tippecanoe/tile.cpp
2016-08-30 15:09:18 -07:00

1474 lines
40 KiB
C++

#include <iostream>
#include <fstream>
#include <string>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <limits.h>
#include <zlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <cmath>
#include <sqlite3.h>
#include <pthread.h>
#include <errno.h>
#include "mvt.hpp"
#include "mbtiles.hpp"
#include "geometry.hpp"
#include "tile.hpp"
#include "pool.hpp"
#include "projection.hpp"
#include "serial.hpp"
#include "options.hpp"
#include "main.hpp"
#define CMD_BITS 3
#define XSTRINGIFY(s) STRINGIFY(s)
#define STRINGIFY(s) #s
pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t var_lock = PTHREAD_MUTEX_INITIALIZER;
std::vector<mvt_geometry> to_feature(drawvec &geom) {
std::vector<mvt_geometry> out;
for (size_t i = 0; i < geom.size(); i++) {
out.push_back(mvt_geometry(geom[i].op, geom[i].x, geom[i].y));
}
return out;
}
bool draws_something(drawvec &geom) {
for (size_t i = 1; i < geom.size(); i++) {
if (geom[i].op == VT_LINETO && (geom[i].x != geom[i - 1].x || geom[i].y != geom[i - 1].y)) {
return true;
}
}
return false;
}
int metacmp(int m1, const std::vector<long long> &keys1, const std::vector<long long> &values1, char *stringpool1, int m2, const std::vector<long long> &keys2, const std::vector<long long> &values2, char *stringpool2);
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2);
static int is_integer(const char *s, long long *v);
struct coalesce {
char *meta;
char *stringpool;
std::vector<long long> keys;
std::vector<long long> values;
drawvec geom;
unsigned long long index;
unsigned long long index2;
long long original_seq;
int type;
int m;
bool coalesced;
double spacing;
bool has_id;
unsigned long long id;
bool operator<(const coalesce &o) const {
int cmp = coalindexcmp(this, &o);
if (cmp < 0) {
return true;
} else {
return false;
}
}
};
struct preservecmp {
bool operator()(const struct coalesce &a, const struct coalesce &b) {
return a.original_seq < b.original_seq;
}
} preservecmp;
int coalcmp(const void *v1, const void *v2) {
const struct coalesce *c1 = (const struct coalesce *) v1;
const struct coalesce *c2 = (const struct coalesce *) v2;
int cmp = c1->type - c2->type;
if (cmp != 0) {
return cmp;
}
return metacmp(c1->m, c1->keys, c1->values, c1->stringpool, c2->m, c2->keys, c2->values, c2->stringpool);
}
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) {
int cmp = coalcmp((const void *) c1, (const void *) c2);
if (cmp == 0) {
if (c1->index < c2->index) {
return -1;
} else if (c1->index > c2->index) {
return 1;
}
if (c1->index2 > c2->index2) {
return -1;
} else if (c1->index2 < c2->index2) {
return 1;
}
}
return cmp;
}
mvt_value retrieve_string(long long off, char *stringpool, int *otype) {
int type = stringpool[off];
char *s = stringpool + off + 1;
if (otype != NULL) {
*otype = type;
}
mvt_value tv;
if (type == VT_NUMBER) {
long long v;
if (is_integer(s, &v)) {
if (v >= 0) {
tv.type = mvt_int;
tv.numeric_value.int_value = v;
} else {
tv.type = mvt_sint;
tv.numeric_value.sint_value = v;
}
} else {
tv.type = mvt_double;
tv.numeric_value.double_value = atof(s);
}
} else if (type == VT_BOOLEAN) {
tv.type = mvt_bool;
tv.numeric_value.bool_value = (s[0] == 't');
} else {
tv.type = mvt_string;
tv.string_value = s;
}
return tv;
}
void decode_meta(int m, std::vector<long long> &metakeys, std::vector<long long> &metavals, char *stringpool, mvt_layer &layer, mvt_feature &feature) {
int i;
for (i = 0; i < m; i++) {
int otype;
mvt_value key = retrieve_string(metakeys[i], stringpool, NULL);
mvt_value value = retrieve_string(metavals[i], stringpool, &otype);
layer.tag(feature, key.string_value, value);
}
}
int metacmp(int m1, const std::vector<long long> &keys1, const std::vector<long long> &values1, char *stringpool1, int m2, const std::vector<long long> &keys2, const std::vector<long long> &values2, char *stringpool2) {
// XXX
// Ideally this would make identical features compare the same lexically
// even if their attributes were declared in different orders in different instances.
// In practice, this is probably good enough to put "identical" features together.
int i;
for (i = 0; i < m1 && i < m2; i++) {
mvt_value key1 = retrieve_string(keys1[i], stringpool1, NULL);
mvt_value key2 = retrieve_string(keys2[i], stringpool2, NULL);
if (key1.string_value < key2.string_value) {
return -1;
} else if (key1.string_value > key2.string_value) {
return 1;
}
long long off1 = values1[i];
int type1 = stringpool1[off1];
char *s1 = stringpool1 + off1 + 1;
long long off2 = values2[i];
int type2 = stringpool2[off2];
char *s2 = stringpool2 + off2 + 1;
if (type1 != type2) {
return type1 - type2;
}
int cmp = strcmp(s1, s2);
if (s1 != s2) {
return cmp;
}
}
if (m1 < m2) {
return -1;
} else if (m1 > m2) {
return 1;
} else {
return 0;
}
}
static int is_integer(const char *s, long long *v) {
errno = 0;
char *endptr;
*v = strtoll(s, &endptr, 0);
if (*v == 0 && errno != 0) {
return 0;
}
if ((*v == LLONG_MIN || *v == LLONG_MAX) && (errno == ERANGE)) {
return 0;
}
if (*endptr != '\0') {
// Special case: If it is an integer followed by .0000 or similar,
// it is still an integer
if (*endptr != '.') {
return 0;
}
endptr++;
for (; *endptr != '\0'; endptr++) {
if (*endptr != '0') {
return 0;
}
}
return 1;
}
return 1;
}
struct sll {
char *name;
long long val;
bool operator<(const sll &o) const {
if (this->val < o.val) {
return true;
} else {
return false;
}
}
sll(char *nname, long long nval) {
this->name = nname;
this->val = nval;
}
};
void rewrite(drawvec &geom, int z, int nextzoom, int maxzoom, long long *bbox, unsigned tx, unsigned ty, int buffer, int line_detail, int *within, long long *geompos, FILE **geomfile, const char *fname, signed char t, int layer, long long metastart, signed char feature_minzoom, int child_shards, int max_zoom_increment, long long seq, int tippecanoe_minzoom, int tippecanoe_maxzoom, int segment, unsigned *initial_x, unsigned *initial_y, int m, std::vector<long long> &metakeys, std::vector<long long> &metavals, bool has_id, unsigned long long id) {
if (geom.size() > 0 && nextzoom <= maxzoom) {
int xo, yo;
int span = 1 << (nextzoom - z);
// Get the feature bounding box in pixel (256) coordinates at the child zoom
// in order to calculate which sub-tiles it can touch including the buffer.
long long bbox2[4];
int k;
for (k = 0; k < 4; k++) {
// Division instead of right-shift because coordinates can be negative
bbox2[k] = bbox[k] / (1 << (32 - nextzoom - 8));
}
// Decrement the top and left edges so that any features that are
// touching the edge can potentially be included in the adjacent tiles too.
bbox2[0] -= buffer + 1;
bbox2[1] -= buffer + 1;
bbox2[2] += buffer;
bbox2[3] += buffer;
for (k = 0; k < 4; k++) {
if (bbox2[k] < 0) {
bbox2[k] = 0;
}
if (bbox2[k] >= 256 * span) {
bbox2[k] = 256 * (span - 1);
}
bbox2[k] /= 256;
}
// Offset from tile coordinates back to world coordinates
unsigned sx = 0, sy = 0;
if (z != 0) {
sx = tx << (32 - z);
sy = ty << (32 - z);
}
drawvec geom2;
for (size_t i = 0; i < geom.size(); i++) {
geom2.push_back(draw(geom[i].op, (geom[i].x + sx) >> geometry_scale, (geom[i].y + sy) >> geometry_scale));
}
for (xo = bbox2[0]; xo <= bbox2[2]; xo++) {
for (yo = bbox2[1]; yo <= bbox2[3]; yo++) {
unsigned jx = tx * span + xo;
unsigned jy = ty * span + yo;
// j is the shard that the child tile's data is being written to.
//
// Be careful: We can't jump more zoom levels than max_zoom_increment
// because that could break the constraint that each of the children
// of the current tile must have its own shard, because the data for
// the child tile must be contiguous within the shard.
//
// But it's OK to spread children across all the shards, not just
// the four that would normally result from splitting one tile,
// because it will go through all the shards when it does the
// next zoom.
//
// If child_shards is a power of 2 but not a power of 4, this will
// shard X more widely than Y. XXX Is there a better way to do this
// without causing collisions?
int j = ((jx << max_zoom_increment) |
((jy & ((1 << max_zoom_increment) - 1)))) &
(child_shards - 1);
{
if (!within[j]) {
serialize_int(geomfile[j], nextzoom, &geompos[j], fname);
serialize_uint(geomfile[j], tx * span + xo, &geompos[j], fname);
serialize_uint(geomfile[j], ty * span + yo, &geompos[j], fname);
within[j] = 1;
}
serial_feature sf;
sf.layer = layer;
sf.segment = segment;
sf.seq = seq;
sf.t = t;
sf.has_id = has_id;
sf.id = id;
sf.has_tippecanoe_minzoom = tippecanoe_minzoom != -1;
sf.tippecanoe_minzoom = tippecanoe_minzoom;
sf.has_tippecanoe_maxzoom = tippecanoe_maxzoom != -1;
sf.tippecanoe_maxzoom = tippecanoe_maxzoom;
sf.metapos = metastart;
sf.geometry = geom2;
sf.m = m;
sf.feature_minzoom = feature_minzoom;
if (metastart < 0) {
for (int i = 0; i < m; i++) {
sf.keys.push_back(metakeys[i]);
sf.values.push_back(metavals[i]);
}
}
serialize_feature(geomfile[j], &sf, &geompos[j], fname, initial_x[segment] >> geometry_scale, initial_y[segment] >> geometry_scale);
}
}
}
}
}
struct partial {
std::vector<drawvec> geoms;
std::vector<long long> keys;
std::vector<long long> values;
char *meta;
long long layer;
long long original_seq;
unsigned long long index;
unsigned long long index2;
int m;
int segment;
bool reduced;
int z;
int line_detail;
int maxzoom;
double spacing;
double simplification;
signed char t;
unsigned long long id;
bool has_id;
};
struct partial_arg {
std::vector<struct partial> *partials;
int task;
int tasks;
};
drawvec revive_polygon(drawvec &geom, double area, int z, int detail) {
// From area in world coordinates to area in tile coordinates
long long divisor = 1LL << (32 - detail - z);
area /= divisor * divisor;
if (area == 0) {
return drawvec();
}
int height = ceil(sqrt(area));
int width = round(area / height);
if (width == 0) {
width = 1;
}
long long sx = 0, sy = 0, n = 0;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO || geom[i].op == VT_LINETO) {
sx += geom[i].x;
sy += geom[i].y;
n++;
}
}
if (n > 0) {
sx /= n;
sy /= n;
drawvec out;
out.push_back(draw(VT_MOVETO, sx - (width / 2), sy - (height / 2)));
out.push_back(draw(VT_LINETO, sx - (width / 2) + width, sy - (height / 2)));
out.push_back(draw(VT_LINETO, sx - (width / 2) + width, sy - (height / 2) + height));
out.push_back(draw(VT_LINETO, sx - (width / 2), sy - (height / 2) + height));
out.push_back(draw(VT_LINETO, sx - (width / 2), sy - (height / 2)));
return out;
} else {
return drawvec();
}
}
void *partial_feature_worker(void *v) {
struct partial_arg *a = (struct partial_arg *) v;
std::vector<struct partial> *partials = a->partials;
for (size_t i = a->task; i < (*partials).size(); i += a->tasks) {
drawvec geom = (*partials)[i].geoms[0]; // XXX assumption of a single geometry at the beginning
(*partials)[i].geoms.clear(); // avoid keeping two copies in memory
signed char t = (*partials)[i].t;
int z = (*partials)[i].z;
int line_detail = (*partials)[i].line_detail;
int maxzoom = (*partials)[i].maxzoom;
double area = 0;
if (t == VT_POLYGON) {
area = get_area(geom, 0, geom.size());
}
if ((t == VT_LINE || t == VT_POLYGON) && !(prevent[P_SIMPLIFY] || (z == maxzoom && prevent[P_SIMPLIFY_LOW]))) {
if (1 /* !reduced */) { // XXX why did this not simplify if reduced?
if (t == VT_LINE) {
geom = remove_noop(geom, t, 32 - z - line_detail);
}
drawvec ngeom = simplify_lines(geom, z, line_detail, !(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), (*partials)[i].simplification);
if (t != VT_POLYGON || ngeom.size() >= 3) {
geom = ngeom;
}
}
}
#if 0
if (t == VT_LINE && z != basezoom) {
geom = shrink_lines(geom, z, line_detail, basezoom, &along);
}
#endif
if (t == VT_LINE && additional[A_REVERSE]) {
geom = reorder_lines(geom);
}
to_tile_scale(geom, z, line_detail);
std::vector<drawvec> geoms;
geoms.push_back(geom);
if (t == VT_POLYGON && !prevent[P_POLYGON_SPLIT]) {
geoms = chop_polygon(geoms);
}
if (t == VT_POLYGON) {
// Scaling may have made the polygon degenerate.
// Give Clipper a chance to try to fix it.
for (size_t g = 0; g < geoms.size(); g++) {
drawvec before = geoms[g];
geoms[g] = clean_or_clip_poly(geoms[g], 0, 0, 0, false);
if (additional[A_DEBUG_POLYGON]) {
check_polygon(geoms[g], before);
}
if (geoms[g].size() < 3) {
geoms[g] = revive_polygon(before, area / geoms.size(), z, line_detail);
}
}
}
// Worth skipping this if not coalescing anyway?
if (geoms.size() > 0 && geoms[0].size() > 0) {
(*partials)[i].index = encode(geoms[0][0].x, geoms[0][0].y);
(*partials)[i].index2 = encode(geoms[0][geoms[0].size() - 1].x, geoms[0][geoms[0].size() - 1].y);
// Anything numbered below the start of the line
// can't possibly be the next feature.
// We want lowest-but-not-under.
if ((*partials)[i].index2 < (*partials)[i].index) {
(*partials)[i].index2 = ~0LL;
}
} else {
(*partials)[i].index = 0;
(*partials)[i].index2 = 0;
}
(*partials)[i].geoms = geoms;
}
return NULL;
}
int manage_gap(unsigned long long index, unsigned long long *previndex, double scale, double gamma, double *gap) {
if (gamma > 0) {
if (*gap > 0) {
if (index == *previndex) {
return 1; // Exact duplicate: can't fulfil the gap requirement
}
if (index < *previndex || std::exp(std::log((index - *previndex) / scale) * gamma) >= *gap) {
// Dot is further from the previous than the nth root of the gap,
// so produce it, and choose a new gap at the next point.
*gap = 0;
} else {
return 1;
}
} else if (index >= *previndex) {
*gap = (index - *previndex) / scale;
if (*gap == 0) {
return 1; // Exact duplicate: skip
} else if (*gap < 1) {
return 1; // Narrow dot spacing: need to stretch out
} else {
*gap = 0; // Wider spacing than minimum: so pass through unchanged
}
}
*previndex = index;
}
return 0;
}
long long write_tile(FILE *geoms, long long *geompos_in, char *metabase, char *stringpool, int z, unsigned tx, unsigned ty, int detail, int min_detail, int basezoom, sqlite3 *outdb, double droprate, int buffer, const char *fname, FILE **geomfile, int minzoom, int maxzoom, double todo, volatile long long *along, long long alongminus, double gamma, int child_shards, long long *meta_off, long long *pool_off, unsigned *initial_x, unsigned *initial_y, volatile int *running, double simplification, std::vector<std::map<std::string, layermap_entry>> *layermaps, std::vector<std::vector<std::string>> *layer_unmaps) {
int line_detail;
double fraction = 1;
long long og = *geompos_in;
// XXX is there a way to do this without floating point?
int max_zoom_increment = std::log(child_shards) / std::log(4);
if (child_shards < 4 || max_zoom_increment < 1) {
fprintf(stderr, "Internal error: %d shards, max zoom increment %d\n", child_shards, max_zoom_increment);
exit(EXIT_FAILURE);
}
if ((((child_shards - 1) << 1) & child_shards) != child_shards) {
fprintf(stderr, "Internal error: %d shards not a power of 2\n", child_shards);
exit(EXIT_FAILURE);
}
int nextzoom = z + 1;
if (nextzoom < minzoom) {
if (z + max_zoom_increment > minzoom) {
nextzoom = minzoom;
} else {
nextzoom = z + max_zoom_increment;
}
}
static volatile double oprogress = 0;
// This only loops if the tile data didn't fit, in which case the detail
// goes down and the progress indicator goes backward for the next try.
for (line_detail = detail; line_detail >= min_detail || line_detail == detail; line_detail--, oprogress = 0) {
long long count = 0;
double accum_area = 0;
double interval = 0;
double seq = 0;
if (z < basezoom) {
interval = std::exp(std::log(droprate) * (basezoom - z));
}
double fraction_accum = 0;
unsigned long long previndex = 0, density_previndex = 0;
double scale = (double) (1LL << (64 - 2 * (z + 8)));
double gap = 0, density_gap = 0;
double spacing = 0;
long long original_features = 0;
long long unclipped_features = 0;
std::vector<struct partial> partials;
std::map<std::string, std::vector<coalesce>> layers;
int within[child_shards];
long long geompos[child_shards];
memset(within, '\0', sizeof(within));
memset(geompos, '\0', sizeof(geompos));
if (*geompos_in != og) {
if (fseek(geoms, og, SEEK_SET) != 0) {
perror("fseek geom");
exit(EXIT_FAILURE);
}
*geompos_in = og;
}
while (1) {
signed char t;
deserialize_byte_io(geoms, &t, geompos_in);
if (t < 0) {
break;
}
long long original_seq;
deserialize_long_long_io(geoms, &original_seq, geompos_in);
long long layer;
deserialize_long_long_io(geoms, &layer, geompos_in);
int tippecanoe_minzoom = -1, tippecanoe_maxzoom = -1;
unsigned long long id = 0;
bool has_id = false;
if (layer & 2) {
deserialize_int_io(geoms, &tippecanoe_minzoom, geompos_in);
}
if (layer & 1) {
deserialize_int_io(geoms, &tippecanoe_maxzoom, geompos_in);
}
if (layer & 4) {
has_id = true;
deserialize_ulong_long_io(geoms, &id, geompos_in);
}
layer >>= 3;
int segment;
deserialize_int_io(geoms, &segment, geompos_in);
long long bbox[4];
drawvec geom = decode_geometry(geoms, geompos_in, z, tx, ty, line_detail, bbox, initial_x[segment], initial_y[segment]);
long long metastart;
int m;
deserialize_int_io(geoms, &m, geompos_in);
deserialize_long_long_io(geoms, &metastart, geompos_in);
char *meta = NULL;
std::vector<long long> metakeys, metavals;
if (metastart >= 0) {
meta = metabase + metastart + meta_off[segment];
for (int i = 0; i < m; i++) {
long long k, v;
deserialize_long_long(&meta, &k);
deserialize_long_long(&meta, &v);
metakeys.push_back(k);
metavals.push_back(v);
}
} else {
for (int i = 0; i < m; i++) {
long long k, v;
deserialize_long_long_io(geoms, &k, geompos_in);
deserialize_long_long_io(geoms, &v, geompos_in);
metakeys.push_back(k);
metavals.push_back(v);
}
}
signed char feature_minzoom;
deserialize_byte_io(geoms, &feature_minzoom, geompos_in);
double progress = floor((((*geompos_in + *along - alongminus) / (double) todo) + z) / (maxzoom + 1) * 1000) / 10;
if (progress >= oprogress + 0.1) {
if (!quiet) {
fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty);
}
oprogress = progress;
}
original_features++;
int quick = quick_check(bbox, z, line_detail, buffer);
if (quick == 0) {
continue;
}
if (z == 0) {
if (bbox[0] < 0 || bbox[2] > 1LL << 32) {
// If the geometry extends off the edge of the world, concatenate on another copy
// shifted by 360 degrees, and then make sure both copies get clipped down to size.
size_t n = geom.size();
if (bbox[0] < 0) {
for (size_t i = 0; i < n; i++) {
geom.push_back(draw(geom[i].op, geom[i].x + (1LL << 32), geom[i].y));
}
}
if (bbox[2] > 1LL << 32) {
for (size_t i = 0; i < n; i++) {
geom.push_back(draw(geom[i].op, geom[i].x - (1LL << 32), geom[i].y));
}
}
bbox[0] = 0;
bbox[2] = 1LL << 32;
quick = -1;
}
}
// Can't accept the quick check if guaranteeing no duplication, since the
// overlap might have been in the buffer.
if (quick != 1 || prevent[P_DUPLICATION]) {
drawvec clipped;
// Do the clipping, even if we are going to include the whole feature,
// so that we can know whether the feature itself, or only the feature's
// bounding box, touches the tile.
if (t == VT_LINE) {
clipped = clip_lines(geom, z, line_detail, buffer);
}
if (t == VT_POLYGON) {
clipped = simple_clip_poly(geom, z, line_detail, buffer);
}
if (t == VT_POINT) {
clipped = clip_point(geom, z, line_detail, buffer);
}
clipped = remove_noop(clipped, t, 0);
// Must clip at z0 even if we don't want clipping, to handle features
// that are duplicated across the date line
if (prevent[P_DUPLICATION] && z != 0) {
if (point_within_tile((bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2, z, line_detail, buffer)) {
// geom is unchanged
} else {
geom.clear();
}
} else if (prevent[P_CLIPPING] && z != 0) {
if (clipped.size() == 0) {
geom.clear();
} else {
// geom is unchanged
}
} else {
geom = clipped;
}
}
if (geom.size() > 0) {
unclipped_features++;
}
if (line_detail == detail && fraction == 1) { /* only write out the next zoom once, even if we retry */
rewrite(geom, z, nextzoom, maxzoom, bbox, tx, ty, buffer, line_detail, within, geompos, geomfile, fname, t, layer, metastart, feature_minzoom, child_shards, max_zoom_increment, original_seq, tippecanoe_minzoom, tippecanoe_maxzoom, segment, initial_x, initial_y, m, metakeys, metavals, has_id, id);
}
if (z < minzoom) {
continue;
}
if (tippecanoe_minzoom != -1 && z < tippecanoe_minzoom) {
continue;
}
if (tippecanoe_maxzoom != -1 && z > tippecanoe_maxzoom) {
continue;
}
if (t == VT_LINE && z + line_detail <= feature_minzoom) {
continue;
}
if (t == VT_POINT && z < feature_minzoom && gamma < 0) {
continue;
}
unsigned long long index = 0;
if (additional[A_CALCULATE_FEATURE_DENSITY] || gamma > 0) {
index = encode(bbox[0] / 2 + bbox[2] / 2, bbox[1] / 2 + bbox[3] / 2);
}
if (gamma >= 0 && (t == VT_POINT ||
(additional[A_LINE_DROP] && t == VT_LINE) ||
(additional[A_POLYGON_DROP] && t == VT_POLYGON))) {
seq++;
if (seq >= 0) {
seq -= interval;
} else {
continue;
}
if (gamma > 0) {
if (manage_gap(index, &previndex, scale, gamma, &gap)) {
continue;
}
}
}
if (additional[A_CALCULATE_FEATURE_DENSITY]) {
// Gamma is always 1 for this calculation so there is a reasonable
// interpretation when no features are being dropped.
// The spacing is only calculated if a feature would be retained by
// that standard, so that duplicates aren't reported as infinitely dense.
double o_density_previndex = density_previndex;
if (!manage_gap(index, &density_previndex, scale, 1, &density_gap)) {
spacing = (index - o_density_previndex) / scale;
}
}
fraction_accum += fraction;
if (fraction_accum < 1) {
continue;
}
fraction_accum -= 1;
bool reduced = false;
if (t == VT_POLYGON) {
geom = reduce_tiny_poly(geom, z, line_detail, &reduced, &accum_area);
}
if (geom.size() > 0) {
partial p;
p.geoms.push_back(geom);
p.layer = layer;
p.m = m;
p.meta = meta;
p.t = t;
p.segment = segment;
p.original_seq = original_seq;
p.reduced = reduced;
p.z = z;
p.line_detail = line_detail;
p.maxzoom = maxzoom;
p.keys = metakeys;
p.values = metavals;
p.spacing = spacing;
p.simplification = simplification;
p.id = id;
p.has_id = has_id;
partials.push_back(p);
}
}
int tasks = ceil((double) CPUS / *running);
if (tasks < 1) {
tasks = 1;
}
pthread_t pthreads[tasks];
partial_arg args[tasks];
for (int i = 0; i < tasks; i++) {
args[i].task = i;
args[i].tasks = tasks;
args[i].partials = &partials;
if (tasks > 1) {
if (pthread_create(&pthreads[i], NULL, partial_feature_worker, &args[i]) != 0) {
perror("pthread_create");
exit(EXIT_FAILURE);
}
} else {
partial_feature_worker(&args[i]);
}
}
if (tasks > 1) {
for (int i = 0; i < tasks; i++) {
void *retval;
if (pthread_join(pthreads[i], &retval) != 0) {
perror("pthread_join");
}
}
}
for (size_t i = 0; i < partials.size(); i++) {
std::vector<drawvec> &pgeoms = partials[i].geoms;
signed char t = partials[i].t;
long long original_seq = partials[i].original_seq;
// A complex polygon may have been split up into multiple geometries.
// Break them out into multiple features if necessary.
for (size_t j = 0; j < pgeoms.size(); j++) {
if (t == VT_POINT || draws_something(pgeoms[j])) {
struct coalesce c;
c.type = t;
c.index = partials[i].index;
c.index2 = partials[i].index2;
c.geom = pgeoms[j];
pgeoms[j].clear();
c.coalesced = false;
c.original_seq = original_seq;
c.m = partials[i].m;
c.meta = partials[i].meta;
c.stringpool = stringpool + pool_off[partials[i].segment];
c.keys = partials[i].keys;
c.values = partials[i].values;
c.spacing = partials[i].spacing;
c.id = partials[i].id;
c.has_id = partials[i].has_id;
// printf("segment %d layer %lld is %s\n", partials[i].segment, partials[i].layer, (*layer_unmaps)[partials[i].segment][partials[i].layer].c_str());
std::string layername = (*layer_unmaps)[partials[i].segment][partials[i].layer];
if (layers.count(layername) == 0) {
layers.insert(std::pair<std::string, std::vector<coalesce>>(layername, std::vector<coalesce>()));
}
auto l = layers.find(layername);
l->second.push_back(c);
}
}
}
partials.clear();
int j;
for (j = 0; j < child_shards; j++) {
if (within[j]) {
serialize_byte(geomfile[j], -2, &geompos[j], fname);
within[j] = 0;
}
}
for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) {
std::vector<coalesce> &layer_features = layer_iterator->second;
if (additional[A_REORDER]) {
std::sort(layer_features.begin(), layer_features.end());
}
std::vector<coalesce> out;
if (layer_features.size() > 0) {
out.push_back(layer_features[0]);
}
for (size_t x = 1; x < layer_features.size(); x++) {
size_t y = out.size() - 1;
#if 0
if (out.size() > 0 && coalcmp(&layer_features[x], &out[y]) < 0) {
fprintf(stderr, "\nfeature out of order\n");
}
#endif
if (additional[A_COALESCE] && out.size() > 0 && out[y].geom.size() + layer_features[x].geom.size() < 700 && coalcmp(&layer_features[x], &out[y]) == 0 && layer_features[x].type != VT_POINT) {
for (size_t g = 0; g < layer_features[x].geom.size(); g++) {
out[y].geom.push_back(layer_features[x].geom[g]);
}
out[y].coalesced = true;
} else {
out.push_back(layer_features[x]);
}
}
layer_features = out;
out.clear();
for (size_t x = 0; x < layer_features.size(); x++) {
if (layer_features[x].coalesced && layer_features[x].type == VT_LINE) {
layer_features[x].geom = remove_noop(layer_features[x].geom, layer_features[x].type, 0);
layer_features[x].geom = simplify_lines(layer_features[x].geom, 32, 0,
!(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), simplification);
}
if (layer_features[x].type == VT_POLYGON) {
if (layer_features[x].coalesced) {
layer_features[x].geom = clean_or_clip_poly(layer_features[x].geom, 0, 0, 0, false);
}
layer_features[x].geom = close_poly(layer_features[x].geom);
}
if (layer_features[x].geom.size() > 0) {
out.push_back(layer_features[x]);
}
}
layer_features = out;
if (prevent[P_INPUT_ORDER]) {
std::sort(layer_features.begin(), layer_features.end(), preservecmp);
}
}
mvt_tile tile;
for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) {
std::vector<coalesce> &layer_features = layer_iterator->second;
mvt_layer layer;
layer.name = layer_iterator->first;
layer.version = 2;
layer.extent = 1 << line_detail;
for (size_t x = 0; x < layer_features.size(); x++) {
mvt_feature feature;
if (layer_features[x].type == VT_LINE || layer_features[x].type == VT_POLYGON) {
layer_features[x].geom = remove_noop(layer_features[x].geom, layer_features[x].type, 0);
}
if (layer_features[x].geom.size() == 0) {
continue;
}
feature.type = layer_features[x].type;
feature.geometry = to_feature(layer_features[x].geom);
count += layer_features[x].geom.size();
layer_features[x].geom.clear();
feature.id = layer_features[x].id;
feature.has_id = layer_features[x].has_id;
decode_meta(layer_features[x].m, layer_features[x].keys, layer_features[x].values, layer_features[x].stringpool, layer, feature);
if (additional[A_CALCULATE_FEATURE_DENSITY]) {
int glow = 255;
if (layer_features[x].spacing > 0) {
glow = (1 / layer_features[x].spacing);
if (glow > 255) {
glow = 255;
}
}
mvt_value v;
v.type = mvt_sint;
v.numeric_value.sint_value = glow;
layer.tag(feature, "tippecanoe_feature_density", v);
}
layer.features.push_back(feature);
}
if (layer.features.size() > 0) {
tile.layers.push_back(layer);
}
}
if (z == 0 && unclipped_features < original_features / 2) {
fprintf(stderr, "\n\nMore than half the features were clipped away at zoom level 0.\n");
fprintf(stderr, "Is your data in the wrong projection? It should be in WGS84/EPSG:4326.\n");
}
long long totalsize = 0;
for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) {
std::vector<coalesce> &layer_features = layer_iterator->second;
totalsize += layer_features.size();
}
double progress = floor((((*geompos_in + *along - alongminus) / (double) todo) + z) / (maxzoom + 1) * 1000) / 10;
if (progress >= oprogress + 0.1) {
if (!quiet) {
fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty);
}
oprogress = progress;
}
if (totalsize > 0 && tile.layers.size() > 0) {
if (totalsize > 200000 && !prevent[P_FEATURE_LIMIT]) {
fprintf(stderr, "tile %d/%u/%u has %lld features, >200000 \n", z, tx, ty, totalsize);
fprintf(stderr, "Try using -B to set a higher base zoom level.\n");
return -1;
}
std::string compressed = tile.encode();
if (compressed.size() > 500000 && !prevent[P_KILOBYTE_LIMIT]) {
if (!quiet) {
fprintf(stderr, "tile %d/%u/%u size is %lld with detail %d, >500000 \n", z, tx, ty, (long long) compressed.size(), line_detail);
}
if (prevent[P_DYNAMIC_DROP]) {
// The 95% is a guess to avoid too many retries
// and probably actually varies based on how much duplicated metadata there is
fraction = fraction * 500000 / compressed.size() * 0.95;
if (!quiet) {
fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100);
}
line_detail++; // to keep it the same when the loop decrements it
}
} else {
if (pthread_mutex_lock(&db_lock) != 0) {
perror("pthread_mutex_lock");
exit(EXIT_FAILURE);
}
mbtiles_write_tile(outdb, z, tx, ty, compressed.data(), compressed.size());
if (pthread_mutex_unlock(&db_lock) != 0) {
perror("pthread_mutex_unlock");
exit(EXIT_FAILURE);
}
return count;
}
} else {
return count;
}
}
fprintf(stderr, "could not make tile %d/%u/%u small enough\n", z, tx, ty);
return -1;
}
struct task {
int fileno;
struct task *next;
};
struct write_tile_args {
struct task *tasks;
char *metabase;
char *stringpool;
int min_detail;
int basezoom;
sqlite3 *outdb;
double droprate;
int buffer;
const char *fname;
FILE **geomfile;
double todo;
volatile long long *along;
double gamma;
int child_shards;
int *geomfd;
off_t *geom_size;
volatile unsigned *midx;
volatile unsigned *midy;
int maxzoom;
int minzoom;
int full_detail;
int low_detail;
double simplification;
volatile long long *most;
long long *meta_off;
long long *pool_off;
unsigned *initial_x;
unsigned *initial_y;
volatile int *running;
int err;
std::vector<std::map<std::string, layermap_entry>> *layermaps;
std::vector<std::vector<std::string>> *layer_unmaps;
};
void *run_thread(void *vargs) {
write_tile_args *arg = (write_tile_args *) vargs;
struct task *task;
for (task = arg->tasks; task != NULL; task = task->next) {
int j = task->fileno;
if (arg->geomfd[j] < 0) {
// only one source file for zoom level 0
continue;
}
if (arg->geom_size[j] == 0) {
continue;
}
// printf("%lld of geom_size\n", (long long) geom_size[j]);
FILE *geom = fdopen(arg->geomfd[j], "rb");
if (geom == NULL) {
perror("mmap geom");
exit(EXIT_FAILURE);
}
long long geompos = 0;
long long prevgeom = 0;
while (1) {
int z;
unsigned x, y;
if (!deserialize_int_io(geom, &z, &geompos)) {
break;
}
deserialize_uint_io(geom, &x, &geompos);
deserialize_uint_io(geom, &y, &geompos);
// fprintf(stderr, "%d/%u/%u\n", z, x, y);
long long len = write_tile(geom, &geompos, arg->metabase, arg->stringpool, z, x, y, z == arg->maxzoom ? arg->full_detail : arg->low_detail, arg->min_detail, arg->basezoom, arg->outdb, arg->droprate, arg->buffer, arg->fname, arg->geomfile, arg->minzoom, arg->maxzoom, arg->todo, arg->along, geompos, arg->gamma, arg->child_shards, arg->meta_off, arg->pool_off, arg->initial_x, arg->initial_y, arg->running, arg->simplification, arg->layermaps, arg->layer_unmaps);
if (len < 0) {
int *err = &arg->err;
*err = z - 1;
return err;
}
if (pthread_mutex_lock(&var_lock) != 0) {
perror("pthread_mutex_lock");
exit(EXIT_FAILURE);
}
if (z == arg->maxzoom) {
if (len > *arg->most) {
*arg->midx = x;
*arg->midy = y;
*arg->most = len;
} else if (len == *arg->most) {
unsigned long long a = (((unsigned long long) x) << 32) | y;
unsigned long long b = (((unsigned long long) *arg->midx) << 32) | *arg->midy;
if (a < b) {
*arg->midx = x;
*arg->midy = y;
*arg->most = len;
}
}
}
*arg->along += geompos - prevgeom;
prevgeom = geompos;
if (pthread_mutex_unlock(&var_lock) != 0) {
perror("pthread_mutex_unlock");
exit(EXIT_FAILURE);
}
}
if (fclose(geom) != 0) {
perror("close geom");
exit(EXIT_FAILURE);
}
// Since the fclose() has closed the underlying file descriptor
arg->geomfd[j] = -1;
}
arg->running--;
return NULL;
}
int traverse_zooms(int *geomfd, off_t *geom_size, char *metabase, char *stringpool, unsigned *midx, unsigned *midy, int maxzoom, int minzoom, int basezoom, sqlite3 *outdb, double droprate, int buffer, const char *fname, const char *tmpdir, double gamma, int full_detail, int low_detail, int min_detail, long long *meta_off, long long *pool_off, unsigned *initial_x, unsigned *initial_y, double simplification, std::vector<std::map<std::string, layermap_entry>> &layermaps) {
// Table to map segment and layer number back to layer name
std::vector<std::vector<std::string>> layer_unmaps;
for (size_t seg = 0; seg < layermaps.size(); seg++) {
layer_unmaps.push_back(std::vector<std::string>());
for (auto a = layermaps[seg].begin(); a != layermaps[seg].end(); ++a) {
if (a->second.id >= layer_unmaps[seg].size()) {
layer_unmaps[seg].resize(a->second.id + 1);
}
layer_unmaps[seg][a->second.id] = a->first;
}
}
int i;
for (i = 0; i <= maxzoom; i++) {
long long most = 0;
FILE *sub[TEMP_FILES];
int subfd[TEMP_FILES];
int j;
for (j = 0; j < TEMP_FILES; j++) {
char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX" XSTRINGIFY(INT_MAX)) + 1];
sprintf(geomname, "%s/geom%d.XXXXXXXX", tmpdir, j);
subfd[j] = mkstemp(geomname);
// printf("%s\n", geomname);
if (subfd[j] < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
sub[j] = fopen(geomname, "wb");
if (sub[j] == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
unlink(geomname);
}
int useful_threads = 0;
long long todo = 0;
long long along = 0;
for (j = 0; j < TEMP_FILES; j++) {
todo += geom_size[j];
if (geom_size[j] > 0) {
useful_threads++;
}
}
int threads = CPUS;
if (threads > TEMP_FILES / 4) {
threads = TEMP_FILES / 4;
}
// XXX is it useful to divide further if we know we are skipping
// some zoom levels? Is it faster to have fewer CPUs working on
// sharding, but more deeply, or fewer CPUs, less deeply?
if (threads > useful_threads) {
threads = useful_threads;
}
// Round down to a power of 2
for (int e = 0; e < 30; e++) {
if (threads >= (1 << e) && threads < (1 << (e + 1))) {
threads = 1 << e;
break;
}
}
if (threads >= (1 << 30)) {
threads = 1 << 30;
}
// Assign temporary files to threads
struct task tasks[TEMP_FILES];
struct dispatch {
struct task *tasks;
long long todo;
struct dispatch *next;
} dispatches[threads];
struct dispatch *dispatch_head = &dispatches[0];
for (j = 0; j < threads; j++) {
dispatches[j].tasks = NULL;
dispatches[j].todo = 0;
if (j + 1 < threads) {
dispatches[j].next = &dispatches[j + 1];
} else {
dispatches[j].next = NULL;
}
}
for (j = 0; j < TEMP_FILES; j++) {
if (geom_size[j] == 0) {
continue;
}
tasks[j].fileno = j;
tasks[j].next = dispatch_head->tasks;
dispatch_head->tasks = &tasks[j];
dispatch_head->todo += geom_size[j];
struct dispatch *here = dispatch_head;
dispatch_head = dispatch_head->next;
dispatch **d;
for (d = &dispatch_head; *d != NULL; d = &((*d)->next)) {
if (here->todo < (*d)->todo) {
break;
}
}
here->next = *d;
*d = here;
}
pthread_t pthreads[threads];
write_tile_args args[threads];
int running = threads;
int thread;
for (thread = 0; thread < threads; thread++) {
args[thread].metabase = metabase;
args[thread].stringpool = stringpool;
args[thread].min_detail = min_detail;
args[thread].basezoom = basezoom;
args[thread].outdb = outdb; // locked with db_lock
args[thread].droprate = droprate;
args[thread].buffer = buffer;
args[thread].fname = fname;
args[thread].geomfile = sub + thread * (TEMP_FILES / threads);
args[thread].todo = todo;
args[thread].along = &along; // locked with var_lock
args[thread].gamma = gamma;
args[thread].child_shards = TEMP_FILES / threads;
args[thread].simplification = simplification;
args[thread].geomfd = geomfd;
args[thread].geom_size = geom_size;
args[thread].midx = midx; // locked with var_lock
args[thread].midy = midy; // locked with var_lock
args[thread].maxzoom = maxzoom;
args[thread].minzoom = minzoom;
args[thread].full_detail = full_detail;
args[thread].low_detail = low_detail;
args[thread].most = &most; // locked with var_lock
args[thread].meta_off = meta_off;
args[thread].pool_off = pool_off;
args[thread].initial_x = initial_x;
args[thread].initial_y = initial_y;
args[thread].layermaps = &layermaps;
args[thread].layer_unmaps = &layer_unmaps;
args[thread].tasks = dispatches[thread].tasks;
args[thread].running = &running;
if (pthread_create(&pthreads[thread], NULL, run_thread, &args[thread]) != 0) {
perror("pthread_create");
exit(EXIT_FAILURE);
}
}
int err = INT_MAX;
for (thread = 0; thread < threads; thread++) {
void *retval;
if (pthread_join(pthreads[thread], &retval) != 0) {
perror("pthread_join");
}
if (retval != NULL) {
err = *((int *) retval);
}
}
for (j = 0; j < TEMP_FILES; j++) {
// Can be < 0 if there is only one source file, at z0
if (geomfd[j] >= 0) {
if (close(geomfd[j]) != 0) {
perror("close geom");
exit(EXIT_FAILURE);
}
}
if (fclose(sub[j]) != 0) {
perror("close subfile");
exit(EXIT_FAILURE);
}
struct stat geomst;
if (fstat(subfd[j], &geomst) != 0) {
perror("stat geom\n");
exit(EXIT_FAILURE);
}
geomfd[j] = subfd[j];
geom_size[j] = geomst.st_size;
}
if (err != INT_MAX) {
return err;
}
}
int j;
for (j = 0; j < TEMP_FILES; j++) {
// Can be < 0 if there is only one source file, at z0
if (geomfd[j] >= 0) {
if (close(geomfd[j]) != 0) {
perror("close geom");
exit(EXIT_FAILURE);
}
}
}
if (!quiet) {
fprintf(stderr, "\n");
}
return maxzoom;
}