
1

The Basics of C/C++
Variables & Program Memory

John Penn (CACI/ER7)

2

Variables

Definition: Variable

3

A variable is a portion of memory
used by a program to store data
values.

Attributes of a variable are:
• Reference
• Data Type
• Scope
• Lifetime

Definition: Variable-Reference

4

A reference provides access to the
variable. A reference can be :

•name or
•address

Definition: Variable-Data-type

5

A data-type is a description of how
data is represented within the
variable.

Definition: Variable-Scope

6

The scope of a variable is where in
a program a variable can be
“seen”.

Variable-Scope

7

Usually the scope of a variable is
described as local, or global.

Definition: Variable-Lifetime

8

The lifetime of a variable is the
period during which it is valid to
access the variable.

Variable-Lifetime

9

The lifetime of a variable is
described as static, dynamic, or
automatic.

10

More Details

Variable-Reference

11

double velocity[10];
double *p = &velocity;

• The name velocity is a reference to a variable whose
type is double[10].

• p is a reference to a variable whose type is double*,
(pointer to double).

• The value of p is also a reference. It is a reference to
the same variable (of type double[10]) to which
velocity refers.

Variable-Reference

12

1 double thrust;
2 double& force = thrust;

1. Allocates storage for a variable, of type double, with a
reference name, thrust.

2. Creates a reference name, force, to a double, that refers
to the same variable as thrust. Note that we are not
creating a new variable here. The variable already
exists. We are just creating another way to refer to that
variable.

Variable-Datatype

13

• int
• char
• bool
• float
• double
• void
etc …

• array []
• function ()
• pointer *
• reference &

• class
• struct
• union
• enum
• typedef

Primitive
Types

Derived
Types

User-defined
Types

Variable-Scope

14

double circle_area(double radius) {
double area;
area = 3.14159265 * radius *radius;
return area;

}

Scope of radius

Scope of area

A variable is said to be “in scope” when your
program is at a point where it can see the variable.

A variable is “out of scope” when your program
is at a point where it can’t see the variable.

15

Variable Declarations and Definitions

Declarations and Definitions

16

A variable-declaration simply
proclaims the existence of a
variable or a function.

Declarations and Definitions

17

A variable-definition is a
declaration that also creates
storage for a variable or function.

Declarations and Definitions

18

Declaration

Definition

Declarations are usually definitions, but they
don’t have to be.

Declarations and Definitions

19

Examples of declarations that are not definitions:

extern double distance;

void length(double x, double y);

Examples of declarations that are also definitions:

double acceleration;

double length(double x, double y){
return sqrt(x*x + y*y);

}

20

Automatic Storage
(The Stack)

21

1

2

3

4

5

6

7

8

9

10

11

12

Stack of five elements

1

2

3

4

5

6

7

8

9

10

11

12

Empty Stack

A Stack

22

1

2

3

4

5

6

7

8

9

10

Items are “pushed” onto the stack

1

2

3

4

5

6

7

8

9

10

Items are “popped” off of the stack

• Stacks are always LIFO (Last In, First Out).

• Sometimes rather than “push” or “pop”, people just say “allocate” or
“deallocate” because its more general.

A Stack

23

In a program, the stack is represented by a chunk
of memory and a stack pointer (SP). SP points to
the “top” of the stack.

SP

Empty Stack

The Stack

24

To push a value onto the stack, a program writes the
value to the top of the stack and updates SP to again
point to the top of the stack.

4

Push “4”

Empty Stack Stack has one item

SP

SP

The Stack

25

How Function Calls Work

26

How Function Calls Work

1. Pushes its parameters onto the stack.
2. Jumps to the function that it’s calling.
3. Pops its parameters back off of the stack.

Function calls use the stack to communicate with the
function that they are calling.

After a function call, the stack pointer will always be
exactly where it was before the call.

A function call performs the following steps:

27

1. Allocates it’s local variables on the stack. Variables
created in this way are called automatic variables.

2. Executes its code body.
3. Pops its local variables back off the stack.
4. Jumps back (returns) to the caller.

Called-functions find their parameters on the stack.

When we return from a function, the stack pointer will always be exactly
where it was when we entered the function.

A called-function :

What Functions Do When They are Called

28

int foo(int x, int y) {
int z;
z = x + y;
return z;

}

a = foo(3,4);

Suppose we are calling the following function named foo as shown.

Called-functionFunction-call

Function Call Example

29

a = foo(3,4);

4

3

y
x

Before the call After pushing parameters

return value

First, our function call will push its parameters onto the stack. It
will also push a space for the return value, and return address.

Second, the function call jumps to the function it is calling.

SP

SP

Function Call Example

return address

30

4

3

int foo(int x, int y) {
int z;
z = x + y;
return z;

}

Before After

4

3

y
x

z

return value

The function first allocates its local variables on the stack. Here,
space for the local variable z is allocated. At this point the function
has everything that it needs on the stack. This is called the
function’s stack frame.

stack frame

Function Call Example

SP
SP

return address

y
x
return value
return address

y
x

z

return value
return address

31

4

3
y
x

z
4

3

7

return value

int foo(int x, int y) {
int z;
z = x + y;
return z;

}

The function then executes its statements. In this case x is added
to y and the result is placed in z.

SPSP

Function Call Example

return address

Before After

32

4

3

7

int foo(int x, int y) {
int z;
z = x + y;
return z;

}

Finally, the function executes its return statement by copying the
value of z into the return value location and executing a JUMP
back to the function call. Remember, the function call is not
done yet.

SP

Function Call Example

y
x

z

return value
return address

4

3

7

7
SP

y
x

z

return value
return address

Before After

33

Finally, the function call moves the stack pointer
to where it was before the call.

4

3

7

7

Function Call Example

SP
y
x
return value
return address

4

3

7

7

SP

a = foo(3,4);
Before After

34

Suppose function A calls function B, and function
B calls C. When our program is running code in
function C, the stack will look like:

A stack frame
B stack frame
C stack frame

SP

Multiple Stack Frames

35

Multiple Stack Frames

Suppose function A calls B, and then A calls C.

A stackframe

B stackframe

When we’re in B

A stackframe

C stackframe

When we’re in C

Notice that C is using the same part of the
stack that B was using.

SP SP

36

• A function’s local, automatic variables are
created on the stack when they are defined,
thus beginning their lifetimes.

• A function’s local, automatic variables are
removed from the stack when it exits, thus
ending their lifetimes.

Things to Realize About the Stack

37

• If your program has entered a function, but not
yet exited that function, then it has a stack
frame on the call stack.

• During code execution, the call stack represents
the hierarchy of function calls currently in
effect.

Things to Realize About the Stack

38

• Don’t return a pointer to a local variable
back to the function’s caller. Remember that
once the function returns, the life of the
local variable is over. It should not be
treated as if it were still in scope.

Things to Realize About the Stack

It’s OK to pass a pointer to a local
automatic variable to a function that you
are calling but.

What’s wrong with this?

39

#include <stdio.h>

char* make_line(int n) {
char temp[40];
sprintf(temp,"%d bottles of beer on the wall",n);
return temp;

}

int main(int argc, char* argv[]) {
char *line;
line = make_line(100);
printf("%s\n", line);

}

How can we fix it?

40

Dynamic Storage
(The Heap)

The Heap

41

• The heap is the region of memory from which
malloc and new dynamically allocate
smaller chunks of memory.

• Variables allocated from the heap are called
dynamic variables.

The Heap

42

• Calling malloc or new allocates a portion of
memory, and returns a pointer to it.
• The pointer provides scope to the

allocation.

• Calling free or delete on the pointer
deallocates the previously allocated memory,
and invalidate the pointer.
• A pointer variable containing an invalid

reference is called a dangling pointer.

43

• A dynamic variable without scope (we’ve
somehow lost our reference to it, oops!) is called
a memory leak.

Things to Realize About the Heap

• It’s a bad idea to intermix the usage of malloc
and free with new and delete.

• Using an invalid pointer is … a bad thing.

44

Static Storage

Static Variables

45

The lifetime of a static variable
extends throughout the entire the
lifetime of the program.

Static Variables

46

A static global variable is in scope within the
translation unit in which it is defined. A
translation unit is a source code file plus any
header files that are included. It can be brought
into the scope of other translation unit using the
extern keyword.

A static local variable is in scope within the
function in which it’s declared. It, and its value
persists between calls to the function.

47

Code Storage
(The code segment, also known as the text segment)

Code Storage

48

The code segment contains your compiled code,
and global constant objects. It’s read-only.
That’s it!

Terms

49

• variable (reference, data-type, scope, lifetime)
• reference (name, address)
• data-type (int, float, double, … , user-defined types, …
• scope (local, global)
• lifetime (static, dynamic, automatic)
• declaration
• definition
• the stack (automatic variables)
• stack pointer
• stack frame
• automatic variable
• dynamic variable
• static variable
• local variable
• global variable
• the heap (dynamic variables)
• dangling pointer
• memory leak

50

The End

