) ; int numRuns = 10; for (int ii = 0; ii < numRuns; ++ii) { { var10.get_next_value() ; str = var10.value ; std::stringstream sstream(str) ; sstream >> value ; } } double first_value = value; var10.set_seed(12345) ; for (int ii = 0; ii < numRuns; ++ii) { { var10.get_next_value() ; str = var10.value ; std::stringstream sstream(str) ; sstream >> value ; } } double second_value = value; EXPECT_NEAR(first_value, second_value, 0.000001) ; } #endif // _HAVE_TR1_RANDOM or _HAVE_STL_RANDOM }