
Ver 1.0 1

The Basics of C/C++
Program Memory and Variables

John Penn (L-3Com/ER7)

Ver 1.0 2

Variables and Vocabulary

Attributes of Variables

Ver 1.0 3

A variable is a portion of memory used by a program to store data
values.

Attributes of a variable are:

Reference – provides access to the variable. A reference can be :
a.  name or

b.  address.

Data Type – a description of how data is represented within the
variable. For example: int, double[10], MyClass

Lifetime – the period during which it is valid to access the variable.

Variable Reference Examples

Ver 1.0 4

double velocity[10];
double *p = &velocity;

The name velocity is a reference to a variable whose type is:
double[10].

The value of p is also a reference. It is a reference to the same variable
(of type double[10]) to which velocity refers.

p is a reference to a variable whose type is: double* (pointer to double).

Scope

Ver 1.0 5

Variables have scope.

Scope – where in a program a variable can be “seen”.

double circle_area(double radius) {
 double area;
 area = 3.14159265 * radius *radius;
 return area;
}

Scope of radius

Scope of area A variable is said to be in scope when your
program is at a point where it can see the variable.

A variable is out of scope when your program
is at a point where it can’t see the variable.

Association of Scope and Lifetime

Ver 1.0 6

A variable’s lifetime and its scope are
strongly associated. Scope implies life
and life (usually*) implies scope.

* static variables go in and out of scope during their lifetimes.

Declarations and Definitions

Ver 1.0 7

A declaration proclaims the existance of a variable or function.

Declarations are usually definitions, but they don’t have to be.

A definition is a declaration that also creates storage for a
variable or function.

Declarations and Definitions

Ver 1.0 8

Examples of declarations that are not definitions:

extern double distance;

void length(double x, double y);

Examples of declarations that are also definitions:

double acceleration;

double length(double x, double y){
 return sqrt(x*x + y*y);
}

Ver 1.0 9

How Programs Work

Ver 1.0 Trick Memory Manager 10

What happens when you run a program:

The shell (csh, bash, etc.) invokes the program-loader to:

1. Allocate memory for the program.

2. Copy the contents of the program file into the memory.

3. Setup the program so it’s ready to run.

The operating system’s process scheduler then calls the program’s
main() function.

A Program in Memory

Ver 1.0 11

Memory

Operating
System

CPU Program 1

Program n

Disk

Code

The Call Stack

Global & Static
Variables

The Heap

Program Memory

Ver 1.0 12

This is set at load-time. It cannot be
altered at runtime.

Used at run-time for function parameters
and automatic local variables.

Memory is allocated from here when you call
malloc() or new().

Variables in this memory are live all
during runtime.

Code

The Call Stack

Global & Static
Variables

The Heap

Ver 1.0 13

The Call Stack

A Stack

Ver 1.0 14

1

2

3

4

5

6

7

8

9

10

11

12

Stack of five elements

1

2

3

4

5

6

7

8

9

10

11

12

Empty Stack

A Stack

Ver 1.0 15

1

2

3

4

5

6

7

8

9

10

Items are “pushed” onto the stack

1

2

3

4

5

6

7

8

9

10

Items are “popped” off of the stack

Stacks are always “Last In, First Out”.

Sometimes rather than “push” or “pop”, people just say “allocate” or “deallocate”
because its more general.

The Call Stack

Ver 1.0 16

In a program, a Call Stack is represented by a chunk of memory and a
Stack Pointer (SP). SP points to the “top” of the stack.

SP

Empty Stack

The Call Stack

Ver 1.0 17

To push a value onto the stack, a program writes the value to the top of
the stack and updates SP to again point to the top of the stack.

4

Push “4”

SP

SP

Empty Stack Stack has one item

How Function Calls Work

Ver 1.0 18

1.  Pushes its parameters onto the stack.
2.  Jumps to the function that it’s calling.
3.  Pops its parameters back off of the stack.

Function calls use the Call Stack to communicate with the function that
they are calling.

After a function call, the stack pointer will always be exactly where it was
before the call.

A function call :

What Functions Do When They Are Called

Ver 1.0 19

1.  Allocates it’s local variables on the stack. Variables
created in this way are called automatic variables.

2.  Executes its code body.
3.  Pops its local variables back off the stack.
4.  Jumps back (returns) to the caller.

Called-functions find their parameters on the stack.

When we return from a function, the stack pointer will always be exactly
where it was when we entered the function.

A called-function :

Function Call Example

Ver 1.0 20

int foo(int x, int y) {
 int z;
 z = x + y;
 return z;
}

a = foo(3,4);

Suppose we are calling the following function named foo as shown.

Called-functionFunction-call

Function Call Example

Ver 1.0 21

a = foo(3,4);

4

3

y

x

Before the call After pushing parameters

return value

First, our function call will push its parameters onto the stack. It will also
push a space for the return value.

Second, the function call jumps to the function it is calling.

SP

SP

Function Call Example

Ver 1.0 22

4

3

int foo(int x, int y) {
 int z;
 z = x + y;
 return z;
}

y

x

Before After

4

3

y

x

z

return value return value

The function first allocates its local variables on the stack. Here, space for the
local variable z is allocated. At this point the function has everything that it
needs on the stack. This is called the function’s stack frame.

stack frame

SP
SP

Function Call Example

Ver 1.0 23

4

3

y

x

z

4

3

7

y

x

z

Before After

return value return value

int foo(int x, int y) {
 int z;
 z = x + y;
 return z;
}

The function then executes its statements. In this case x is added to y and
the result is placed in z.

SP SP

Function Call Example

Ver 1.0 24

4

3

7

y

x

z

4

3

7

y

x

Before After

return value return value

int foo(int x, int y) {
 int z;
 z = x + y;
 return z;
}

7

Finally, the function executes its return statement by copying the value of z
into the return value location and executing a JUMP back to the function call.
Remember, the function call is not done yet.

SP

SP

Function Call Example

Ver 1.0 25

Finally, the function call pops the parameters back off the stack.

a = foo(3,4);

4

3

y

x

return value7

4

3

return value7

77

The last value popped is the return parameter.

SP

SP

Before After

Multiple Stack Frames

Ver 1.0 26

Suppose function A calls function B, and function B calls C. When our program
is running code in function C, the stack will look like:

A stackframe

B stackframe

C stackframe
SP

Multiple Stack Frames

Ver 1.0 27

Suppose function A calls B, and then A calls C.

A stackframe

B stackframe

When we’re in B

A stackframe

C stackframe

When we’re in C

Notice that C is using the same part of the stack that B was using.

SP SP

Things to Remember About the Stack

Ver 1.0 28

• If your program has entered a function, but not yet exited that function, then it
has a stack frame on the call stack.

• A function’s local variables are created on the Stack when they are
 defined.

• It’s OK to pass a pointer to a local variable to a function that you are calling but,
NEVER return a pointer to a local variable back to the function’s caller. Remember
that once the function returns, the life of the local variable is over. It should not be
treated as if it were still in scope.

• A program’s stack is pretty big, but it’s not limitless. It is possible to overrun
the stack, especially in recursive functions that don’t achieve their termination
case.

• A function’s local variables are removed from the Stack when it exits.

What’s wrong with this?

Ver 1.0 29

#include <stdio.h>

char* make_line(int n) {
 char temp[40];
 sprintf(temp,"%d bottles of beer on the wall",n);
 return temp;
}

int main(int argc, char* argv[]) {
 char *line;
 line = make_line(100);
 printf("%s\n", line);
}

How can we fix it?

Ver 1.0 30

The Heap

The Heap

Ver 1.0 31

The heap is the chunk of memory from which malloc and new
dynamically allocate smaller chunks of memory (variables).

malloc free

new delete

Allocation Deallocation

C++ Only

C/C++

The Heap

Ver 1.0 32

p = malloc(10);

10 bytes

free(p);

10 bytes
p

p

p

Note that p’s value (even though it hasn’t changed) is invalid after free
is called. So, don’t attempt to use it or you will likely get a segmentation violation.

malloc and new each allocate memory from the heap, and return a
pointer to that allocation. Variables allocated from the heap are called
dynamic variables.

Before After

Ver 1.0 Trick Memory Manager 33

Because the heap is limited in size, you might consider checking that
the pointer returned by malloc is not NULL. new throws an exception.

It’s generally a bad idea to intermix the usage of malloc and free with
new and delete.

A pointer to a dynamic variable is invalid after free or delete is
called.

A dynamic variable without scope (we’ve somehow lost our
reference to it, oops!) is called a memory leak.

A pointer variable containing an invalid reference is a dangling pointer.

Ver 1.0 34

Static & Global
Variables

Static & Global Variables

Ver 1.0 35

Lifetime of static and global variables extends throughout the entire the lifetime
 of the program.

Global variables are in scope within the translation unit in which they are
defined. They can be brought into the scope of other translation units using the
extern keyword.

The scope of a static global variable is only the translation unit in which it’s
declared.

The scope of a static local variable is only the function in which it’s declared.

Translation unit – a source code file plus any files that are #include’d.

Ver 1.0 36

The End

