tippecanoe/mvt.cpp
2018-10-09 15:31:09 -07:00

1426 lines
36 KiB
C++

#include <stdio.h>
#include <string.h>
#include <string>
#include <vector>
#include <map>
#include <zlib.h>
#include <errno.h>
#include <limits.h>
#include <ctype.h>
#include <math.h>
#include <cmath>
#include "mvt.hpp"
#include "geometry.hpp"
#include "protozero/varint.hpp"
#include "protozero/pbf_reader.hpp"
#include "protozero/pbf_writer.hpp"
#include "milo/dtoa_milo.h"
#include "jsonpull/jsonpull.h"
int mvt_format = mvt_blake;
mvt_geometry::mvt_geometry(int nop, long long nx, long long ny) {
this->op = nop;
this->x = nx;
this->y = ny;
}
mvt_geometry::mvt_geometry(int nop, long long nx, long long ny, std::vector<double> nelevations) {
this->op = nop;
this->x = nx;
this->y = ny;
this->elevations = nelevations;
}
// https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp
bool is_compressed(std::string const &data) {
return data.size() > 2 && (((uint8_t) data[0] == 0x78 && (uint8_t) data[1] == 0x9C) || ((uint8_t) data[0] == 0x1F && (uint8_t) data[1] == 0x8B));
}
// https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp
int decompress(std::string const &input, std::string &output) {
z_stream inflate_s;
inflate_s.zalloc = Z_NULL;
inflate_s.zfree = Z_NULL;
inflate_s.opaque = Z_NULL;
inflate_s.avail_in = 0;
inflate_s.next_in = Z_NULL;
if (inflateInit2(&inflate_s, 32 + 15) != Z_OK) {
fprintf(stderr, "Decompression error: %s\n", inflate_s.msg);
}
inflate_s.next_in = (Bytef *) input.data();
inflate_s.avail_in = input.size();
inflate_s.next_out = (Bytef *) output.data();
inflate_s.avail_out = output.size();
while (true) {
size_t existing_output = inflate_s.next_out - (Bytef *) output.data();
output.resize(existing_output + 2 * inflate_s.avail_in + 100);
inflate_s.next_out = (Bytef *) output.data() + existing_output;
inflate_s.avail_out = output.size() - existing_output;
int ret = inflate(&inflate_s, 0);
if (ret < 0) {
fprintf(stderr, "Decompression error: ");
if (ret == Z_DATA_ERROR) {
fprintf(stderr, "data error");
}
if (ret == Z_STREAM_ERROR) {
fprintf(stderr, "stream error");
}
if (ret == Z_MEM_ERROR) {
fprintf(stderr, "out of memory");
}
if (ret == Z_BUF_ERROR) {
fprintf(stderr, "no data in buffer");
}
fprintf(stderr, "\n");
return 0;
}
if (ret == Z_STREAM_END) {
break;
}
// ret must be Z_OK or Z_NEED_DICT;
// continue decompresing
}
output.resize(inflate_s.next_out - (Bytef *) output.data());
inflateEnd(&inflate_s);
return 1;
}
// https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp
int compress(std::string const &input, std::string &output) {
z_stream deflate_s;
deflate_s.zalloc = Z_NULL;
deflate_s.zfree = Z_NULL;
deflate_s.opaque = Z_NULL;
deflate_s.avail_in = 0;
deflate_s.next_in = Z_NULL;
deflateInit2(&deflate_s, Z_BEST_COMPRESSION, Z_DEFLATED, 31, 8, Z_DEFAULT_STRATEGY);
deflate_s.next_in = (Bytef *) input.data();
deflate_s.avail_in = input.size();
size_t length = 0;
do {
size_t increase = input.size() / 2 + 1024;
output.resize(length + increase);
deflate_s.avail_out = increase;
deflate_s.next_out = (Bytef *) (output.data() + length);
int ret = deflate(&deflate_s, Z_FINISH);
if (ret != Z_STREAM_END && ret != Z_OK && ret != Z_BUF_ERROR) {
return -1;
}
length += (increase - deflate_s.avail_out);
} while (deflate_s.avail_out == 0);
deflateEnd(&deflate_s);
output.resize(length);
return 0;
}
mvt_scaling read_scaling(protozero::pbf_reader message) {
protozero::pbf_reader dimension_reader(message);
mvt_scaling dimension;
dimension.offset = 0;
dimension.multiplier = 1;
dimension.base = 0;
while (dimension_reader.next()) {
switch (dimension_reader.tag()) {
case 1:
dimension.offset = dimension_reader.get_sint64();
break;
case 2:
dimension.multiplier = dimension_reader.get_double();
break;
case 3:
dimension.base = dimension_reader.get_double();
break;
default:
dimension_reader.skip();
break;
}
}
return dimension;
}
bool mvt_tile::decode(std::string &message, bool &was_compressed) {
layers.clear();
std::string src;
if (is_compressed(message)) {
std::string uncompressed;
if (decompress(message, uncompressed) == 0) {
exit(EXIT_FAILURE);
}
src = uncompressed;
was_compressed = true;
} else {
src = message;
was_compressed = false;
}
protozero::pbf_reader reader(src);
while (reader.next()) {
switch (reader.tag()) {
case 3: /* layer */
{
protozero::pbf_reader layer_reader(reader.get_message());
mvt_layer layer;
mvt_scaling elevation_scaling;
while (layer_reader.next()) {
switch (layer_reader.tag()) {
case 1: /* name */
layer.name = layer_reader.get_string();
break;
case 3: /* key */
layer.keys.push_back(layer_reader.get_string());
break;
case 4: /* value */
{
protozero::pbf_reader value_reader(layer_reader.get_message());
mvt_value value;
value.type = mvt_null;
value.numeric_value.null_value = 0;
while (value_reader.next()) {
switch (value_reader.tag()) {
case 1: /* string */
value.type = mvt_string;
value.string_value = value_reader.get_string();
break;
case 2: /* float */
value.type = mvt_float;
value.numeric_value.float_value = value_reader.get_float();
break;
case 3: /* double */
value.type = mvt_double;
value.numeric_value.double_value = value_reader.get_double();
break;
case 4: /* int */
value.type = mvt_int;
value.numeric_value.int_value = value_reader.get_int64();
break;
case 5: /* uint */
value.type = mvt_uint;
value.numeric_value.uint_value = value_reader.get_uint64();
break;
case 6: /* sint */
value.type = mvt_sint;
value.numeric_value.sint_value = value_reader.get_sint64();
break;
case 7: /* bool */
value.type = mvt_bool;
value.numeric_value.bool_value = value_reader.get_bool();
break;
default:
value_reader.skip();
break;
}
}
layer.values.push_back(value);
break;
}
case 5: /* extent */
layer.extent = layer_reader.get_uint32();
break;
case 6: /* string values */
layer.string_values.push_back(layer_reader.get_string());
break;
case 7: /* floats */
{
auto pi = layer_reader.get_packed_float();
for (auto it = pi.first; it != pi.second; ++it) {
layer.float_values.push_back(*it);
}
break;
}
case 8: /* doubles */
{
auto pi = layer_reader.get_packed_double();
for (auto it = pi.first; it != pi.second; ++it) {
layer.double_values.push_back(*it);
}
break;
}
case 9: /* integers */
{
auto pi = layer_reader.get_packed_fixed64();
for (auto it = pi.first; it != pi.second; ++it) {
layer.uint64_values.push_back(*it);
}
break;
}
case 10: /* elevation scaling */
{
elevation_scaling = read_scaling(layer_reader.get_message());
break;
}
case 11: /* elevation scaling */
{
layer.attribute_scalings.push_back(read_scaling(layer_reader.get_message()));
break;
}
case 15: /* version */
layer.version = layer_reader.get_uint32();
break;
case 2: /* feature */
{
protozero::pbf_reader feature_reader(layer_reader.get_message());
mvt_feature feature;
std::vector<uint32_t> geoms;
while (feature_reader.next()) {
switch (feature_reader.tag()) {
case 1: /* id */
feature.id = feature_reader.get_uint64();
feature.has_id = true;
break;
case 2: /* tags */
{
auto pi = feature_reader.get_packed_uint32();
for (auto it = pi.first; it != pi.second; ++it) {
feature.tags.push_back(*it);
}
break;
}
case 3: /* feature type */
feature.type = feature_reader.get_enum();
break;
case 4: /* geometry */
{
auto pi = feature_reader.get_packed_uint32();
for (auto it = pi.first; it != pi.second; ++it) {
geoms.push_back(*it);
}
break;
}
case 5: /* properties */
{
auto pi = feature_reader.get_packed_uint64();
for (auto it = pi.first; it != pi.second; ++it) {
feature.properties.push_back(*it);
}
break;
}
case 7: /* elevations */
{
auto pi = feature_reader.get_packed_sint64();
for (auto it = pi.first; it != pi.second; ++it) {
feature.elevations.push_back(*it);
}
break;
}
case 8: /* node attributes */
{
auto pi = feature_reader.get_packed_uint64();
for (auto it = pi.first; it != pi.second; ++it) {
feature.node_attributes.push_back(*it);
}
break;
}
case 10: /* string id */
{
feature.string_id = feature_reader.get_string();
break;
}
case 11: /* knots */
{
auto pi = feature_reader.get_packed_double();
for (auto it = pi.first; it != pi.second; ++it) {
feature.knots.push_back(*it);
}
break;
}
default:
feature_reader.skip();
break;
}
}
long long px = 0, py = 0;
for (size_t g = 0; g < geoms.size(); g++) {
uint32_t geom = geoms[g];
uint32_t op = geom & 7;
uint32_t count = geom >> 3;
if (op == mvt_moveto || op == mvt_lineto) {
for (size_t k = 0; k < count && g + 2 < geoms.size(); k++) {
px += protozero::decode_zigzag32(geoms[g + 1]);
py += protozero::decode_zigzag32(geoms[g + 2]);
g += 2;
mvt_geometry decoded = mvt_geometry(op, px, py);
feature.geometry.push_back(decoded);
}
} else {
feature.geometry.push_back(mvt_geometry(op, 0, 0));
}
}
layer.features.push_back(feature);
break;
}
default:
layer_reader.skip();
break;
}
}
for (size_t i = 0; i < layer.keys.size(); i++) {
layer.key_map.insert(std::pair<std::string, size_t>(layer.keys[i], i));
}
for (size_t i = 0; i < layer.values.size(); i++) {
layer.value_map.insert(std::pair<mvt_value, size_t>(layer.values[i], i));
}
// This has to wait until the layer is decoded because we might not know
// the values or elevation scales until after the features.
for (size_t i = 0; i < layer.features.size(); i++) {
std::vector<mvt_geometry> &geom = layer.features[i].geometry;
std::vector<unsigned long> &attr = layer.features[i].node_attributes;
size_t off = 0;
if (attr.size() != 0) {
for (size_t j = 0; j < geom.size(); j++) {
if (geom[j].op == mvt_moveto || geom[j].op == mvt_lineto) {
if (off < attr.size()) {
mvt_value v = layer.decode_property(attr, off, true);
off++;
if (v.type == mvt_hash || v.type == mvt_list) {
geom[j].attribute = v.string_value;
} else if (v.type == mvt_null) {
;
} else {
std::string s = v.toString();
fprintf(stderr, "Found unexpected node attribute %s\n", s.c_str());
exit(EXIT_FAILURE);
}
} else {
fprintf(stderr, "Ran out of node attributes\n");
exit(EXIT_FAILURE);
}
}
}
}
attr.clear();
long current_elevation = elevation_scaling.offset;
off = 0;
std::vector<long> &elevations = layer.features[i].elevations;
if (elevations.size() != 0) {
for (size_t j = 0; j < geom.size(); j++) {
if (off < elevations.size()) {
double el;
current_elevation += elevations[off];
el = elevation_scaling.base + elevation_scaling.multiplier * current_elevation;
geom[j].elevations.push_back(el);
off++;
} else {
fprintf(stderr, "Ran out of elevations\n");
exit(EXIT_FAILURE);
}
}
}
elevations.clear();
}
layers.push_back(layer);
break;
}
default:
reader.skip();
break;
}
}
return true;
}
std::string mvt_tile::encode() {
std::string data;
protozero::pbf_writer writer(data);
for (size_t i = 0; i < layers.size(); i++) {
std::string layer_string;
protozero::pbf_writer layer_writer(layer_string);
bool layer_is3d = false;
layer_writer.add_uint32(15, layers[i].version); /* version */
layer_writer.add_string(1, layers[i].name); /* name */
layer_writer.add_uint32(5, layers[i].extent); /* extent */
for (size_t j = 0; j < layers[i].keys.size(); j++) {
layer_writer.add_string(3, layers[i].keys[j]); /* key */
}
for (size_t v = 0; v < layers[i].values.size(); v++) {
std::string value_string;
protozero::pbf_writer value_writer(value_string);
mvt_value &pbv = layers[i].values[v];
if (pbv.type == mvt_string) {
value_writer.add_string(1, pbv.string_value);
} else if (pbv.type == mvt_float) {
value_writer.add_float(2, pbv.numeric_value.float_value);
} else if (pbv.type == mvt_double) {
value_writer.add_double(3, pbv.numeric_value.double_value);
} else if (pbv.type == mvt_int) {
value_writer.add_int64(4, pbv.numeric_value.int_value);
} else if (pbv.type == mvt_uint) {
value_writer.add_uint64(5, pbv.numeric_value.uint_value);
} else if (pbv.type == mvt_sint) {
value_writer.add_sint64(6, pbv.numeric_value.sint_value);
} else if (pbv.type == mvt_bool) {
value_writer.add_bool(7, pbv.numeric_value.bool_value);
} else {
fprintf(stderr, "Internal error: trying to write undefined attribute type to tile\n");
exit(EXIT_FAILURE);
}
layer_writer.add_message(4, value_string);
}
for (size_t v = 0; v < layers[i].string_values.size(); v++) {
layer_writer.add_string(6, layers[i].string_values[v]);
}
layer_writer.add_packed_float(7, std::begin(layers[i].float_values), std::end(layers[i].float_values));
layer_writer.add_packed_double(8, std::begin(layers[i].double_values), std::end(layers[i].double_values));
layer_writer.add_packed_fixed64(9, std::begin(layers[i].uint64_values), std::end(layers[i].uint64_values));
mvt_scaling elevation_scaling;
for (size_t f = 0; f < layers[i].features.size(); f++) {
std::vector<mvt_geometry> &geom = layers[i].features[f].geometry;
for (size_t g = 0; g < geom.size(); g++) {
if (geom[g].elevations.size() > 0) {
mvt_scaling dim;
// XXX choose more appropriately
dim.multiplier = 0.5;
dim.base = -22.7;
dim.offset = 10;
elevation_scaling = dim;
}
}
}
for (size_t f = 0; f < layers[i].features.size(); f++) {
std::string feature_string;
protozero::pbf_writer feature_writer(feature_string);
bool has_attributes = false;
feature_writer.add_enum(3, layers[i].features[f].type);
feature_writer.add_packed_uint32(2, std::begin(layers[i].features[f].tags), std::end(layers[i].features[f].tags));
feature_writer.add_packed_uint64(5, std::begin(layers[i].features[f].properties), std::end(layers[i].features[f].properties));
if (layers[i].features[f].has_id) {
feature_writer.add_uint64(1, layers[i].features[f].id);
}
if (layers[i].features[f].string_id.size() != 0) {
feature_writer.add_string(10, layers[i].features[f].string_id);
}
std::vector<long> elevations;
long current_elevation = elevation_scaling.offset;
int px = 0, py = 0;
int cmd_idx = -1;
int cmd = -1;
int length = 0;
std::vector<mvt_geometry> &geom = layers[i].features[f].geometry;
bool feature_is3d = false;
std::vector<uint32_t> geometry;
for (size_t g = 0; g < geom.size(); g++) {
int op = geom[g].op;
if (op != cmd) {
if (cmd_idx >= 0) {
geometry[cmd_idx] = (length << 3) | (cmd & ((1 << 3) - 1));
}
cmd = op;
length = 0;
cmd_idx = geometry.size();
geometry.push_back(0);
}
if (op == mvt_moveto || op == mvt_lineto) {
long long wwx = geom[g].x;
long long wwy = geom[g].y;
int dx = wwx - px;
int dy = wwy - py;
geometry.push_back(protozero::encode_zigzag32(dx));
geometry.push_back(protozero::encode_zigzag32(dy));
px = wwx;
py = wwy;
length++;
if (geom[g].attributes.size() > 0) {
has_attributes = true;
}
double el;
if (geom[g].elevations.size() > 0) {
el = geom[g].elevations[0];
feature_is3d = true;
layer_is3d = true;
} else {
el = 0; // XXX detect
}
el = std::round((el - elevation_scaling.base) / elevation_scaling.multiplier);
int64_t delta = el - current_elevation;
elevations.push_back(delta);
current_elevation += delta;
} else if (op == mvt_closepath) {
length++;
} else {
fprintf(stderr, "\nInternal error: corrupted geometry\n");
exit(EXIT_FAILURE);
}
}
if (cmd_idx >= 0) {
geometry[cmd_idx] = (length << 3) | (cmd & ((1 << 3) - 1));
}
feature_writer.add_packed_uint32(4, std::begin(geometry), std::end(geometry));
if (feature_is3d) {
feature_writer.add_packed_sint64(7, std::begin(elevations), std::end(elevations));
}
feature_writer.add_packed_double(11, std::begin(layers[i].features[f].knots), std::end(layers[i].features[f].knots));
if (has_attributes > 0) {
std::vector<unsigned long> attributes;
for (size_t g = 0; g < geom.size(); g++) {
int op = geom[g].op;
if (op == mvt_moveto || op == mvt_lineto) {
if (geom[g].attributes.size() > 0) {
for (size_t e = 0; e < geom[g].attributes.size(); e++) {
attributes.push_back(geom[g].attributes[e]);
}
} else {
attributes.push_back((2 << 4) | 7); // null
}
}
}
feature_writer.add_packed_uint64(8, std::begin(attributes), std::end(attributes));
}
layer_writer.add_message(2, feature_string);
}
if (layer_is3d) {
std::string dimension_string;
protozero::pbf_writer dimension_writer(dimension_string);
dimension_writer.add_sint64(1, elevation_scaling.offset);
dimension_writer.add_double(2, elevation_scaling.multiplier);
dimension_writer.add_double(3, elevation_scaling.base);
layer_writer.add_message(10, dimension_string);
}
writer.add_message(3, layer_string);
}
return data;
}
bool mvt_value::operator<(const mvt_value &o) const {
if (type < o.type) {
return true;
}
if (type == o.type) {
if ((type == mvt_string && string_value < o.string_value) ||
(type == mvt_float && numeric_value.float_value < o.numeric_value.float_value) ||
(type == mvt_double && numeric_value.double_value < o.numeric_value.double_value) ||
(type == mvt_int && numeric_value.int_value < o.numeric_value.int_value) ||
(type == mvt_uint && numeric_value.uint_value < o.numeric_value.uint_value) ||
(type == mvt_sint && numeric_value.sint_value < o.numeric_value.sint_value) ||
(type == mvt_bool && numeric_value.bool_value < o.numeric_value.bool_value) ||
(type == mvt_null && numeric_value.null_value < o.numeric_value.null_value)) {
return true;
}
}
return false;
}
static std::string quote(std::string const &s) {
std::string buf;
for (size_t i = 0; i < s.size(); i++) {
unsigned char ch = s[i];
if (ch == '\\' || ch == '\"') {
buf.push_back('\\');
buf.push_back(ch);
} else if (ch < ' ') {
char tmp[7];
sprintf(tmp, "\\u%04x", ch);
buf.append(std::string(tmp));
} else {
buf.push_back(ch);
}
}
return buf;
}
std::string mvt_value::toString() const {
if (type == mvt_string) {
return std::string("\"") + quote(string_value) + "\"";
} else if (type == mvt_int) {
return std::to_string(numeric_value.int_value);
} else if (type == mvt_double) {
double v = numeric_value.double_value;
if (v == (long long) v) {
return std::to_string((long long) v);
} else {
return milo::dtoa_milo(v);
}
} else if (type == mvt_float) {
double v = numeric_value.float_value;
if (v == (long long) v) {
return std::to_string((long long) v);
} else {
return milo::dtoa_milo(v);
}
} else if (type == mvt_sint) {
return std::to_string(numeric_value.sint_value);
} else if (type == mvt_uint) {
return std::to_string(numeric_value.uint_value);
} else if (type == mvt_bool) {
return numeric_value.bool_value ? "true" : "false";
} else if ((type == mvt_list || type == mvt_hash) && string_value.size() > 0) {
return string_value;
} else if (type == mvt_null) {
return "null";
} else {
return "unknown";
}
}
size_t mvt_layer::tag_key(std::string const &key) {
size_t ko;
std::map<std::string, size_t>::iterator ki = key_map.find(key);
if (ki == key_map.end()) {
ko = keys.size();
keys.push_back(key);
key_map.insert(std::pair<std::string, size_t>(key, ko));
} else {
ko = ki->second;
}
return ko;
}
size_t tag_object(mvt_layer &layer, json_object *j) {
mvt_value tv;
if (j->type == JSON_NUMBER) {
long long v;
if (is_integer(j->string, &v)) {
if (v >= 0) {
tv.type = mvt_int;
tv.numeric_value.int_value = v;
} else {
tv.type = mvt_sint;
tv.numeric_value.sint_value = v;
}
} else {
tv.type = mvt_double;
tv.numeric_value.double_value = atof(j->string);
}
} else if (j->type == JSON_TRUE) {
tv.type = mvt_bool;
tv.numeric_value.bool_value = 1;
} else if (j->type == JSON_FALSE) {
tv.type = mvt_bool;
tv.numeric_value.bool_value = 0;
} else if (j->type == JSON_STRING) {
tv.type = mvt_string;
tv.string_value = std::string(j->string);
} else if (j->type == JSON_NULL) {
tv.type = mvt_null;
tv.numeric_value.null_value = 0;
}
return layer.tag_value(tv);
}
size_t mvt_layer::tag_value(mvt_value const &value) {
size_t vo;
std::map<mvt_value, size_t>::iterator vi = value_map.find(value);
if (vi == value_map.end()) {
vo = values.size();
values.push_back(value);
value_map.insert(std::pair<mvt_value, size_t>(value, vo));
} else {
vo = vi->second;
}
return vo;
}
void mvt_layer::tag(mvt_feature &feature, std::string key, mvt_value value) {
if (value.type == mvt_hash) {
json_pull *jp = json_begin_string((char *) value.string_value.c_str());
json_object *jo = json_read_tree(jp);
if (jo == NULL) {
fprintf(stderr, "Internal error: failed to reconstruct JSON %s\n", value.string_value.c_str());
exit(EXIT_FAILURE);
}
size_t ko = tag_key(key);
size_t vo = tag_object(*this, jo);
feature.tags.push_back(ko);
feature.tags.push_back(vo);
json_free(jo);
json_end(jp);
} else {
feature.tags.push_back(tag_key(key));
feature.tags.push_back(tag_value(value));
}
}
size_t mvt_layer::tag_v3_key(std::string key) {
std::map<std::string, size_t>::iterator ki = key_map.find(key);
size_t ko;
if (ki == key_map.end()) {
ko = keys.size();
keys.push_back(key);
key_map.insert(std::pair<std::string, size_t>(key, ko));
} else {
ko = ki->second;
}
return ko;
}
void tag_object_v3(mvt_layer &layer, json_object *j, std::vector<unsigned long> &onto) {
mvt_value tv;
if (j->type == JSON_NUMBER) {
long long v;
if (is_integer(j->string, &v)) {
if (v >= 0) {
tv.type = mvt_int;
tv.numeric_value.int_value = v;
} else {
tv.type = mvt_sint;
tv.numeric_value.sint_value = v;
}
} else {
tv.type = mvt_double;
tv.numeric_value.double_value = atof(j->string);
}
layer.tag_v3_value(tv, onto);
} else if (j->type == JSON_TRUE) {
tv.type = mvt_bool;
tv.numeric_value.bool_value = 1;
layer.tag_v3_value(tv, onto);
} else if (j->type == JSON_FALSE) {
tv.type = mvt_bool;
tv.numeric_value.bool_value = 0;
layer.tag_v3_value(tv, onto);
} else if (j->type == JSON_STRING) {
tv.type = mvt_string;
tv.string_value = std::string(j->string);
layer.tag_v3_value(tv, onto);
} else if (j->type == JSON_NULL) {
tv.type = mvt_null;
tv.numeric_value.null_value = 0;
layer.tag_v3_value(tv, onto);
} else if (j->type == JSON_HASH) {
unsigned long vo = 9 | (j->length << 4);
onto.push_back(vo);
for (size_t i = 0; i < j->length; i++) {
if (j->keys[i]->type != JSON_STRING) {
fprintf(stderr, "Internal error: hash key is not a string\n");
exit(EXIT_FAILURE);
}
tv.type = mvt_string;
tv.string_value = j->keys[i]->string;
onto.push_back(layer.tag_v3_key(tv.string_value));
tag_object_v3(layer, j->values[i], onto);
}
} else if (j->type == JSON_ARRAY) {
unsigned long vo = 8 | (j->length << 4);
onto.push_back(vo);
for (size_t i = 0; i < j->length; i++) {
tag_object_v3(layer, j->array[i], onto);
}
} else {
fprintf(stderr, "Internal error: unknown JSON type\n");
exit(EXIT_FAILURE);
}
}
void mvt_layer::tag_v3_value(mvt_value value, std::vector<unsigned long> &onto) {
std::map<mvt_value, unsigned long>::iterator vi = property_map.find(value);
unsigned long vo;
if (vi == property_map.end()) {
if (value.type == mvt_string) {
vo = (string_values.size() << 4) | 0;
string_values.push_back(value.string_value);
onto.push_back(vo);
} else if (value.type == mvt_float) {
vo = (float_values.size() << 4) | 1;
float_values.push_back(value.numeric_value.float_value);
onto.push_back(vo);
} else if (value.type == mvt_double) {
vo = (double_values.size() << 4) | 2;
double_values.push_back(value.numeric_value.double_value);
onto.push_back(vo);
} else if (value.type == mvt_uint) {
if (value.numeric_value.uint_value <= (1L << 61) - 1) {
vo = (value.numeric_value.uint_value << 4) | 5;
} else {
vo = (uint64_values.size() << 4) | 3;
uint64_values.push_back(value.numeric_value.uint_value);
}
onto.push_back(vo);
} else if (value.type == mvt_int || value.type == mvt_sint) {
long val;
if (value.type == mvt_int) {
val = value.numeric_value.int_value;
} else {
val = value.numeric_value.sint_value;
}
if (val >= -(1L << 60) + 1 && val <= (1L << 60) - 1) {
vo = (protozero::encode_zigzag64(val) << 4) | 6;
} else {
vo = (uint64_values.size() << 4) | 4;
uint64_values.push_back(protozero::encode_zigzag64(val));
}
onto.push_back(vo);
} else if (value.type == mvt_bool) {
vo = (value.numeric_value.bool_value << 4) | 7;
onto.push_back(vo);
} else if (value.type == mvt_null) {
vo = (2 << 4) | 7;
onto.push_back(vo);
} else {
fprintf(stderr, "Internal error: unknown value type %d\n", value.type);
exit(EXIT_FAILURE);
}
property_map.insert(std::pair<mvt_value, size_t>(value, vo));
} else {
vo = vi->second;
onto.push_back(vo);
}
}
void mvt_layer::tag_v3(mvt_feature &feature, std::string key, mvt_value value) {
size_t ko = tag_v3_key(key);
feature.properties.push_back(ko);
if (value.type == mvt_hash) {
json_pull *jp = json_begin_string((char *) value.string_value.c_str());
json_object *jo = json_read_tree(jp);
if (jo == NULL) {
fprintf(stderr, "Internal error: failed to reconstruct JSON %s\n", value.string_value.c_str());
exit(EXIT_FAILURE);
}
tag_object_v3(*this, jo, feature.properties);
json_free(jo);
json_end(jp);
} else {
tag_v3_value(value, feature.properties);
}
}
void mvt_layer::reorder_values() {
std::vector<mvt_value> orig_values = values;
std::vector<std::string> orig_keys = keys;
std::sort(values.begin(), values.end());
std::sort(keys.begin(), keys.end());
std::map<mvt_value, size_t> new_value_map;
for (size_t i = 0; i < values.size(); i++) {
new_value_map.insert(std::pair<mvt_value, size_t>(values[i], i));
}
std::map<std::string, size_t> new_key_map;
for (size_t i = 0; i < keys.size(); i++) {
new_key_map.insert(std::pair<std::string, size_t>(keys[i], i));
}
for (size_t i = 0; i < features.size(); i++) {
for (size_t j = 1; j < features[i].tags.size(); j += 2) {
mvt_value v = orig_values[features[i].tags[j]];
auto f = new_value_map.find(v);
if (f == new_value_map.end()) {
std::string vs = v.toString();
fprintf(stderr, "Internal error: value %s was lost\n", vs.c_str());
exit(EXIT_FAILURE);
}
features[i].tags[j] = f->second;
}
for (size_t j = 0; j < features[i].tags.size(); j += 2) {
std::string k = orig_keys[features[i].tags[j]];
auto f = new_key_map.find(k);
if (f == new_key_map.end()) {
fprintf(stderr, "Internal error: key %s was lost\n", k.c_str());
exit(EXIT_FAILURE);
}
features[i].tags[j] = f->second;
}
}
}
mvt_value mvt_layer::decode_property(std::vector<unsigned long> const &property, size_t &off, bool stringify_nested) const {
int type = property[off] & 0x0F;
mvt_value ret;
switch (type) {
case 0: /* string reference */
ret.type = mvt_string;
if (property[off] >> 4 >= string_values.size()) {
fprintf(stderr, "Out of bounds string reference: %lu vs %zu\n", property[off] >> 4, string_values.size());
exit(EXIT_FAILURE);
}
ret.string_value = string_values[property[off] >> 4];
return ret;
case 1: /* float reference */
ret.type = mvt_float;
if (property[off] >> 4 >= float_values.size()) {
fprintf(stderr, "Out of bounds float reference: %lu vs %zu\n", property[off] >> 4, float_values.size());
exit(EXIT_FAILURE);
}
ret.numeric_value.float_value = float_values[property[off] >> 4];
return ret;
case 2: /* double reference */
ret.type = mvt_double;
if (property[off] >> 4 >= double_values.size()) {
fprintf(stderr, "Out of bounds double reference: %lu vs %zu\n", property[off] >> 4, double_values.size());
exit(EXIT_FAILURE);
}
ret.numeric_value.double_value = double_values[property[off] >> 4];
return ret;
case 3: /* unsigned int reference */
ret.type = mvt_uint;
if (property[off] >> 4 >= uint64_values.size()) {
fprintf(stderr, "Out of bounds uint reference: %lu vs %zu\n", property[off] >> 4, uint64_values.size());
exit(EXIT_FAILURE);
}
ret.numeric_value.uint_value = uint64_values[property[off] >> 4];
return ret;
case 4: /* signed int reference */
ret.type = mvt_sint;
if (property[off] >> 4 >= uint64_values.size()) {
fprintf(stderr, "Out of bounds sint reference: %lu vs %zu\n", property[off] >> 4, uint64_values.size());
exit(EXIT_FAILURE);
}
ret.numeric_value.sint_value = protozero::decode_zigzag64(uint64_values[property[off] >> 4]);
return ret;
case 5: /* unsigned integer */
ret.type = mvt_uint;
ret.numeric_value.uint_value = property[off] >> 4;
return ret;
case 6: /* signed integer */
ret.type = mvt_sint;
ret.numeric_value.sint_value = protozero::decode_zigzag64(property[off] >> 4);
return ret;
case 7: /* boolean */
if ((property[off] >> 4) == 2) {
ret.type = mvt_null;
ret.numeric_value.null_value = 0;
} else {
ret.type = mvt_bool;
ret.numeric_value.bool_value = property[off] >> 4;
}
return ret;
case 8: /* list */
{
ret.type = mvt_list;
size_t len = property[off] >> 4;
off++;
if (stringify_nested) {
ret.string_value = "[";
}
for (size_t i = 0; i < len; i++) {
mvt_value v1 = decode_property(property, off, stringify_nested);
off++;
if (stringify_nested) {
ret.string_value.append(v1.toString());
if (i + 1 < len) {
ret.string_value.push_back(',');
}
} else {
ret.list_value.push_back(v1);
}
}
if (stringify_nested) {
ret.string_value.append("]");
}
off--; // so caller can increment
return ret;
}
case 9: /* hash */
{
ret.type = mvt_hash;
size_t len = property[off] >> 4;
off++;
if (stringify_nested) {
ret.string_value = "{";
}
for (size_t i = 0; i < len; i++) {
if (property[off] >= keys.size()) {
fprintf(stderr, "Out of bounds hash key reference\n");
exit(EXIT_FAILURE);
}
mvt_value v1;
v1.type = mvt_string;
v1.string_value = keys[property[off]];
off++;
mvt_value v2 = decode_property(property, off, stringify_nested);
off++;
if (stringify_nested) {
ret.string_value.append(v1.toString());
ret.string_value.append(":");
ret.string_value.append(v2.toString());
if (i + 1 < len) {
ret.string_value.push_back(',');
}
} else {
ret.hash_value.insert(std::pair<std::string, mvt_value>(v1.string_value, v2));
}
}
if (stringify_nested) {
ret.string_value.append("}");
}
off--; // so caller can increment
return ret;
}
case 10: /* delta-encoded list */
{
ret.type = mvt_list;
size_t len = property[off] >> 4;
off++;
if (off >= property.size()) {
fprintf(stderr, "Not enough elements in list attribute\n");
exit(EXIT_FAILURE);
}
size_t scaling = property[off];
off++;
if (scaling >= attribute_scalings.size()) {
fprintf(stderr, "Reference to nonexistent attribute scaling\n");
exit(EXIT_FAILURE);
}
if (stringify_nested) {
ret.string_value = "[";
}
long here = 0;
for (size_t i = 0; i < len; i++) {
if (off >= property.size()) {
fprintf(stderr, "Not enough elements in list attribute\n");
exit(EXIT_FAILURE);
}
unsigned long increment = property[off];
off++;
double val;
if (increment == 0) {
val = NAN;
} else {
long inc = protozero::decode_zigzag64(increment - 1);
here += inc;
val = attribute_scalings[scaling].base + attribute_scalings[scaling].multiplier * (here + attribute_scalings[scaling].offset);
}
if (stringify_nested) {
ret.string_value.append(milo::dtoa_milo(val));
if (i + 1 < len) {
ret.string_value.push_back(',');
}
} else {
mvt_value v;
v.type = mvt_double;
v.numeric_value.double_value = val;
ret.list_value.push_back(v);
}
}
if (stringify_nested) {
ret.string_value.append("]");
}
off--; // so caller can increment
return ret;
}
default:
ret.type = mvt_string;
ret.string_value = std::to_string(property[off]);
return ret;
}
}
bool is_integer(const char *s, long long *v) {
errno = 0;
char *endptr;
*v = strtoll(s, &endptr, 0);
if (*v == 0 && errno != 0) {
return 0;
}
if ((*v == LLONG_MIN || *v == LLONG_MAX) && (errno == ERANGE || errno == EINVAL)) {
return 0;
}
if (*endptr != '\0') {
// Special case: If it is an integer followed by .0000 or similar,
// it is still an integer
if (*endptr != '.') {
return 0;
}
endptr++;
for (; *endptr != '\0'; endptr++) {
if (*endptr != '0') {
return 0;
}
}
return 1;
}
return 1;
}
bool is_unsigned_integer(const char *s, unsigned long long *v) {
errno = 0;
char *endptr;
// Special check because MacOS stroull() returns 1
// for -18446744073709551615
while (isspace(*s)) {
s++;
}
if (*s == '-') {
return 0;
}
*v = strtoull(s, &endptr, 0);
if (*v == 0 && errno != 0) {
return 0;
}
if ((*v == ULLONG_MAX) && (errno == ERANGE || errno == EINVAL)) {
return 0;
}
if (*endptr != '\0') {
// Special case: If it is an integer followed by .0000 or similar,
// it is still an integer
if (*endptr != '.') {
return 0;
}
endptr++;
for (; *endptr != '\0'; endptr++) {
if (*endptr != '0') {
return 0;
}
}
return 1;
}
return 1;
}
mvt_value stringified_to_mvt_value(int type, const char *s) {
mvt_value tv;
if (type == mvt_double) {
long long v;
unsigned long long uv;
if (is_unsigned_integer(s, &uv)) {
if (uv <= LLONG_MAX) {
tv.type = mvt_int;
tv.numeric_value.int_value = uv;
} else {
tv.type = mvt_uint;
tv.numeric_value.uint_value = uv;
}
} else if (is_integer(s, &v)) {
tv.type = mvt_sint;
tv.numeric_value.sint_value = v;
} else {
errno = 0;
char *endptr;
float f = strtof(s, &endptr);
if (endptr == s || ((f == HUGE_VAL || f == HUGE_VALF || f == HUGE_VALL) && errno == ERANGE)) {
double d = strtod(s, &endptr);
if (endptr == s || ((d == HUGE_VAL || d == HUGE_VALF || d == HUGE_VALL) && errno == ERANGE)) {
fprintf(stderr, "Warning: numeric value %s could not be represented\n", s);
}
tv.type = mvt_double;
tv.numeric_value.double_value = d;
} else {
double d = atof(s);
if (f == d) {
tv.type = mvt_float;
tv.numeric_value.float_value = f;
} else {
// Conversion succeeded, but lost precision, so use double
tv.type = mvt_double;
tv.numeric_value.double_value = d;
}
}
}
} else if (type == mvt_bool) {
tv.type = mvt_bool;
tv.numeric_value.bool_value = (s[0] == 't');
} else if (type == mvt_null) {
tv.type = mvt_null;
tv.numeric_value.null_value = 0;
} else if (type == mvt_string) {
tv.type = mvt_string;
tv.string_value = s;
} else {
tv.type = mvt_hash; /* or list */
tv.string_value = s;
}
return tv;
}
std::vector<mvt_geometry> to_feature(drawvec &geom, mvt_layer &layer) {
std::vector<mvt_geometry> out;
for (size_t i = 0; i < geom.size(); i++) {
mvt_geometry g(geom[i].op, geom[i].x, geom[i].y, geom[i].elevations);
if (geom[i].attributes.size() != 0) {
json_pull *jp = json_begin_string(geom[i].attributes.c_str());
json_object *jo = json_read_tree(jp);
if (jo == NULL) {
fprintf(stderr, "Internal error: failed to reconstruct JSON %s\n", geom[i].attributes.c_str());
exit(EXIT_FAILURE);
}
tag_object_v3(layer, jo, g.attributes);
json_free(jo);
json_end(jp);
}
out.push_back(g);
}
return out;
}