
2/9/23

Tutorial Review
by The Trick Team

2/9/23

https://github.com/nasa/trick/wiki/Tutorial

This presentation is a review of the Trick Tutorial, which can
be found at the following URL:

2/9/23

Determine the trajectory, and time of impact of a cannon ball
that is fired with an initial speed and initial angle. Assume a
constant acceleration of gravity (g), and no aerodynamic
forces.

Example Dynamics Problem

2/9/23

!p(t) = 1
2
!at2 + !v0t +

!p0

!v(t) = !at + !v0

Analytic Solution for Cannon Ball

d 2 !p
dt2

=
!a(t)

Acceleration is the second-derivative of position with respect to time.

If a(t) is integratable, then we can find an analytic solution. In the
case of our cannon ball problem, a(t)=g is constant, so our solution
is:

(velocity- anti-derivative of acceleration)

(position- anti-derivative of velocity)

2/9/23

!a =
ax
ay

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

0
g

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

!v0 =
v0 x
v0 y

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= S ⋅cosθ

S ⋅sinθ

⎡

⎣
⎢

⎤

⎦
⎥

!p0 =
p0 x
p0 y

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= 0.0

0.0

⎡

⎣
⎢

⎤

⎦
⎥

S = 50
θ = π / 6 (30°)

The initial velocity of the cannon ball

Acceleration

The initial position of the cannon ball

Angle of the barrel

Speed of the cannon ball

Initial Conditions for Cannon Ball

g = −9.81 Acceleration of gravity

2/9/23

timpact =
−v0 y − v0 y

2 − 2p0 y
ay

py (t) =
1
2
ayt

2 + v0 yt + p0 y = 0

The Ball hits the ground when:

Solving for t, using the quadratic formula:

Cannon Ball Time of Impact

2/9/23

A Simple (non-Trick) Simulation

2/9/23

Cannon.c (page 1 of 2)

2/9/23

Cannon.c (page 2 of 2)

2/9/23

We will get a listing of the trajectory points over time,
followed by the impact position and time:

If we compile and run the program :

% cc cannon.c -o cannon -lm
% ./cannon

👉

Impact time=5.096840 position=220.699644

2/9/23

If we plot the trajectory points using Gnuplot:

2/9/23

So why do we need Trick?

2/9/23

1. Real-world problems don't often have nice closed-form
solutions. They require numeric methods.

2. Changing parameters requires recompilation of the program.

3. What if we want to be able to run our simulation in real-time?

4. What if we want to interact with our simulation while its
running?

Limitations of the Simulation

In the coming sections, we'll see how Trick helps us overcome these
limitations, and more. We’ll see how it provides simulations with
commonly needed capabilites, many of them automatically.

For simple physics models like our cannonball, maybe we don't need
Trick, but real-world problems are rarely as simple.

2/9/23

The Simulation Definition File
(S_define)

2/9/23

In our non-Trick simulation program :

• We organized our code into well-defined tasks :
• Initialization of variables by assignment
• Initialization of variables by calculation.
• Periodic calculation of the model state.
• Cleanup/Shutdown.

• We made sure that our tasks were executed in the
appropriate order.

• We defined our simulation-state variables.

• We created a representation of our simulation-state.

In a Trick simulation, we do the same. To “teach” Trick about the
parts that make the particular simulation unique, we use a
simulation definition file (S_define).

2/9/23

Example S_define

2/9/23

Building & Running a
Trick Simulation

2/9/23

Simulation File Organization

% mkdir –p SIM_cannon_analytic/RUN_test
% mkdir –p SIM_cannon_analytic/models/cannon/src
% mkdir –p SIM_cannon_analytic/models/cannon/include

SIM_cannon_analytic/

models/

include/ src/

cannon/

RUN_test/

👉

2/9/23

cannon.h

Representing the Cannonball State

Keyword that tells
Trick to process this file.

Specially formatted
comments for Trick.

include src

cannon

models

Sim_cannon_analytic

Run_test

2/9/23

double init_speed ; /* *i (m/s) Init barrel speed */

Units specification

IO specification
Comment

Trick Comments

2/9/23

cannon_init.c

include src

cannon

models

Sim_cannon_analytic

Run_test

Initializing the Cannonball State

2/9/23

cannon_analytic.c

Updating the Cannonball State Over Time

include src

cannon

models

Sim_cannon_analytic

Run_test

2/9/23

cannon_analytic.h

We Need a Prototype for Our State Update Approach

include src

cannon

models

Sim_cannon_analytic

Run_test

2/9/23

cannon_shutdown.c

Cannonball Cleanup And Shutdown

include src

cannon

models

Sim_cannon_analytic

Run_test

2/9/23

The Simulation Definition File

S_define

Jobs

Trick Header

Included files

include src

cannon

models

Sim_cannon_analytic

Run_test

2/9/23

S_overrides.mk

Compiler Flags

include src

cannon

models

Sim_cannon_analytic

Run_test

2/9/23

The Importance of TRICK_CFLAGS and TRICK_CXXFLAGS

$TRICK_CFLAGS and $TRICK_CXXFLAGS are Trick environment
variables. They provide a means to control how your simulation is built.

When Trick invokes a C-compiler, it passes the value of
$TRICK_CFLAGS to it. $TRICK_CXXFLAGS are passed to C++ compilers.

The Trick build process also uses any -I options found in these variables
to resolve relative file paths.

TRICK_CFLAGS += -Wall

For example, suppose I want the C compiler to warn me about common,
dubious code constructs that might have crept into my simulation code:

2/9/23

The Importance of TRICK_CFLAGS and TRICK_CXXFLAGS

${HOME}/trick_models/cannon/gravity/include/cannon.h

Base-path Relative-path
Example:

The –I flag is a GNU compiler flag that lists base-paths, from which
relative-paths, specified in your code, can be resolved to full-paths.

For example, the following directive specifies a relative-path:
#include “cannon/gravity/include/cannon.h”

It’s relative to some base-path that needs to be specified in order to
find the file.

TRICK_CFLAGS += -I${HOME}/trick_models/

So, when we provide the following base-path, the compiler can resolve
the relative path.

2/9/23

The Importance of TRICK_CFLAGS and TRICK_CXXFLAGS

The –I flags in TRICK_CFLAGS and TRICK_CXXFLAGS are also used to
resolve relative paths in LIBRARY DEPENDENCIES specifications in Trick
headers.

LIBRARY DEPENDENCIES:
(

(cannon/src/cannon_init.c)
(cannon/src/cannon_analytic.c)
(cannon/src/cannon_shutdown.c)

)

2/9/23

Simulation File Organization

SIM_cannon_analytic/

models/

include/ src/

S_define S_overrides.mk

cannon/

cannon.h cannon_init.ccannon_analytic.ccannon_analytic.h cannon_shutdown.c

RUN_test/

2/9/23

Building the Simulation with Trick-CP

The Trick simulation build tool is called trick-CP (Trick
Configuration Processor). It parses an S_define file, finding
data-types, variables, functions, scheduling information, and
ultimately creates a simulation executable.

=== Simulation make complete ===

you should see:

After you build the sim:
% cd $HOME/trick_sims/SIM_cannon_analytic
% trick-CP

👉

2/9/23

Simulation Input File

Every Trick simulation needs an input file. The input file is
actually a script that is processed by a Python interpreter,
specifically bound to Trick’s code and your simulation code.

trick.stop(5.2)
input.py

include src

cannon

models

Sim_cannon_analytic

Run_test

2/9/23

Run the simulation executable from SIM_cannon_analytic/ :

Simulation Input File

Result

% ./S_main_*.exe RUN_test/input.py

If all goes well, something similar to the following sample output
will be displayed on the terminal.

👉

IMPACT: t = 5.096839959, pos[0] = 220.699644186

==
Cannon Ball State at Shutdown

t = 5.2
pos = [220.699644186, 0.000000000]
vel = [0.000000000, 0.000000000]
==
REALTIME SHUTDOWN STATS:

REALTIME TOTAL OVERRUNS: 0
ACTUAL INIT TIME: 0.099

ACTUAL ELAPSED TIME: 11.338
SIMULATION TERMINATED IN
PROCESS: 0
ROUTINE: Executive_loop_single_thread.cpp:98
DIAGNOSTIC: Reached termination time

SIMULATION START TIME: 0.000
SIMULATION STOP TIME: 5.200

SIMULATION ELAPSED TIME: 5.200
ACTUAL CPU TIME USED: 0.098
SIMULATION / CPU TIME: 53.268

INITIALIZATION CPU TIME: 0.052

2/9/23

What about the trajectory?

To plot the trajectory, we first need to
record the data from our simulation.

2/9/23

Recording Simulation Data

To tell our sim what to record, we need to create a data-
recording file. Let’s first make a place to put it:

SIM_cannon_analytic/

models/

include/ src/

cannon/

RUN_test/Modified_data/

% mkdir Modified_data👉

2/9/23

4) Choose File->Save. In the "Save" dialog, enter the file name
“cannon.dr” and save it in the Modified_data/ directory.
5) Exit trick-dre.

1) Give the variable
collection (a.k.a “recording
group”) a name.

2) Specify the recording
frequency. Ok, fine, the
period.

3) Double-click on the pos
array (the position of the
cannon ball). Note that
they are then dsiplayed in
the Selected variables
pane.

Making a Data-Recording File with trick-dre

% trick-dre &👉

2/9/23

cannon.dr

What is a Data-Recording File?

A data recording file is actually a snippet of Python code that you
include into your input file.

include src

cannon

models

Sim_cannon_analytic

Run_testModified_data

DON’T TYPE THIS IN.

IT’S CREATED AUTOMATICALLY

BY trick-dre.

2/9/23

Initiation of Data Recording

Update input.py

Re-run the simulation:

% ./S_main*.exe RUN_test/input.py👉

RUN_test/

Input.py log_my_cannon.trk

This will produce a data recording file in your
RUN_ directory.

2/9/23

Trick Data Products

% trick-dp &👉

In the SIM_cannon_analytic/ directory, run trick-dp:

double-click to
select the recorded
data.

2) Click to start trick-qp

Selected data will
appear here.

2/9/23

Plotting Recorded Data with trick-qp

2/9/23

Telling trick-qp What to Plot

Click and drag dyn.cannon.pos[0] with left mouse
button to the curves X coordinate.

Click and drag from here to here.

Click the Single Plot Button.

2/9/23

Plotting Recorded Data

2/9/23

Running Real-time

2/9/23

Recall that the cannonball run was 5.2 seconds, yet when the
simulation ran, it was done in a flash. This section will add real-
time synchronization.

include src

cannon

models

Sim_cannon_analytic

Run_testModified_data

realtime.py

2/9/23

trick.real_time_enable()

trick.exec_set_software_frame(0.1)

Enables Trick real-time. In other words, it enables the periodic
synchronization of simulation-time with real-time (“wall-clock-time”).

Specifies how often simulation-time is synchronized with real-time.

Specifying Real-time Operation

2/9/23

Once You’re in Real-time

trick.itimer_enable()

Allows other processes to run while Trick is waiting for the beginning
of the next software frame to start the simulation jobs. If interval
timers are not used, Trick will spin waiting for the next beat.

trick.exec_set_freeze_command()
Puts the simulation in freeze mode at start-up

trick.exec_set_enable_freeze()
Allows a user to toggle the simulation mode between FREEZE and RUN.

trick.sim_control_panel_set_enabled(True)
Starts the sim control panel GUI.

trick.frame_log_on()

Log simulation performance data.

2/9/23

Update input.py

Re-run the simulation:

% ./S_main*.exe RUN_test/input.py👉

Running in Real-time

2/9/23

Simulation
Mode

Click here to
RUN the sim.

Sim Control Panel

Trick View

Simulation
Executable

Overrun
count

Variable
Server Port

2/9/23

Trick View (TV)

Double-click
variables to
select for
viewing

Left-click
to change units

Double-click to
edit values

2/9/23

Trick View (TV)

2/9/23

Trick View (TV)

2/9/23

Update input.py

Trick View (TV)

Re-run the simulation:

% ./S_main*.exe RUN_test/input.py👉

The sim will come up as before, but Trick View will also come up
With the previously saved variable set.

2/9/23

State Propagation with
Numerical Methods

2/9/23

The simulation we’ve thus far created, relies on the fact that the
cannon ball problem has an closed-form solution. From it, we can
immediately calculate the cannon ball state (position, and velocity)
at any arbitrary time. In real-world simulation problems, this will
rarely be the case.

In this section, we’re going to pretend that no analytic solution exists
and model the cannon ball using numeric-integration.

When Analytic Solutions Don’t Exist

2/9/23

Updating the Cannon Ball Sim to Use Numerical Integration

Rather than type everything again, we will first "tidy up" and copy
the simulation. Then we’ll modify it to use numeric integration.

To tidy up, execute the following:
% cd $HOME/trick_sims/SIM_cannon_analytic
% make spotless

% cd ..
% cp -r SIM_cannon_analytic SIM_cannon_numeric

Copy the sim directory, giving it a new name.

👉

👉

2/9/23

To provide simulation developers with a means of getting data
into and out of these algorithms, Trick defines the following two
job classes:

• derivative class jobs - for calculating the state time
derivatives.

• integration class jobs - for integrating the state time
derivatives from time tn-1 to tn, to produce the next state.

A special integ_loop job scheduler coordinates the calls to
these jobs derivative and integration jobs.

Job Classes for Numerical Integration

2/9/23

include src

cannon

models

Sim_cannon_numeric

Run_test

cannon_numeric.h

Interface Specifically for Numeric Job Functions

2/9/23

cannon_numeric.c

Start of Cannonball Numeric Approach

include src

cannon

models

Sim_cannon_numeric

Run_test

To this, we’ll be soon our derivative and integration job functions.

Add the code snippet above to cannon_numeric.c👉

2/9/23

Derivative Class Jobs

The purpose of a derivative class job is to generate a model’s time-
derivatives, that is, it evaluates the right-hand side of the model’s
differential equation.

For "F=ma" type models, derivative jobs calculate acceleration, by
dividing force by mass.

All time dependent quantities from which acceleration is calculated
should also be calculated in the derivative job.

In the corresponding integration class job, the acceleration is then
integrated to produce velocity, and velocity is integrated to produce
position.

!a(t) =
!
F(t) /m(t)

2/9/23

include src

cannon

models

Sim_cannon_numeric

Run_test

Cannon Ball Derivative Job-function

Add cannon_deriv() to cannon_numeric.c👉

2/9/23

Integration Class Jobs

The purpose of a integration class job is to integrate the derivatives
that were calculated in the corresponding derivative jobs,
producing the next simulation state from the previous state.

Integration jobs generally look very similar. That is because they
are expected to do the same five things:

1. Load the state into the integrator.
2. Load the state derivatives into the integrator.
3. Call the integrate() function.
4. Unload the updated state from the integrator.
5. Return the value that was returned by the integrate() call.

2/9/23

include src

cannon

models

Sim_cannon_numeric

Run_test

Cannon Ball Integration Job-function

cannon_integ.c

Add cannon_integ() to cannon_numeric.c👉

2/9/23

Updating the S_define File

##include
"cannon/include/cannon_analytic.h"##include "cannon/include/cannon_numeric.h"

(cannon/src/cannon_numeric.c)
(cannon/src/cannon_analytic.c)

(0.01, "scheduled") cannon_analytic(&cannon) ;

("derivative") cannon_deriv(&cannon) ;
("integration") trick_ret= cannon_integ(& cannon);

REPLACE:
WITH:

REPLACE:
WITH:

REPLACE:
WITH:

And one more thing …

Update the LIBRARY_DEPENDENCY section:👉

Update ##includes👉

Update Scheduled Jobs👉
include src

cannon

models

Sim_cannon_numeric

Run_test

2/9/23

Integration Loop Configuration

Producing simulation states by numerical integration requires that
derivative and integration jobs be called at the appropriate rate
and times. This requires a properly configured integration-
scheduler. This is a two part process:

1. Create an integration-scheduler.
2. Select an integration algorithm for that scheduler.

2/9/23

Creating an Integration Scheduler

An integration scheduler is instantiated in the S_define. It takes
the form:

IntegLoop integLoopName (integrationTimeStep) listOfSimObjectNames ;

Jobs within named simObjects that are tagged “derivative" or
"integration” will be dispatched by the associated integration
scheduler.

2/9/23

Selecting an Integrator

N is the number of state variables to be integrated.

In the input file, call the IntegLoop getIntegrator() method to
specify the integration algorithm of choice and the number of state
variables to be integrated.

integLoopName.getIntegrator(algorithm, N);

algorithm is an enumeration value that indicates which
numerical integration algorithm to use, such as: trick.Euler,
trick.Runge_Kutta_2, trick.Runge_Kutta_4, etc*.

* A complete list of available algorithms can be seen Integrator.hh, in
${TRICK_HOME}/include/trick/Integrator.hh .

2/9/23

S_define for Numeric Sim
S_define

NEW

NEW

NEW

NEW

2/9/23

Input File for Numeric Sim

input.py

include src

cannon

models

Sim_cannon_numeric

Run_test

NEWUpdate input.py as shown.👉

2/9/23

Running the Numeric Sim

% cd $HOME/trick_sims/SIM_cannon_numeric
% trick-CP

👉

% ./S_main*.exe RUN_test/input.py👉

We get:
==

Cannon Ball State at Shutdown
t = 5.2
pos = [225.166604984, -2.631200000]
vel = [43.301270189, -26.012000000]
==

DON’T PANIC!
It’s not the same. That’s because didn’t stop our
sim at impact-time. We will.

2/9/23

Running the Numeric Sim

In our analytic sim, we stopped
updating our cannonball state at
impact, when we crossed y=0, at
t=5.096839.

In our numeric sim, didn’t
detect impact, and continued to
update the cannonball state
until t = 5.2.

2/9/23

So, what about the impact-time?

Remember, we’re pretending that we don’t have an analytical
solution. So, we can’t use our time-of-impact equation.

2/9/23

Dynamic Events

In Trick, we call this type of occurrence, when our simulation state
is at some boundary that we've defined, a dynamic-event. To find
dynamic-events, we use dynamic-event jobs.

We need a numerical method to determine the precise time of
impact, t when y(t)=0.

trajectory

2/9/23

Dynamic Event Jobs

The job scheduler calls dynamic-event jobs, after each integration
step:

• To detect when the simulation state crosses a user-defined event
boundary,

• To take control of integration, to find the exact event-state and
time, and

• To perform some action as a result of finding the event-state.

It does this using the Trick's regula_falsi() function and
REGULA_FALSI data-type to implement the False Position
Method.

2/9/23

Finding Events with regula_falsi()

The regula_falsi() function is the heart of a dynamic event function. It's
job is to:

• Monitor the simulation state produced by each integration step,
• Detect when the state crosses a specified event boundary, and
• Guide Trick's integration scheduler to find that event.

Progress toward finding the event state is recorded in a REGULA_FALSI
variable.

2/9/23

Updates to cannon.h

NEW

NEW

Update cannon.h as shown.👉

2/9/23

Dynamic Event Job Function: cannon_impact()

Add this function, to the bottom of cannon_numeric.c👉

2/9/23

Specifying an Event Boundary – REGULA_FALSI.error

220.6

t=5.10

t=5.10

220.4

REGULA_FALSI.error > 0

REGULA_FALSI.error < 0

Boundary

REGULA_FALSI.error – how far and on which side of the boundary
is the cannon ball. We set rf.error to the y-coordinate of the ball.

+
y=0
-

2/9/23

Specifying an Event Boundary – REGULA_FALSI.mode

REGULA_FALSI.mode – enumeration value that constrains an event
to a particular direction of boundary crossing.

• Increasing - specifies that an event occurs only when the
boundary is crossed from negative to positive.

• Decreasing - specifies that an event occurs only when the
boundary is crossed from positive to negative.

• Any - (default) specifies that an event occurs when the boundary
is crossed from either direction.

2/9/23

Calling regula_falsi()

The regula_falsi function estimates the amount of time until
REGULA_FALSI.error reaches 0, that is, when the boundary will
be crossed.

double regula_falsi(currentIntegrationTime, regulaFalsi_p);

currentIntegrationTime – from get_integ_time()

regulaFalsi_p – pointer to REGULA_FALSI object.

Returns – an estimate of the amount of time until the event.

2/9/23

Update cannon_numeric.h

NEW

2/9/23

Update S_define for Numeric Sim

NEW

2/9/23

Rebuild SIM_Cannon_numeric.👉

Run it.👉

Running the Completed Numeric Sim

IMPACT: t = 5.096839959, pos[0] = 220.699644186

==
Cannon Ball State at Shutdown

t = 5.2
pos = [220.699644186, 0.000000000]
vel = [0.000000000, 0.000000000]
==

The same answer we got with our analytic sim!

We get:

2/9/23

Congratulations!

You’ve completed the Basic Trick Tutorial Review!

