trick/trick_source/er7_utils/interface/include/alloc.hh

799 lines
22 KiB
C++
Raw Normal View History

/**
* @if Er7UtilsUseGroups
* @addtogroup Er7Utils
* @{
* @addtogroup Interface
* @{
* @endif
*/
/**
* @file
* Defines memory management macros and template functions.
*
* This file comprises multiple parts:
* - Declaration of a name demangler function, if available.
* - Low level, Trick-specific memory management template functions.
* - Implementation-specific definitions of set of memory management macros.
* While these macros are defined in implementation-specific manner,
* the arguments and products are implementation independent.
* - High-level memory management template functions that are implemented
* in terms of those four macros. These templates obviate the need
* for using those macros outside of this file.
* The ER7 utilities code should use the high level interfaces rather
* than the memory management macros.
*/
/*
Purpose: ()
*/
#ifndef ER7_UTILS_ALLOC_HH
#define ER7_UTILS_ALLOC_HH
// SWIG gets utterly confused by this.
#ifndef SWIG
// Interface includes
#include "config.hh"
// System includes
#include <cstddef>
#include <cstring>
#include <string>
#include <new>
#ifdef ER7_UTILS_HAVE_ABI
#include <typeinfo>
#endif
// Declare er7_utils::alloc.
namespace er7_utils {
/**
* Contains free functions that pertain to initialization (setting to NULL),
* allocating memory, and releasing allocated memory.
*/
namespace alloc {
}
}
/******************************************************************************/
// The macros below need a demangle function, if available.
#ifdef ER7_UTILS_HAVE_ABI
namespace er7_utils {
namespace alloc {
/**
* Demangle a type ID.
* @param info The type ID whose name is to be demangled.
* @return Demangled type name.
*/
const std::string demangle (const std::type_info & info);
}
}
#endif
/******************************************************************************/
// Part one, allocation/deallocation macros.
/*
* Trick-based implementations of the four macros.
*/
#ifdef TRICK_VER
#include <new>
#include <string>
#include "sim_services/MemoryManager/include/memorymanager_c_intf.h"
#include "type_traits.hh"
namespace er7_utils {
/**
* Contains helper functions for the Trick-specific implementations
* of the ER7 utilities allocation macros.
*/
namespace trick_interface {
#ifdef ER7_UTILS_HAVE_ABI
/**
* Get the name of a type as a string.
* @tparam T Type whose name is to be retrieved.
* @return Demangled type name.
*/
template<typename T>
inline const std::string type_name (std::string) {
return alloc::demangle (typeid(T));
}
#else
/**
* Try to get the name of a type as a string.
* @tparam T Type whose name is to be retrieved.
* @return Type name.
*/
template<typename T>
inline const std::string type_name (std::string name_of_type) {
if (name_of_type.find("::") == 0) {
name_of_type.erase (0, 2);
}
else if ((name_of_type.find("Trick::") != 0) &&
(name_of_type.find("er7_utils::") != 0)) {
name_of_type.insert (0, "er7_utils::");
}
return name_of_type;
}
#endif
/**
* Allocate an array of objects of the specified type.
* The returned array contains default-constructed objects.
* @tparam T Type of objects to be allocated.
* @param name_of_type Demangled name of the type.
* @param count Number of elements to be allocated.
* @return Array of allocated objects.
*/
template <typename T>
inline T * trick_alloc (
std::string name_of_type,
unsigned int count)
{
name_of_type = type_name<T> (name_of_type);
T * ptr = reinterpret_cast<T*> (
TMM_declare_var_1d (name_of_type.c_str(), count));
if (!ptr) {
throw std::bad_alloc();
}
return ptr;
}
/**
* Allocate an object of the specified type.
* The returned object is not constructed.
* @tparam T Type of the object to be allocated.
* @param name_of_type Demangled name of the type.
* @return Array of allocated objects.
*/
template <typename T>
inline T * alloc_object (std::string name_of_type) {
T * ptr = trick_alloc<T> (name_of_type, 1);
ptr->~T();
return ptr;
}
/**
* Destruct and deallocate a previously allocated object.
* @tparam T Type of the object to be deallocated.
* @param obj Object to be destructed, as a reference to a pointer.
* @return Array of allocated objects.
*/
template <typename T>
inline void delete_object (T*& obj) {
if (obj) {
TMM_delete_var_a (type_traits::get_allocated_pointer (obj));
obj = 0;
}
}
}
}
#endif
/******************************************************************************/
// Part two, allocation/deallocation macros.
/*
* Trick-based implementations of the four allocation/deallocation macros.
* These use the er7_utils::trick_interface template functions defined above.
*/
#ifdef TRICK_VER
/**
* Allocate an array of some primitive type.
* @param size Size of the array to be allocated.
* @param type Type of the array.
*/
#define ER7_UTILS_ALLOC_PRIM_ARRAY(size,type) \
er7_utils::trick_interface::trick_alloc<type> (#type, size)
/**
* Allocate an object of some class type.
* @param type Type of the object.
* @param cotr Constructor arguments, in parentheses.
*/
#define ER7_UTILS_ALLOC_CLASS_OBJECT(type,cotr) \
new (er7_utils::trick_interface::alloc_object<type> (#type)) type cotr
/**
* Delete a previously allocated array.
* @param arr Array to be deleted.
*/
#define ER7_UTILS_DELETE_ARRAY(arr) \
er7_utils::trick_interface::delete_object (arr)
/**
* Delete a previously allocated instance of a class.
* @param obj Object to be deleted.
*/
#define ER7_UTILS_DELETE_OBJECT(obj) \
er7_utils::trick_interface::delete_object (obj)
/*
* JEOD-based implementations of the four macros.
* Note that the JEOD implementations come into play only in the case
* of a non-Trick implementation.
*/
#elif (defined JEOD)
#include "utils/memory/include/jeod_alloc.hh"
#define ER7_UTILS_ALLOC_PRIM_ARRAY(size,type) \
JEOD_ALLOC_PRIM_ARRAY (size, type)
#define ER7_UTILS_ALLOC_CLASS_OBJECT(type,cotr) \
JEOD_ALLOC_PRIM_ARRAY (type, cotr)
#define ER7_UTILS_DELETE_ARRAY(arr) \
JEOD_DELETE_ARRAY(arr)
#define ER7_UTILS_DELETE_OBJECT(obj) \
JEOD_DELETE_OBJECT(obj)
/*
* Generic implementations of the four macros.
* Note that the generic implementations come into play only in the case
* of a non-Trick, non-JEOD implementation.
*/
#else
namespace er7_utils {
namespace default_interface {
template <typename T>
inline T* allocate_array (std::size_t size) {
T* arr = new T[size];
std::memset (arr, 0, size*sizeof(T));
return arr;
}
template <typename T>
inline void delete_array (T*& obj) {
if (obj) {
delete[] obj;
obj = 0;
}
}
template <typename T>
inline void delete_object (T*& obj) {
if (obj) {
delete obj;
obj = 0;
}
}
}
}
#define ER7_UTILS_ALLOC_PRIM_ARRAY(size,type) \
er7_utils::default_interface::allocate_array<type> (size)
#define ER7_UTILS_ALLOC_CLASS_OBJECT(type,cotr) \
new type cotr
#define ER7_UTILS_DELETE_ARRAY(arr) \
er7_utils::default_interface::delete_array (arr)
#define ER7_UTILS_DELETE_OBJECT(obj) \
er7_utils::default_interface::delete_object (obj)
#endif
/******************************************************************************/
// Part three, allocation/deallocation template functions.
namespace er7_utils {
/**
* Contains free functions that pertain to initialization (setting to NULL),
* allocating memory, and releasing allocated memory.
*/
namespace alloc {
/**
* Allocate an object of some type using the default constructor.
* @tparam T Array type.
* @return Allocated object.
*/
template<typename T>
inline T * allocate_object ()
{
return ER7_UTILS_ALLOC_CLASS_OBJECT (T, ());
}
/**
* Allocate an object of some type using the copy constructor.
* @tparam T Array type.
* @param src Argument.
* @return Allocated object.
*/
template<typename T>
inline T * replicate_object (const T & src)
{
return ER7_UTILS_ALLOC_CLASS_OBJECT (T, (src));
}
/**
* Allocate an object of some type using a one argument constructor.
* @tparam T Array type.
* @tparam A1 Argument type.
* @param arg1 Argument.
* @return Allocated object.
*/
template<typename T, typename A1>
inline T * allocate_object (
A1 arg1)
{
return ER7_UTILS_ALLOC_CLASS_OBJECT (T, (arg1));
}
/**
* Allocate an object of some type using a two argument constructor.
* @tparam T Array type.
* @tparam A1 Argument 1 type.
* @tparam A2 Argument 2 type.
* @param arg1 Argument 1.
* @param arg2 Argument 2.
* @return Allocated object.
*/
template<typename T, typename A1, typename A2>
inline T * allocate_object (
A1 arg1,
A2 arg2)
{
return ER7_UTILS_ALLOC_CLASS_OBJECT (T, (arg1, arg2));
}
/**
* Allocate an object of some type using a three argument constructor.
* @tparam T Array type.
* @tparam A1 Argument 1 type.
* @tparam A2 Argument 2 type.
* @tparam A3 Argument 3 type.
* @param arg1 Argument 1.
* @param arg2 Argument 2.
* @param arg3 Argument 3.
* @return Allocated object.
*/
template<typename T, typename A1, typename A2, typename A3>
inline T * allocate_object (
A1 arg1,
A2 arg2,
A3 arg3)
{
return ER7_UTILS_ALLOC_CLASS_OBJECT (T, (arg1, arg2, arg3));
}
/**
* Allocate an object of some type using a four argument constructor.
* @tparam T Array type.
* @tparam A1 Argument 1 type.
* @tparam A2 Argument 2 type.
* @tparam A3 Argument 3 type.
* @tparam A4 Argument 4 type.
* @param arg1 Argument 1.
* @param arg2 Argument 2.
* @param arg3 Argument 3.
* @param arg4 Argument 4.
* @return Allocated object.
*/
template<typename T, typename A1, typename A2, typename A3, typename A4>
inline T * allocate_object (
A1 arg1,
A2 arg2,
A3 arg3,
A4 arg4)
{
return ER7_UTILS_ALLOC_CLASS_OBJECT (T, (arg1, arg2, arg3, arg4));
}
/**
* Allocate an object of some type using a five argument constructor.
* @tparam T Array type.
* @tparam A1 Argument 1 type.
* @tparam A2 Argument 2 type.
* @tparam A3 Argument 3 type.
* @tparam A4 Argument 4 type.
* @tparam A5 Argument 5 type.
* @param arg1 Argument 1.
* @param arg2 Argument 2.
* @param arg3 Argument 3.
* @param arg4 Argument 4.
* @param arg5 Argument 5.
* @return Allocated object.
*/
template<typename T,
typename A1,
typename A2,
typename A3,
typename A4,
typename A5>
inline T * allocate_object (
A1 arg1,
A2 arg2,
A3 arg3,
A4 arg4,
A5 arg5)
{
return ER7_UTILS_ALLOC_CLASS_OBJECT (
T, (arg1, arg2, arg3, arg4, arg5));
}
/**
* Allocate an object of some type using a six argument constructor.
* @tparam T Array type.
* @tparam A1 Argument 1 type.
* @tparam A2 Argument 2 type.
* @tparam A3 Argument 3 type.
* @tparam A4 Argument 4 type.
* @tparam A5 Argument 5 type.
* @tparam A6 Argument 6 type.
* @param arg1 Argument 1.
* @param arg2 Argument 2.
* @param arg3 Argument 3.
* @param arg4 Argument 4.
* @param arg5 Argument 5.
* @param arg6 Argument 6.
* @return Allocated object.
*/
template<typename T,
typename A1,
typename A2,
typename A3,
typename A4,
typename A5,
typename A6>
inline T * allocate_object (
A1 arg1,
A2 arg2,
A3 arg3,
A4 arg4,
A5 arg5,
A6 arg6)
{
return ER7_UTILS_ALLOC_CLASS_OBJECT (
T, (arg1, arg2, arg3, arg4, arg5, arg6));
}
/**
* Delete (and destruct) an instance of some class.
* @tparam T Object class.
* @param obj The object to be deleted.
*/
template<typename T>
inline void delete_object (
T *& obj)
{
ER7_UTILS_DELETE_OBJECT (obj);
}
/**
* Allocate an array of some primitive type.
* Note that because none of the arguments involve the type T,
* invocations of the function template must always specify T.
* @tparam T Array type.
* @param size Number of elements to allocate, assumed to be positive.
* @return Allocated array.
*/
template<typename T>
inline T * allocate_array (unsigned int size)
{
return ER7_UTILS_ALLOC_PRIM_ARRAY (size, T);
}
/**
* Non-template specialization of allocate_array for double.
* Note that since this is not a function template, calling
* allocate_array without a template argument will always resolve
* to this function.
* @param size Number of elements to allocate, assumed to be positive.
* @return Allocated array.
*/
inline double * allocate_array (unsigned int size)
{
return ER7_UTILS_ALLOC_PRIM_ARRAY (size, double);
}
/**
* Replicate an array of some primitive type
* @tparam T Array type.
* @param size Number of elements to allocate, assumed to be positive.
* @param src Array to be replicated.
* @return Allocated array.
*/
template<typename T>
inline T * replicate_array (unsigned int size, const T* src)
{
T* result = ER7_UTILS_ALLOC_PRIM_ARRAY (size, T);
for (unsigned int ii = 0; ii < size; ++ii) {
result[ii] = src[ii];
}
return result;
}
/**
* Deallocate an array of some primitive type
* @tparam T
* @param arr Array to be deallocated.
*/
template<typename T>
inline void deallocate_array (T *& arr)
{
ER7_UTILS_DELETE_ARRAY (arr);
}
/**
* Zero out an array of items
* @param[in] size Array size
* @param[out] arr Array to zero
*/
template<typename T>
inline void initialize_array (
unsigned int size,
T * arr)
{
std::memset (arr, 0, size*sizeof(T));
}
/**
* Initialize (zero-out) a 2D array.
* @tparam T Array type
* @tparam M Array outer dimension
* @param[out] arr Array to be initialized
*/
template<typename T, unsigned int M>
inline void initialize_2D_array (
T * arr[M])
{
initialize_array<T*> (M, arr);
}
/**
* Specialization of initialize_2D_array for double.
* @tparam M Array outer dimension
* @param[out] arr Array to be initialized
*/
template<unsigned int M>
inline void initialize_2D_array (
double * arr[M])
{
initialize_array<double*> (M, arr);
}
/**
* Allocate contents of a 2D array, where the array is declared as
* @code T * array[M] @endcode
* @tparam T Array type
* @tparam M Array outer dimension
* @param[in] size Array inner dimension
* @param[out] arr Array to be allocated
*/
template<typename T, unsigned int M>
inline void allocate_2D_array (
unsigned int size,
T * arr[M])
{
arr[0] = allocate_array<T> (size*M);
for (unsigned int ii = 1; ii < M; ++ii) {
arr[ii] = arr[ii-1] + size;
}
}
/**
* Specialization of allocate_2D_array for double.
* @tparam M Array outer dimension
* @param[in] size Array inner dimension
* @param[out] arr Array to be allocated
*/
template<unsigned int M>
inline void allocate_2D_array (
unsigned int size,
double * arr[M])
{
arr[0] = allocate_array<double> (size*M);
for (unsigned int ii = 1; ii < M; ++ii) {
arr[ii] = arr[ii-1] + size;
}
}
/**
* Allocate contents of a 2D array, where the array is declared as
* @code T ** array @endcode
* @tparam T Array type
* @tparam outer Array outer dimension
* @param inner Array inner dimension
* @return Allocated 2D array.
*/
template<typename T>
inline T** allocate_2D_array (
unsigned int outer,
unsigned int inner)
{
T** arr = allocate_array<T*> (outer);
arr[0] = allocate_array<T> (inner*outer);
for (unsigned int ii = 1; ii < outer; ++ii) {
arr[ii] = arr[ii-1] + inner;
}
return arr;
}
/**
* Replicate contents of a 2D array, where the array is declared as
* @code T * array[M] @endcode
* @tparam T Array type
* @tparam M Array outer dimension
* @param[in] size Array inner dimension
* @param[in] src Source 2D array
* @param[out] tgt Array to be allocated and populated
*/
template<typename T, unsigned int M>
inline void replicate_2D_array (
unsigned int size,
T * const src[M],
T * tgt[M])
{
for (unsigned int ii = 0; ii < M; ++ii) {
if (ii == 0) {
tgt[ii] = allocate_array<T> (size*M);
}
else {
tgt[ii] = tgt[ii-1] + size;
}
for (unsigned int jj = 0; jj < size; ++jj) {
tgt[ii][jj] = src[ii][jj];
}
}
}
/**
* Specialization of replicate_2D_array for double.
* @tparam T Array type
* @tparam M Array outer dimension
* @param[in] size Array inner dimension
* @param[in] src Source 2D array
* @param[out] tgt Array to be allocated and populated
*/
template<unsigned int M>
inline void replicate_2D_array (
unsigned int size,
double * const src[M],
double * tgt[M])
{
for (unsigned int ii = 0; ii < M; ++ii) {
if (ii == 0) {
tgt[ii] = allocate_array<double> (size*M);
}
else {
tgt[ii] = tgt[ii-1] + size;
}
for (unsigned int jj = 0; jj < size; ++jj) {
tgt[ii][jj] = src[ii][jj];
}
}
}
/**
* Replicate contents of a 2D array, where the array is declared as
* @code T ** array @endcode
* @tparam T Array type
* @param outer Array outer dimension
* @param inner Array inner dimension
* @param source Array to be replicated
* @return Allocated and replicated 2D array.
*/
template<typename T>
inline T** replicate_2D_array (
unsigned int outer,
unsigned int inner,
T** source)
{
T** tgt = allocate_array<T*> (outer);
for (unsigned int ii = 0; ii < outer; ++ii) {
if (ii == 0) {
tgt[ii] = allocate_array<T> (inner*outer);
}
else {
tgt[ii] = tgt[ii-1] + inner;
}
for (unsigned int jj = 0; jj < inner; ++jj) {
tgt[ii][jj] = source[ii][jj];
}
}
return tgt;
}
/**
* Deallocate a 2D array.
* @tparam T Array type
* @tparam M Array outer dimension
* @param[in,out] arr Array to be deallocated
*/
template<typename T, unsigned int M>
inline void deallocate_2D_array (
T * arr[M])
{
deallocate_array<T> (arr[0]);
}
/**
* Specialization of deallocate_2D_array for double.
* @tparam T Array type
* @tparam M Array outer dimension
* @param[in,out] arr Array to be deallocated
*/
template<unsigned int M>
inline void deallocate_2D_array (
double * arr[M])
{
deallocate_array<double> (arr[0]);
}
/**
* Deallocate a 2D array.
* @tparam T Array type
* @tparam outer Array outer dimension
* @param[in,out] arr Array to be deallocated
*/
template<typename T>
inline void deallocate_2D_array (
unsigned int outer ER7_UTILS_UNUSED,
T **& arr)
{
if (arr != NULL) {
deallocate_array<T> (arr[0]);
deallocate_array<T*> (arr);
}
}
}
}
#endif
#endif
/**
* @if Er7UtilsUseGroups
* @}
* @}
* @endif
*/