tippecanoe/geojson.c

1940 lines
49 KiB
C

#ifdef MTRACE
#include <mcheck.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <string.h>
#include <fcntl.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <sqlite3.h>
#include <stdarg.h>
#include <sys/resource.h>
#include <pthread.h>
#include "jsonpull.h"
#include "tile.h"
#include "pool.h"
#include "mbtiles.h"
#include "projection.h"
#include "version.h"
#include "memfile.h"
int low_detail = 12;
int full_detail = -1;
int min_detail = 7;
int quiet = 0;
unsigned initial_x = 0, initial_y = 0;
int geometry_scale = 0;
int initialized = 0;
#define GEOM_POINT 0 /* array of positions */
#define GEOM_MULTIPOINT 1 /* array of arrays of positions */
#define GEOM_LINESTRING 2 /* array of arrays of positions */
#define GEOM_MULTILINESTRING 3 /* array of arrays of arrays of positions */
#define GEOM_POLYGON 4 /* array of arrays of arrays of positions */
#define GEOM_MULTIPOLYGON 5 /* array of arrays of arrays of arrays of positions */
#define GEOM_TYPES 6
const char *geometry_names[GEOM_TYPES] = {
"Point", "MultiPoint", "LineString", "MultiLineString", "Polygon", "MultiPolygon",
};
int geometry_within[GEOM_TYPES] = {
-1, /* point */
GEOM_POINT, /* multipoint */
GEOM_POINT, /* linestring */
GEOM_LINESTRING, /* multilinestring */
GEOM_LINESTRING, /* polygon */
GEOM_POLYGON, /* multipolygon */
};
int mb_geometry[GEOM_TYPES] = {
VT_POINT, VT_POINT, VT_LINE, VT_LINE, VT_POLYGON, VT_POLYGON,
};
int CPUS;
int TEMP_FILES;
void init_cpus() {
CPUS = sysconf(_SC_NPROCESSORS_ONLN);
if (CPUS < 1) {
CPUS = 1;
}
// Round down to a power of 2
CPUS = 1 << (int) (log(CPUS) / log(2));
TEMP_FILES = 64;
struct rlimit rl;
if (getrlimit(RLIMIT_NOFILE, &rl) != 0) {
perror("getrlimit");
} else {
TEMP_FILES = rl.rlim_cur / 3;
if (TEMP_FILES > CPUS * 4) {
TEMP_FILES = CPUS * 4;
}
}
}
size_t fwrite_check(const void *ptr, size_t size, size_t nitems, FILE *stream, const char *fname) {
size_t w = fwrite(ptr, size, nitems, stream);
if (w != nitems) {
fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno));
exit(EXIT_FAILURE);
}
return w;
}
void serialize_int(FILE *out, int n, long long *fpos, const char *fname) {
serialize_long_long(out, n, fpos, fname);
}
void serialize_long_long(FILE *out, long long n, long long *fpos, const char *fname) {
unsigned long long zigzag = (n << 1) ^ (n >> 63);
while (1) {
unsigned char b = zigzag & 0x7F;
if ((zigzag >> 7) != 0) {
b |= 0x80;
if (putc(b, out) == EOF) {
fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno));
exit(EXIT_FAILURE);
}
*fpos += 1;
zigzag >>= 7;
} else {
if (putc(b, out) == EOF) {
fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno));
exit(EXIT_FAILURE);
}
*fpos += 1;
break;
}
}
}
void serialize_byte(FILE *out, signed char n, long long *fpos, const char *fname) {
fwrite_check(&n, sizeof(signed char), 1, out, fname);
*fpos += sizeof(signed char);
}
void serialize_uint(FILE *out, unsigned n, long long *fpos, const char *fname) {
fwrite_check(&n, sizeof(unsigned), 1, out, fname);
*fpos += sizeof(unsigned);
}
void serialize_string(FILE *out, const char *s, long long *fpos, const char *fname) {
int len = strlen(s);
serialize_int(out, len + 1, fpos, fname);
fwrite_check(s, sizeof(char), len, out, fname);
fwrite_check("", sizeof(char), 1, out, fname);
*fpos += len + 1;
}
void parse_geometry(int t, json_object *j, long long *bbox, long long *fpos, FILE *out, int op, const char *fname, int line, long long *wx, long long *wy, int *initialized) {
if (j == NULL || j->type != JSON_ARRAY) {
fprintf(stderr, "%s:%d: expected array for type %d\n", fname, line, t);
return;
}
int within = geometry_within[t];
if (within >= 0) {
int i;
for (i = 0; i < j->length; i++) {
if (within == GEOM_POINT) {
if (i == 0 || mb_geometry[t] == GEOM_MULTIPOINT) {
op = VT_MOVETO;
} else {
op = VT_LINETO;
}
}
parse_geometry(within, j->array[i], bbox, fpos, out, op, fname, line, wx, wy, initialized);
}
} else {
if (j->length >= 2 && j->array[0]->type == JSON_NUMBER && j->array[1]->type == JSON_NUMBER) {
long long x, y;
double lon = j->array[0]->number;
double lat = j->array[1]->number;
latlon2tile(lat, lon, 32, &x, &y);
if (j->length > 2) {
static int warned = 0;
if (!warned) {
fprintf(stderr, "%s:%d: ignoring dimensions beyond two\n", fname, line);
warned = 1;
}
}
if (bbox != NULL) {
if (x < bbox[0]) {
bbox[0] = x;
}
if (y < bbox[1]) {
bbox[1] = y;
}
if (x > bbox[2]) {
bbox[2] = x;
}
if (y > bbox[3]) {
bbox[3] = y;
}
}
if (!*initialized) {
initial_x = x;
initial_y = y;
*wx = x;
*wy = y;
*initialized = 1;
}
serialize_byte(out, op, fpos, fname);
serialize_long_long(out, (x >> geometry_scale) - (*wx >> geometry_scale), fpos, fname);
serialize_long_long(out, (y >> geometry_scale) - (*wy >> geometry_scale), fpos, fname);
*wx = x;
*wy = y;
} else {
fprintf(stderr, "%s:%d: malformed point\n", fname, line);
}
}
if (t == GEOM_POLYGON) {
// Note that this is not using the correct meaning of closepath.
//
// We are using it here to close an entire Polygon, to distinguish
// the Polygons within a MultiPolygon from each other.
//
// This will be undone in fix_polygon(), which needs to know which
// rings come from which Polygons so that it can make the winding order
// of the outer ring be the opposite of the order of the inner rings.
serialize_byte(out, VT_CLOSEPATH, fpos, fname);
}
}
void deserialize_int(char **f, int *n) {
long long ll;
deserialize_long_long(f, &ll);
*n = ll;
}
void deserialize_long_long(char **f, long long *n) {
unsigned long long zigzag = 0;
int shift = 0;
while (1) {
if ((**f & 0x80) == 0) {
zigzag |= ((unsigned long long) **f) << shift;
*f += 1;
shift += 7;
break;
} else {
zigzag |= ((unsigned long long) (**f & 0x7F)) << shift;
*f += 1;
shift += 7;
}
}
*n = (zigzag >> 1) ^ (-(zigzag & 1));
}
void deserialize_uint(char **f, unsigned *n) {
memcpy(n, *f, sizeof(unsigned));
*f += sizeof(unsigned);
}
void deserialize_byte(char **f, signed char *n) {
memcpy(n, *f, sizeof(signed char));
*f += sizeof(signed char);
}
struct pool_val *deserialize_string(char **f, struct pool *p, int type) {
struct pool_val *ret;
int len;
deserialize_int(f, &len);
ret = pool(p, *f, type);
*f += len;
return ret;
}
struct index {
long long start;
long long end;
unsigned long long index;
int segment;
};
int indexcmp(const void *v1, const void *v2) {
const struct index *i1 = (const struct index *) v1;
const struct index *i2 = (const struct index *) v2;
if (i1->index < i2->index) {
return -1;
} else if (i1->index > i2->index) {
return 1;
}
return 0;
}
struct merge {
long long start;
long long end;
struct merge *next;
};
static void insert(struct merge *m, struct merge **head, unsigned char *map, int bytes) {
while (*head != NULL && indexcmp(map + m->start, map + (*head)->start) > 0) {
head = &((*head)->next);
}
m->next = *head;
*head = m;
}
static void merge(struct merge *merges, int nmerges, unsigned char *map, FILE *f, int bytes, long long nrec) {
int i;
struct merge *head = NULL;
long long along = 0;
long long reported = -1;
for (i = 0; i < nmerges; i++) {
if (merges[i].start < merges[i].end) {
insert(&(merges[i]), &head, map, bytes);
}
}
while (head != NULL) {
fwrite_check(map + head->start, bytes, 1, f, "merge temporary");
head->start += bytes;
struct merge *m = head;
head = m->next;
m->next = NULL;
if (m->start < m->end) {
insert(m, &head, map, bytes);
}
along++;
long long report = 100 * along / nrec;
if (report != reported) {
if (!quiet) {
fprintf(stderr, "Merging: %lld%%\r", report);
}
reported = report;
}
}
}
struct stringpool {
long long left;
long long right;
long long off;
};
static unsigned char swizzle[256] = {
0x00, 0xBF, 0x18, 0xDE, 0x93, 0xC9, 0xB1, 0x5E, 0xDF, 0xBE, 0x72, 0x5A, 0xBB, 0x42, 0x64, 0xC6,
0xD8, 0xB7, 0x15, 0x74, 0x1C, 0x8B, 0x91, 0xF5, 0x29, 0x46, 0xEC, 0x6F, 0xCA, 0x20, 0xF0, 0x06,
0x27, 0x61, 0x87, 0xE0, 0x6E, 0x43, 0x50, 0xC5, 0x1B, 0xB4, 0x37, 0xC3, 0x69, 0xA6, 0xEE, 0x80,
0xAF, 0x9B, 0xA1, 0x76, 0x23, 0x24, 0x53, 0xF3, 0x5B, 0x65, 0x19, 0xF4, 0xFC, 0xDD, 0x26, 0xE8,
0x10, 0xF7, 0xCE, 0x92, 0x48, 0xF6, 0x94, 0x60, 0x07, 0xC4, 0xB9, 0x97, 0x6D, 0xA4, 0x11, 0x0D,
0x1F, 0x4D, 0x13, 0xB0, 0x5D, 0xBA, 0x31, 0xD5, 0x8D, 0x51, 0x36, 0x96, 0x7A, 0x03, 0x7F, 0xDA,
0x17, 0xDB, 0xD4, 0x83, 0xE2, 0x79, 0x6A, 0xE1, 0x95, 0x38, 0xFF, 0x28, 0xB2, 0xB3, 0xA7, 0xAE,
0xF8, 0x54, 0xCC, 0xDC, 0x9A, 0x6B, 0xFB, 0x3F, 0xD7, 0xBC, 0x21, 0xC8, 0x71, 0x09, 0x16, 0xAC,
0x3C, 0x8A, 0x62, 0x05, 0xC2, 0x8C, 0x32, 0x4E, 0x35, 0x9C, 0x5F, 0x75, 0xCD, 0x2E, 0xA2, 0x3E,
0x1A, 0xC1, 0x8E, 0x14, 0xA0, 0xD3, 0x7D, 0xD9, 0xEB, 0x5C, 0x70, 0xE6, 0x9E, 0x12, 0x3B, 0xEF,
0x1E, 0x49, 0xD2, 0x98, 0x39, 0x7E, 0x44, 0x4B, 0x6C, 0x88, 0x02, 0x2C, 0xAD, 0xE5, 0x9F, 0x40,
0x7B, 0x4A, 0x3D, 0xA9, 0xAB, 0x0B, 0xD6, 0x2F, 0x90, 0x2A, 0xB6, 0x1D, 0xC7, 0x22, 0x55, 0x34,
0x0A, 0xD0, 0xB5, 0x68, 0xE3, 0x59, 0xFD, 0xFA, 0x57, 0x77, 0x25, 0xA3, 0x04, 0xB8, 0x33, 0x89,
0x78, 0x82, 0xE4, 0xC0, 0x0E, 0x8F, 0x85, 0xD1, 0x84, 0x08, 0x67, 0x47, 0x9D, 0xCB, 0x58, 0x4C,
0xAA, 0xED, 0x52, 0xF2, 0x4F, 0xF1, 0x66, 0xCF, 0xA5, 0x56, 0xEA, 0x7C, 0xE9, 0x63, 0xE7, 0x01,
0xF9, 0xFE, 0x0C, 0x99, 0x2D, 0x0F, 0x3A, 0x41, 0x45, 0xA8, 0x30, 0x2B, 0x73, 0xBD, 0x86, 0x81,
};
int swizzlecmp(char *a, char *b) {
while (*a || *b) {
int aa = swizzle[(unsigned char) *a];
int bb = swizzle[(unsigned char) *b];
int cmp = aa - bb;
if (cmp != 0) {
return cmp;
}
a++;
b++;
}
return 0;
}
long long addpool(struct memfile *poolfile, struct memfile *treefile, char *s, char type) {
long long *sp = &treefile->tree;
while (*sp != 0) {
int cmp = swizzlecmp(s, poolfile->map + ((struct stringpool *) (treefile->map + *sp))->off + 1);
if (cmp == 0) {
cmp = type - (poolfile->map + ((struct stringpool *) (treefile->map + *sp))->off)[0];
}
if (cmp < 0) {
sp = &(((struct stringpool *) (treefile->map + *sp))->left);
} else if (cmp > 0) {
sp = &(((struct stringpool *) (treefile->map + *sp))->right);
} else {
return ((struct stringpool *) (treefile->map + *sp))->off;
}
}
// *sp is probably in the memory-mapped file, and will move if the file grows.
long long ssp;
if (sp == &treefile->tree) {
ssp = -1;
} else {
ssp = ((char *) sp) - treefile->map;
}
long long off = poolfile->off;
if (memfile_write(poolfile, &type, 1) < 0) {
perror("memfile write");
exit(EXIT_FAILURE);
}
if (memfile_write(poolfile, s, strlen(s) + 1) < 0) {
perror("memfile write");
exit(EXIT_FAILURE);
}
struct stringpool tsp;
tsp.left = 0;
tsp.right = 0;
tsp.off = off;
long long p = treefile->off;
if (memfile_write(treefile, &tsp, sizeof(struct stringpool)) < 0) {
perror("memfile write");
exit(EXIT_FAILURE);
}
if (ssp == -1) {
treefile->tree = p;
} else {
*((long long *) (treefile->map + ssp)) = p;
}
return off;
}
int serialize_geometry(json_object *geometry, json_object *properties, const char *reading, int line, long long *seq, long long *metapos, long long *geompos, long long *indexpos, struct pool *exclude, struct pool *include, int exclude_all, FILE *metafile, FILE *geomfile, FILE *indexfile, struct memfile *poolfile, struct memfile *treefile, const char *fname, int maxzoom, int basezoom, int layer, double droprate, long long *file_bbox, json_object *tippecanoe, int segment) {
json_object *geometry_type = json_hash_get(geometry, "type");
if (geometry_type == NULL) {
static int warned = 0;
if (!warned) {
fprintf(stderr, "%s:%d: null geometry (additional not reported)\n", reading, line);
warned = 1;
}
return 0;
}
if (geometry_type->type != JSON_STRING) {
fprintf(stderr, "%s:%d: geometry without type\n", reading, line);
return 0;
}
json_object *coordinates = json_hash_get(geometry, "coordinates");
if (coordinates == NULL || coordinates->type != JSON_ARRAY) {
fprintf(stderr, "%s:%d: feature without coordinates array\n", reading, line);
return 0;
}
int t;
for (t = 0; t < GEOM_TYPES; t++) {
if (strcmp(geometry_type->string, geometry_names[t]) == 0) {
break;
}
}
if (t >= GEOM_TYPES) {
fprintf(stderr, "%s:%d: Can't handle geometry type %s\n", reading, line, geometry_type->string);
return 0;
}
int tippecanoe_minzoom = -1;
int tippecanoe_maxzoom = -1;
if (tippecanoe != NULL) {
json_object *min = json_hash_get(tippecanoe, "minzoom");
if (min != NULL && min->type == JSON_NUMBER) {
tippecanoe_minzoom = min->number;
}
if (min != NULL && min->type == JSON_STRING) {
tippecanoe_minzoom = atoi(min->string);
}
json_object *max = json_hash_get(tippecanoe, "maxzoom");
if (max != NULL && max->type == JSON_NUMBER) {
tippecanoe_maxzoom = max->number;
}
if (max != NULL && max->type == JSON_STRING) {
tippecanoe_maxzoom = atoi(max->string);
}
}
long long bbox[] = {UINT_MAX, UINT_MAX, 0, 0};
int nprop = 0;
if (properties != NULL && properties->type == JSON_HASH) {
nprop = properties->length;
}
long long metastart = *metapos;
char *metakey[nprop];
char *metaval[nprop];
int metatype[nprop];
int m = 0;
int i;
for (i = 0; i < nprop; i++) {
if (properties->keys[i]->type == JSON_STRING) {
if (exclude_all) {
if (!is_pooled(include, properties->keys[i]->string, VT_STRING)) {
continue;
}
} else if (is_pooled(exclude, properties->keys[i]->string, VT_STRING)) {
continue;
}
metakey[m] = properties->keys[i]->string;
if (properties->values[i] != NULL && properties->values[i]->type == JSON_STRING) {
metatype[m] = VT_STRING;
metaval[m] = properties->values[i]->string;
m++;
} else if (properties->values[i] != NULL && properties->values[i]->type == JSON_NUMBER) {
metatype[m] = VT_NUMBER;
metaval[m] = properties->values[i]->string;
m++;
} else if (properties->values[i] != NULL && (properties->values[i]->type == JSON_TRUE || properties->values[i]->type == JSON_FALSE)) {
metatype[m] = VT_BOOLEAN;
metaval[m] = properties->values[i]->type == JSON_TRUE ? "true" : "false";
m++;
} else if (properties->values[i] != NULL && (properties->values[i]->type == JSON_NULL)) {
;
} else {
fprintf(stderr, "%s:%d: Unsupported property type for %s\n", reading, line, properties->keys[i]->string);
continue;
}
}
}
serialize_int(metafile, m, metapos, fname);
for (i = 0; i < m; i++) {
serialize_long_long(metafile, addpool(poolfile, treefile, metakey[i], VT_STRING), metapos, fname);
serialize_long_long(metafile, addpool(poolfile, treefile, metaval[i], metatype[i]), metapos, fname);
}
long long geomstart = *geompos;
serialize_byte(geomfile, mb_geometry[t], geompos, fname);
serialize_long_long(geomfile, *seq, geompos, fname);
serialize_long_long(geomfile, (layer << 2) | ((tippecanoe_minzoom != -1) << 1) | (tippecanoe_maxzoom != -1), geompos, fname);
if (tippecanoe_minzoom != -1) {
serialize_int(geomfile, tippecanoe_minzoom, geompos, fname);
}
if (tippecanoe_maxzoom != -1) {
serialize_int(geomfile, tippecanoe_maxzoom, geompos, fname);
}
serialize_int(geomfile, segment, geompos, fname);
serialize_long_long(geomfile, metastart, geompos, fname);
long long wx = initial_x, wy = initial_y;
parse_geometry(t, coordinates, bbox, geompos, geomfile, VT_MOVETO, fname, line, &wx, &wy, &initialized);
serialize_byte(geomfile, VT_END, geompos, fname);
/*
* Note that feature_minzoom for lines is the dimension
* of the geometry in world coordinates, but
* for points is the lowest zoom level (in tiles,
* not in pixels) at which it should be drawn.
*
* So a line that is too small for, say, z8
* will have feature_minzoom of 18 (if tile detail is 10),
* not 8.
*/
int feature_minzoom = 0;
if (mb_geometry[t] == VT_LINE) {
for (feature_minzoom = 0; feature_minzoom < 31; feature_minzoom++) {
unsigned mask = 1 << (32 - (feature_minzoom + 1));
if (((bbox[0] & mask) != (bbox[2] & mask)) || ((bbox[1] & mask) != (bbox[3] & mask))) {
break;
}
}
} else if (mb_geometry[t] == VT_POINT) {
double r = ((double) rand()) / RAND_MAX;
if (r == 0) {
r = .00000001;
}
feature_minzoom = basezoom - floor(log(r) / -log(droprate));
}
serialize_byte(geomfile, feature_minzoom, geompos, fname);
struct index index;
index.start = geomstart;
index.end = *geompos;
index.segment = segment;
// Calculate the center even if off the edge of the plane,
// and then mask to bring it back into the addressable area
long long midx = (bbox[0] / 2 + bbox[2] / 2) & ((1LL << 32) - 1);
long long midy = (bbox[1] / 2 + bbox[3] / 2) & ((1LL << 32) - 1);
index.index = encode(midx, midy);
fwrite_check(&index, sizeof(struct index), 1, indexfile, fname);
*indexpos += sizeof(struct index);
for (i = 0; i < 2; i++) {
if (bbox[i] < file_bbox[i]) {
file_bbox[i] = bbox[i];
}
}
for (i = 2; i < 4; i++) {
if (bbox[i] > file_bbox[i]) {
file_bbox[i] = bbox[i];
}
}
if (*seq % 10000 == 0) {
if (!quiet) {
fprintf(stderr, "Read %.2f million features\r", *seq / 1000000.0);
}
}
(*seq)++;
return 1;
}
void parse_json(json_pull *jp, const char *reading, long long *seq, long long *metapos, long long *geompos, long long *indexpos, struct pool *exclude, struct pool *include, int exclude_all, FILE *metafile, FILE *geomfile, FILE *indexfile, struct memfile *poolfile, struct memfile *treefile, char *fname, int maxzoom, int basezoom, int layer, double droprate, long long *file_bbox, int segment) {
long long found_hashes = 0;
long long found_features = 0;
long long found_geometries = 0;
while (1) {
json_object *j = json_read(jp);
if (j == NULL) {
if (jp->error != NULL) {
fprintf(stderr, "%s:%d: %s\n", reading, jp->line, jp->error);
}
json_free(jp->root);
break;
}
if (j->type == JSON_HASH) {
found_hashes++;
if (found_hashes == 50 && found_features == 0 && found_geometries == 0) {
fprintf(stderr, "%s:%d: Warning: not finding any GeoJSON features or geometries in input yet after 50 objects.\n", reading, jp->line);
}
}
json_object *type = json_hash_get(j, "type");
if (type == NULL || type->type != JSON_STRING) {
continue;
}
if (found_features == 0) {
int i;
int is_geometry = 0;
for (i = 0; i < GEOM_TYPES; i++) {
if (strcmp(type->string, geometry_names[i]) == 0) {
is_geometry = 1;
break;
}
}
if (is_geometry) {
if (j->parent != NULL) {
if (j->parent->type == JSON_ARRAY) {
if (j->parent->parent->type == JSON_HASH) {
json_object *geometries = json_hash_get(j->parent->parent, "geometries");
if (geometries != NULL) {
// Parent of Parent must be a GeometryCollection
is_geometry = 0;
}
}
} else if (j->parent->type == JSON_HASH) {
json_object *geometry = json_hash_get(j->parent, "geometry");
if (geometry != NULL) {
// Parent must be a Feature
is_geometry = 0;
}
}
}
}
if (is_geometry) {
if (found_features != 0 && found_geometries == 0) {
fprintf(stderr, "%s:%d: Warning: found a mixture of features and bare geometries\n", reading, jp->line);
}
found_geometries++;
serialize_geometry(j, NULL, reading, jp->line, seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, maxzoom, basezoom, layer, droprate, file_bbox, NULL, segment);
json_free(j);
continue;
}
}
if (strcmp(type->string, "Feature") != 0) {
continue;
}
if (found_features == 0 && found_geometries != 0) {
fprintf(stderr, "%s:%d: Warning: found a mixture of features and bare geometries\n", reading, jp->line);
}
found_features++;
json_object *geometry = json_hash_get(j, "geometry");
if (geometry == NULL) {
fprintf(stderr, "%s:%d: feature with no geometry\n", reading, jp->line);
json_free(j);
continue;
}
json_object *properties = json_hash_get(j, "properties");
if (properties == NULL || (properties->type != JSON_HASH && properties->type != JSON_NULL)) {
fprintf(stderr, "%s:%d: feature without properties hash\n", reading, jp->line);
json_free(j);
continue;
}
json_object *tippecanoe = json_hash_get(j, "tippecanoe");
json_object *geometries = json_hash_get(geometry, "geometries");
if (geometries != NULL) {
int g;
for (g = 0; g < geometries->length; g++) {
serialize_geometry(geometries->array[g], properties, reading, jp->line, seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, maxzoom, basezoom, layer, droprate, file_bbox, tippecanoe, segment);
}
} else {
serialize_geometry(geometry, properties, reading, jp->line, seq, metapos, geompos, indexpos, exclude, include, exclude_all, metafile, geomfile, indexfile, poolfile, treefile, fname, maxzoom, basezoom, layer, droprate, file_bbox, tippecanoe, segment);
}
json_free(j);
/* XXX check for any non-features in the outer object */
}
if (!quiet) {
fprintf(stderr, " \r");
// (stderr, "Read 10000.00 million features\r", *seq / 1000000.0);
}
}
struct parse_json_args {
json_pull *jp;
const char *reading;
long long *seq;
long long *metapos;
long long *geompos;
long long *indexpos;
struct pool *exclude;
struct pool *include;
int exclude_all;
FILE *metafile;
FILE *geomfile;
FILE *indexfile;
struct memfile *poolfile;
struct memfile *treefile;
char *fname;
int maxzoom;
int basezoom;
int layer;
double droprate;
long long *file_bbox;
int segment;
};
void *run_parse_json(void *v) {
struct parse_json_args *pja = v;
parse_json(pja->jp, pja->reading, pja->seq, pja->metapos, pja->geompos, pja->indexpos, pja->exclude, pja->include, pja->exclude_all, pja->metafile, pja->geomfile, pja->indexfile, pja->poolfile, pja->treefile, pja->fname, pja->maxzoom, pja->basezoom, pja->layer, pja->droprate, pja->file_bbox, pja->segment);
return NULL;
}
struct jsonmap {
char *map;
long long off;
long long end;
};
int json_map_read(struct json_pull *jp, char *buffer, int n) {
struct jsonmap *jm = jp->source;
if (jm->off + n >= jm->end) {
n = jm->end - jm->off;
}
memcpy(buffer, jm->map + jm->off, n);
jm->off += n;
return n;
}
struct json_pull *json_begin_map(char *map, long long len) {
struct jsonmap *jm = malloc(sizeof(struct jsonmap));
jm->map = map;
jm->off = 0;
jm->end = len;
return json_begin(json_map_read, jm);
}
struct reader {
char *metaname;
char *poolname;
char *treename;
char *geomname;
char *indexname;
int metafd;
int poolfd;
int treefd;
int geomfd;
int indexfd;
FILE *metafile;
struct memfile *poolfile;
struct memfile *treefile;
FILE *geomfile;
FILE *indexfile;
long long metapos;
long long geompos;
long long indexpos;
long long *file_bbox;
struct stat geomst;
struct stat metast;
char *geom_map;
};
int read_json(int argc, char **argv, char *fname, const char *layername, int maxzoom, int minzoom, int basezoom, double basezoom_marker_width, sqlite3 *outdb, struct pool *exclude, struct pool *include, int exclude_all, double droprate, int buffer, const char *tmpdir, double gamma, char *prevent, char *additional) {
int ret = EXIT_SUCCESS;
struct reader reader[CPUS];
int i;
for (i = 0; i < CPUS; i++) {
struct reader *r = reader + i;
r->metaname = malloc(strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1);
r->poolname = malloc(strlen(tmpdir) + strlen("/pool.XXXXXXXX") + 1);
r->treename = malloc(strlen(tmpdir) + strlen("/tree.XXXXXXXX") + 1);
r->geomname = malloc(strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1);
r->indexname = malloc(strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1);
sprintf(r->metaname, "%s%s", tmpdir, "/meta.XXXXXXXX");
sprintf(r->poolname, "%s%s", tmpdir, "/pool.XXXXXXXX");
sprintf(r->treename, "%s%s", tmpdir, "/tree.XXXXXXXX");
sprintf(r->geomname, "%s%s", tmpdir, "/geom.XXXXXXXX");
sprintf(r->indexname, "%s%s", tmpdir, "/index.XXXXXXXX");
r->metafd = mkstemp(r->metaname);
if (r->metafd < 0) {
perror(r->metaname);
exit(EXIT_FAILURE);
}
r->poolfd = mkstemp(r->poolname);
if (r->poolfd < 0) {
perror(r->poolname);
exit(EXIT_FAILURE);
}
r->treefd = mkstemp(r->treename);
if (r->treefd < 0) {
perror(r->treename);
exit(EXIT_FAILURE);
}
r->geomfd = mkstemp(r->geomname);
if (r->geomfd < 0) {
perror(r->geomname);
exit(EXIT_FAILURE);
}
r->indexfd = mkstemp(r->indexname);
if (r->indexfd < 0) {
perror(r->indexname);
exit(EXIT_FAILURE);
}
r->metafile = fopen(r->metaname, "wb");
if (r->metafile == NULL) {
perror(r->metaname);
exit(EXIT_FAILURE);
}
r->poolfile = memfile_open(r->poolfd);
if (r->poolfile == NULL) {
perror(r->poolname);
exit(EXIT_FAILURE);
}
r->treefile = memfile_open(r->treefd);
if (r->treefile == NULL) {
perror(r->treename);
exit(EXIT_FAILURE);
}
r->geomfile = fopen(r->geomname, "wb");
if (r->geomfile == NULL) {
perror(r->geomname);
exit(EXIT_FAILURE);
}
r->indexfile = fopen(r->indexname, "wb");
if (r->indexfile == NULL) {
perror(r->indexname);
exit(EXIT_FAILURE);
}
r->metapos = 0;
r->geompos = 0;
r->indexpos = 0;
unlink(r->metaname);
unlink(r->poolname);
unlink(r->treename);
unlink(r->geomname);
unlink(r->indexname);
// To distinguish a null value
{
struct stringpool p;
memfile_write(r->treefile, &p, sizeof(struct stringpool));
}
r->file_bbox = malloc(4 * sizeof(long long));
r->file_bbox[0] = r->file_bbox[1] = UINT_MAX;
r->file_bbox[2] = r->file_bbox[3] = 0;
}
long long seq = 0;
int nlayers;
if (layername != NULL) {
nlayers = 1;
} else {
nlayers = argc;
if (nlayers == 0) {
nlayers = 1;
}
}
int nsources = argc;
if (nsources == 0) {
nsources = 1;
}
int source;
for (source = 0; source < nsources; source++) {
const char *reading;
int fd;
if (source >= argc) {
reading = "standard input";
fd = 0;
} else {
reading = argv[source];
fd = open(argv[source], O_RDONLY);
if (fd < 0) {
perror(argv[source]);
continue;
}
}
struct stat st;
char *map = NULL;
off_t off = 0;
if (fstat(fd, &st) == 0) {
off = lseek(fd, 0, SEEK_CUR);
if (off >= 0) {
map = mmap(NULL, st.st_size - off, PROT_READ, MAP_PRIVATE, fd, off);
}
}
if (map != NULL && map != MAP_FAILED) {
long long segs[CPUS + 1];
segs[0] = 0;
segs[CPUS] = st.st_size - off;
int i;
for (i = 1; i < CPUS; i++) {
segs[i] = off + (st.st_size - off) * i / CPUS;
while (segs[i] < st.st_size && map[segs[i]] != '\n') {
segs[i]++;
}
printf("%d %lld\n", i, segs[i]);
}
struct parse_json_args pja[CPUS];
pthread_t pthreads[CPUS];
for (i = 0; i < CPUS; i++) {
pja[i].jp = json_begin_map(map + segs[i], segs[i + 1] - segs[i]);
pja[i].reading = reading;
pja[i].seq = &seq;
pja[i].metapos = &reader[i].metapos;
pja[i].geompos = &reader[i].geompos;
pja[i].indexpos = &reader[i].indexpos;
pja[i].exclude = exclude;
pja[i].include = include;
pja[i].exclude_all = exclude_all;
pja[i].metafile = reader[i].metafile;
pja[i].geomfile = reader[i].geomfile;
pja[i].indexfile = reader[i].indexfile;
pja[i].poolfile = reader[i].poolfile;
pja[i].treefile = reader[i].treefile;
pja[i].fname = fname;
pja[i].maxzoom = maxzoom;
pja[i].basezoom = basezoom;
pja[i].layer = source;
pja[i].droprate = droprate;
pja[i].file_bbox = reader[i].file_bbox;
pja[i].segment = i;
if (pthread_create(&pthreads[i], NULL, run_parse_json, &pja[i]) != 0) {
perror("pthread_create");
exit(EXIT_FAILURE);
}
}
for (i = 0; i < CPUS; i++) {
void *retval;
if (pthread_join(pthreads[i], &retval) != 0) {
perror("pthread_join");
}
free(pja[i].jp->source);
json_end(pja[i].jp);
}
} else {
FILE *fp = fdopen(fd, "r");
if (fp == NULL) {
perror(argv[source]);
close(fd);
continue;
}
json_pull *jp = json_begin_file(fp);
parse_json(jp, reading, &seq, &reader[0].metapos, &reader[0].geompos, &reader[0].indexpos, exclude, include, exclude_all, reader[0].metafile, reader[0].geomfile, reader[0].indexfile, reader[0].poolfile, reader[0].treefile, fname, maxzoom, basezoom, source, droprate, reader[0].file_bbox, 0);
json_end(jp);
fclose(fp);
}
}
for (i = 0; i < CPUS; i++) {
fclose(reader[i].metafile);
fclose(reader[i].geomfile);
fclose(reader[i].indexfile);
memfile_close(reader[i].treefile);
if (fstat(reader[i].geomfd, &reader[i].geomst) != 0) {
perror("stat geom\n");
exit(EXIT_FAILURE);
}
if (fstat(reader[i].metafd, &reader[i].metast) != 0) {
perror("stat meta\n");
exit(EXIT_FAILURE);
}
if (reader[i].geomst.st_size == 0 || reader[i].metast.st_size == 0) {
fprintf(stderr, "did not read any valid geometries\n"); // XXX
// exit(EXIT_FAILURE);
}
}
struct pool file_keys1[nlayers];
struct pool *file_keys[nlayers];
for (i = 0; i < nlayers; i++) {
pool_init(&file_keys1[i], 0);
file_keys[i] = &file_keys1[i];
}
char *layernames[nlayers];
for (i = 0; i < nlayers; i++) {
if (layername != NULL) {
layernames[i] = strdup(layername);
} else {
char *src = argv[i];
if (argc < 1) {
src = fname;
}
char *trunc = layernames[i] = malloc(strlen(src) + 1);
const char *ocp, *use = src;
for (ocp = src; *ocp; ocp++) {
if (*ocp == '/' && ocp[1] != '\0') {
use = ocp + 1;
}
}
strcpy(trunc, use);
char *cp = strstr(trunc, ".json");
if (cp != NULL) {
*cp = '\0';
}
cp = strstr(trunc, ".mbtiles");
if (cp != NULL) {
*cp = '\0';
}
char *out = trunc;
for (cp = trunc; *cp; cp++) {
if (isalpha(*cp) || isdigit(*cp) || *cp == '_') {
*out++ = *cp;
}
}
*out = '\0';
if (!quiet) {
printf("using layer %d name %s\n", i, trunc);
}
}
}
/* Join the sub-indices together */
char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1];
sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX");
int indexfd = mkstemp(indexname);
if (indexfd < 0) {
perror(indexname);
exit(EXIT_FAILURE);
}
FILE *indexfile = fopen(indexname, "wb");
if (indexfile == NULL) {
perror(indexname);
exit(EXIT_FAILURE);
}
unlink(indexname);
long long indexpos = 0;
for (i = 0; i < CPUS; i++) {
if (reader[i].indexpos > 0) {
void *map = mmap(NULL, reader[i].indexpos, PROT_READ, MAP_PRIVATE, reader[i].indexfd, 0);
if (map == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
if (fwrite(map, reader[i].indexpos, 1, indexfile) != 1) {
perror("Reunify index");
exit(EXIT_FAILURE);
}
munmap(map, reader[i].indexpos);
indexpos += reader[i].indexpos;
}
}
fclose(indexfile);
/* Sort the index by geometry */
{
int bytes = sizeof(struct index);
if (!quiet) {
fprintf(stderr, "Sorting %lld features\n", (long long) indexpos / bytes);
}
int page = sysconf(_SC_PAGESIZE);
long long unit = (50 * 1024 * 1024 / bytes) * bytes;
while (unit % page != 0) {
unit += bytes;
}
int nmerges = (indexpos + unit - 1) / unit;
struct merge merges[nmerges];
long long start;
for (start = 0; start < indexpos; start += unit) {
long long end = start + unit;
if (end > indexpos) {
end = indexpos;
}
if (nmerges != 1) {
if (!quiet) {
fprintf(stderr, "Sorting part %lld of %d\r", start / unit + 1, nmerges);
}
}
merges[start / unit].start = start;
merges[start / unit].end = end;
merges[start / unit].next = NULL;
// MAP_PRIVATE to avoid disk writes if it fits in memory
void *map = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_PRIVATE, indexfd, start);
if (map == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
qsort(map, (end - start) / bytes, bytes, indexcmp);
// Sorting and then copying avoids the need to
// write out intermediate stages of the sort.
void *map2 = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_SHARED, indexfd, start);
if (map2 == MAP_FAILED) {
perror("mmap (write)");
exit(EXIT_FAILURE);
}
memcpy(map2, map, end - start);
munmap(map, end - start);
munmap(map2, end - start);
}
if (nmerges != 1) {
if (!quiet) {
fprintf(stderr, "\n");
}
}
void *map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0);
if (map == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
FILE *f = fopen(indexname, "w");
if (f == NULL) {
perror(indexname);
exit(EXIT_FAILURE);
}
merge(merges, nmerges, (unsigned char *) map, f, bytes, indexpos / bytes);
munmap(map, indexpos);
fclose(f);
close(indexfd);
}
indexfd = open(indexname, O_RDONLY);
if (indexfd < 0) {
perror("reopen sorted index");
exit(EXIT_FAILURE);
}
if (basezoom < 0 || droprate < 0) {
struct index *map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0);
if (map == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
#define MAX_ZOOM 30
struct tile {
unsigned x;
unsigned y;
long long count;
long long fullcount;
double gap;
unsigned long long previndex;
} tile[MAX_ZOOM + 1], max[MAX_ZOOM + 1];
{
int i;
for (i = 0; i <= MAX_ZOOM; i++) {
tile[i].x = tile[i].y = tile[i].count = tile[i].fullcount = tile[i].gap = tile[i].previndex = 0;
max[i].x = max[i].y = max[i].count = max[i].fullcount = 0;
}
}
long long indices = indexpos / sizeof(struct index);
long long i;
for (i = 0; i < indices; i++) {
unsigned xx, yy;
decode(map[i].index, &xx, &yy);
int z;
for (z = 0; z <= MAX_ZOOM; z++) {
unsigned xxx = 0, yyy = 0;
if (z != 0) {
xxx = xx >> (32 - z);
yyy = yy >> (32 - z);
}
double scale = (double) (1LL << (64 - 2 * (z + 8)));
if (tile[z].x != xxx || tile[z].y != yyy) {
if (tile[z].count > max[z].count) {
max[z] = tile[z];
}
tile[z].x = xxx;
tile[z].y = yyy;
tile[z].count = 0;
tile[z].fullcount = 0;
tile[z].gap = 0;
tile[z].previndex = 0;
}
tile[z].fullcount++;
// Keep in sync with write_tile()
if (gamma > 0) {
if (tile[z].gap > 0) {
if (map[i].index == tile[z].previndex) {
continue; // Exact duplicate: can't fulfil the gap requirement
}
if (exp(log((map[i].index - tile[z].previndex) / scale) * gamma) >= tile[z].gap) {
// Dot is further from the previous than the nth root of the gap,
// so produce it, and choose a new gap at the next point.
tile[z].gap = 0;
} else {
continue;
}
} else {
tile[z].gap = (map[i].index - tile[z].previndex) / scale;
if (tile[z].gap == 0) {
continue; // Exact duplicate: skip
} else if (tile[z].gap < 1) {
continue; // Narrow dot spacing: need to stretch out
} else {
tile[z].gap = 0; // Wider spacing than minimum: so pass through unchanged
}
}
tile[z].previndex = map[i].index;
}
tile[z].count++;
}
}
int z;
for (z = MAX_ZOOM; z >= 0; z--) {
if (tile[z].count > max[z].count) {
max[z] = tile[z];
}
}
int max_features = 50000 / (basezoom_marker_width * basezoom_marker_width);
int obasezoom = basezoom;
if (basezoom < 0) {
basezoom = MAX_ZOOM;
for (z = MAX_ZOOM; z >= 0; z--) {
if (max[z].count < max_features) {
basezoom = z;
}
// printf("%d/%u/%u %lld\n", z, max[z].x, max[z].y, max[z].count);
}
fprintf(stderr, "Choosing a base zoom of -B%d to keep %lld features in tile %d/%u/%u.\n", basezoom, max[basezoom].count, basezoom, max[basezoom].x, max[basezoom].y);
}
if (obasezoom < 0 && basezoom > maxzoom) {
fprintf(stderr, "Couldn't find a suitable base zoom. Working from the other direction.\n");
if (gamma == 0) {
fprintf(stderr, "You might want to try -g1 to limit near-duplicates.\n");
}
if (droprate < 0) {
if (maxzoom == 0) {
droprate = 2.5;
} else {
droprate = exp(log((long double) max[0].count / max[maxzoom].count) / (maxzoom));
fprintf(stderr, "Choosing a drop rate of -r%f to get from %lld to %lld in %d zooms\n", droprate, max[maxzoom].count, max[0].count, maxzoom);
}
}
basezoom = 0;
for (z = 0; z <= maxzoom; z++) {
double zoomdiff = log((long double) max[z].count / max_features) / log(droprate);
if (zoomdiff + z > basezoom) {
basezoom = ceil(zoomdiff + z);
}
}
fprintf(stderr, "Choosing a base zoom of -B%d to keep %f features in tile %d/%u/%u.\n", basezoom, max[maxzoom].count * exp(log(droprate) * (maxzoom - basezoom)), maxzoom, max[maxzoom].x, max[maxzoom].y);
} else if (droprate < 0) {
droprate = 1;
for (z = basezoom - 1; z >= 0; z--) {
double interval = exp(log(droprate) * (basezoom - z));
if (max[z].count / interval >= max_features) {
interval = (long double) max[z].count / max_features;
droprate = exp(log(interval) / (basezoom - z));
interval = exp(log(droprate) * (basezoom - z));
fprintf(stderr, "Choosing a drop rate of -r%f to keep %f features in tile %d/%u/%u.\n", droprate, max[z].count / interval, z, max[z].x, max[z].y);
}
}
}
if (gamma > 0) {
int effective = 0;
for (z = 0; z < maxzoom; z++) {
if (max[z].count < max[z].fullcount) {
effective = z + 1;
}
}
if (effective == 0) {
fprintf(stderr, "With gamma, effective base zoom is 0, so no effective drop rate\n");
} else {
double interval_0 = exp(log(droprate) * (basezoom - 0));
double interval_eff = exp(log(droprate) * (basezoom - effective));
if (effective > basezoom) {
interval_eff = 1;
}
double scaled_0 = max[0].count / interval_0;
double scaled_eff = max[effective].count / interval_eff;
double rate_at_0 = scaled_0 / max[0].fullcount;
double rate_at_eff = scaled_eff / max[effective].fullcount;
double eff_drop = exp(log(rate_at_eff / rate_at_0) / (effective - 0));
fprintf(stderr, "With gamma, effective base zoom of %d, effective drop rate of %f\n", effective, eff_drop);
}
}
munmap(map, indexpos);
}
/* Copy geometries to a new file in index order */
struct index *index_map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0);
if (index_map == MAP_FAILED) {
perror("mmap index");
exit(EXIT_FAILURE);
}
unlink(indexname);
for (i = 0; i < CPUS; i++) {
reader[i].geom_map = NULL;
if (reader[i].geomst.st_size > 0) {
reader[i].geom_map = mmap(NULL, reader[i].geomst.st_size, PROT_READ, MAP_PRIVATE, reader[i].geomfd, 0);
if (reader[i].geom_map == MAP_FAILED) {
perror("mmap unsorted geometry");
exit(EXIT_FAILURE);
}
}
if (close(reader[i].geomfd) != 0) {
perror("close unsorted geometry");
}
}
char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1];
FILE *geomfile;
int geomfd;
long long geompos = 0;
struct stat geomst;
sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX");
geomfd = mkstemp(geomname);
if (geomfd < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
geomfile = fopen(geomname, "wb");
if (geomfile == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
{
geompos = 0;
/* initial tile is 0/0/0 */
serialize_int(geomfile, 0, &geompos, fname);
serialize_uint(geomfile, 0, &geompos, fname);
serialize_uint(geomfile, 0, &geompos, fname);
long long i;
long long sum = 0;
long long progress = 0;
for (i = 0; i < indexpos / sizeof(struct index); i++) {
fwrite_check(reader[index_map[i].segment].geom_map + index_map[i].start, sizeof(char), index_map[i].end - index_map[i].start, geomfile, fname);
sum += index_map[i].end - index_map[i].start;
long long p = 1000 * i / (indexpos / sizeof(struct index));
if (p != progress) {
if (!quiet) {
fprintf(stderr, "Reordering geometry: %3.1f%%\r", p / 10.0);
}
progress = p;
}
}
/* end of tile */
serialize_byte(geomfile, -2, &geompos, fname);
fclose(geomfile);
}
if (munmap(index_map, indexpos) != 0) {
perror("unmap sorted index");
}
for (i = 0; i < CPUS; i++) {
if (munmap(reader[i].geom_map, reader[i].geomst.st_size) != 0) {
perror("unmap unsorted geometry");
}
}
if (close(indexfd) != 0) {
perror("close sorted index");
}
/* Traverse and split the geometries for each zoom level */
geomfd = open(geomname, O_RDONLY);
if (geomfd < 0) {
perror("reopen sorted geometry");
exit(EXIT_FAILURE);
}
unlink(geomname);
if (fstat(geomfd, &geomst) != 0) {
perror("stat sorted geom\n");
exit(EXIT_FAILURE);
}
int fd[TEMP_FILES];
off_t size[TEMP_FILES];
fd[0] = geomfd;
size[0] = geomst.st_size;
int j;
for (j = 1; j < TEMP_FILES; j++) {
fd[j] = -1;
size[j] = 0;
}
if (!quiet) {
for (i = 0; i < CPUS; i++) {
fprintf(stderr, "%lld features, %lld bytes of geometry, %lld bytes of metadata, %lld bytes of string pool\n", seq, (long long) reader[i].geomst.st_size, (long long) reader[i].metast.st_size, reader[i].poolfile->off);
}
}
// Create a combined string pool and a combined metadata file
// but keep track of the offsets into it since we still need
// segment+offset to find the data.
long long pool_off[CPUS];
long long meta_off[CPUS];
char poolname[strlen(tmpdir) + strlen("/pool.XXXXXXXX") + 1];
sprintf(poolname, "%s%s", tmpdir, "/pool.XXXXXXXX");
int poolfd = mkstemp(poolname);
if (poolfd < 0) {
perror(poolname);
exit(EXIT_FAILURE);
}
FILE *poolfile = fopen(poolname, "wb");
if (poolfile == NULL) {
perror(poolname);
exit(EXIT_FAILURE);
}
unlink(poolname);
char metaname[strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1];
sprintf(metaname, "%s%s", tmpdir, "/meta.XXXXXXXX");
int metafd = mkstemp(metaname);
if (metafd < 0) {
perror(metaname);
exit(EXIT_FAILURE);
}
FILE *metafile = fopen(metaname, "wb");
if (metafile == NULL) {
perror(metaname);
exit(EXIT_FAILURE);
}
unlink(metaname);
long long metapos = 0;
long long poolpos = 0;
for (i = 0; i < CPUS; i++) {
if (reader[i].metapos > 0) {
void *map = mmap(NULL, reader[i].metapos, PROT_READ, MAP_PRIVATE, reader[i].metafd, 0);
if (map == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
if (fwrite(map, reader[i].metapos, 1, metafile) != 1) {
perror("Reunify meta");
exit(EXIT_FAILURE);
}
munmap(map, reader[i].metapos);
}
meta_off[i] = metapos;
metapos += reader[i].metapos;
close(reader[i].metafd);
if (reader[i].poolfile->off > 0) {
if (fwrite(reader[i].poolfile->map, reader[i].poolfile->off, 1, poolfile) != 1) {
perror("Reunify string pool");
exit(EXIT_FAILURE);
}
}
pool_off[i] = poolpos;
poolpos += reader[i].poolfile->off;
memfile_close(reader[i].poolfile);
}
fclose(poolfile);
fclose(metafile);
char *meta = (char *) mmap(NULL, metapos, PROT_READ, MAP_PRIVATE, metafd, 0);
if (meta == MAP_FAILED) {
perror("mmap meta");
exit(EXIT_FAILURE);
}
char *stringpool = NULL;
if (poolpos > 0) { // Will be 0 if -X was specified
stringpool = (char *) mmap(NULL, poolpos, PROT_READ, MAP_PRIVATE, poolfd, 0);
if (stringpool == MAP_FAILED) {
perror("mmap string pool");
exit(EXIT_FAILURE);
}
}
unsigned midx = 0, midy = 0;
int written = traverse_zooms(fd, size, meta, stringpool, file_keys, &midx, &midy, layernames, maxzoom, minzoom, basezoom, outdb, droprate, buffer, fname, tmpdir, gamma, nlayers, prevent, additional, full_detail, low_detail, min_detail, meta_off, pool_off);
if (maxzoom != written) {
fprintf(stderr, "\n\n\n*** NOTE TILES ONLY COMPLETE THROUGH ZOOM %d ***\n\n\n", written);
maxzoom = written;
ret = EXIT_FAILURE;
}
if (munmap(meta, metapos) != 0) {
perror("munmap meta");
}
if (close(metafd) < 0) {
perror("close meta");
}
if (munmap(stringpool, poolpos) != 0) {
perror("munmap stringpool");
}
if (close(poolfd) < 0) {
perror("close pool");
}
double minlat = 0, minlon = 0, maxlat = 0, maxlon = 0, midlat = 0, midlon = 0;
tile2latlon(midx, midy, maxzoom, &maxlat, &minlon);
tile2latlon(midx + 1, midy + 1, maxzoom, &minlat, &maxlon);
midlat = (maxlat + minlat) / 2;
midlon = (maxlon + minlon) / 2;
long long file_bbox[4] = { UINT_MAX, UINT_MAX, 0, 0 };
for (i = 0; i < CPUS; i++) {
if (reader[i].file_bbox[0] < file_bbox[0]) {
file_bbox[0] = reader[i].file_bbox[0];
}
if (reader[i].file_bbox[1] < file_bbox[1]) {
file_bbox[1] = reader[i].file_bbox[1];
}
if (reader[i].file_bbox[2] > file_bbox[2]) {
file_bbox[2] = reader[i].file_bbox[2];
}
if (reader[i].file_bbox[3] > file_bbox[3]) {
file_bbox[3] = reader[i].file_bbox[3];
}
}
// If the bounding box extends off the plane on either side,
// a feature wrapped across the date line, so the width of the
// bounding box is the whole world.
if (file_bbox[0] < 0) {
file_bbox[0] = 0;
file_bbox[2] = (1LL << 32) - 1;
}
if (file_bbox[2] > (1LL << 32) - 1) {
file_bbox[0] = 0;
file_bbox[2] = (1LL << 32) - 1;
}
if (file_bbox[1] < 0) {
file_bbox[1] = 0;
}
if (file_bbox[3] > (1LL << 32) - 1) {
file_bbox[3] = (1LL << 32) - 1;
}
tile2latlon(file_bbox[0], file_bbox[1], 32, &maxlat, &minlon);
tile2latlon(file_bbox[2], file_bbox[3], 32, &minlat, &maxlon);
if (midlat < minlat) {
midlat = minlat;
}
if (midlat > maxlat) {
midlat = maxlat;
}
if (midlon < minlon) {
midlon = minlon;
}
if (midlon > maxlon) {
midlon = maxlon;
}
mbtiles_write_metadata(outdb, fname, layernames, minzoom, maxzoom, minlat, minlon, maxlat, maxlon, midlat, midlon, file_keys, nlayers);
for (i = 0; i < nlayers; i++) {
pool_free_strings(&file_keys1[i]);
free(layernames[i]);
}
return ret;
}
int main(int argc, char **argv) {
#ifdef MTRACE
mtrace();
#endif
init_cpus();
extern int optind;
extern char *optarg;
int i;
char *name = NULL;
char *layer = NULL;
char *outdir = NULL;
int maxzoom = 14;
int minzoom = 0;
int basezoom = -1;
double basezoom_marker_width = 1;
int force = 0;
double droprate = 2.5;
double gamma = 0;
int buffer = 5;
const char *tmpdir = "/tmp";
char prevent[256];
char additional[256];
struct pool exclude, include;
pool_init(&exclude, 0);
pool_init(&include, 0);
int exclude_all = 0;
for (i = 0; i < 256; i++) {
prevent[i] = 0;
additional[i] = 0;
}
while ((i = getopt(argc, argv, "l:n:z:Z:d:D:m:o:x:y:r:b:fXt:g:p:vqa:B:")) != -1) {
switch (i) {
case 'n':
name = optarg;
break;
case 'l':
layer = optarg;
break;
case 'z':
maxzoom = atoi(optarg);
break;
case 'Z':
minzoom = atoi(optarg);
break;
case 'B':
if (strcmp(optarg, "g") == 0) {
basezoom = -2;
basezoom_marker_width = 1;
} else if (optarg[0] == 'g') {
basezoom = -2;
basezoom_marker_width = atof(optarg + 1);
if (basezoom_marker_width == 0) {
fprintf(stderr, "%s: Must specify marker width >0 with -Bg\n", argv[0]);
exit(EXIT_FAILURE);
}
} else {
basezoom = atoi(optarg);
if (basezoom == 0 && strcmp(optarg, "0") != 0) {
fprintf(stderr, "%s: Couldn't understand -B%s\n", argv[0], optarg);
exit(EXIT_FAILURE);
}
}
break;
case 'd':
full_detail = atoi(optarg);
break;
case 'D':
low_detail = atoi(optarg);
break;
case 'm':
min_detail = atoi(optarg);
break;
case 'o':
outdir = optarg;
break;
case 'x':
pool(&exclude, optarg, VT_STRING);
break;
case 'y':
exclude_all = 1;
pool(&include, optarg, VT_STRING);
break;
case 'X':
exclude_all = 1;
break;
case 'r':
if (strcmp(optarg, "g") == 0) {
droprate = -2;
} else {
droprate = atof(optarg);
}
break;
case 'b':
buffer = atoi(optarg);
break;
case 'f':
force = 1;
break;
case 't':
tmpdir = optarg;
break;
case 'g':
gamma = atof(optarg);
break;
case 'q':
quiet = 1;
break;
case 'p': {
char *cp;
for (cp = optarg; *cp != '\0'; cp++) {
prevent[*cp & 0xFF] = 1;
}
} break;
case 'a': {
char *cp;
for (cp = optarg; *cp != '\0'; cp++) {
additional[*cp & 0xFF] = 1;
}
} break;
case 'v':
fprintf(stderr, VERSION);
exit(EXIT_FAILURE);
default:
fprintf(stderr, "Usage: %s -o out.mbtiles [-n name] [-l layername] [-z maxzoom] [-Z minzoom] [-B basezoom] [-d detail] [-D lower-detail] [-m min-detail] [-x excluded-field ...] [-y included-field ...] [-X] [-r droprate] [-b buffer] [-t tmpdir] [-a rco] [-p sfkld] [-q] [file.json ...]\n", argv[0]);
exit(EXIT_FAILURE);
}
}
if (minzoom > maxzoom) {
fprintf(stderr, "minimum zoom -Z cannot be greater than maxzoom -z\n");
exit(EXIT_FAILURE);
}
if (basezoom == -1) {
basezoom = maxzoom;
}
if (full_detail <= 0) {
full_detail = 12;
}
if (full_detail < min_detail || low_detail < min_detail) {
fprintf(stderr, "%s: Full detail and low detail must be at least minimum detail\n", argv[0]);
exit(EXIT_FAILURE);
}
geometry_scale = 32 - (full_detail + maxzoom);
if ((basezoom < 0 || droprate < 0) && (gamma < 0)) {
// Can't use randomized (as opposed to evenly distributed) dot dropping
// if rate and base aren't known during feature reading.
gamma = 0;
fprintf(stderr, "Forcing -g0 since -B or -r is not known\n");
}
if (outdir == NULL) {
fprintf(stderr, "%s: must specify -o out.mbtiles\n", argv[0]);
exit(EXIT_FAILURE);
}
if (force) {
unlink(outdir);
}
sqlite3 *outdb = mbtiles_open(outdir, argv);
int ret = EXIT_SUCCESS;
ret = read_json(argc - optind, argv + optind, name ? name : outdir, layer, maxzoom, minzoom, basezoom, basezoom_marker_width, outdb, &exclude, &include, exclude_all, droprate, buffer, tmpdir, gamma, prevent, additional);
mbtiles_close(outdb, argv);
#ifdef MTRACE
muntrace();
#endif
return ret;
}