mirror of
https://github.com/mapbox/tippecanoe.git
synced 2025-01-22 12:28:03 +00:00
1341 lines
35 KiB
C++
1341 lines
35 KiB
C++
#include <iostream>
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <stack>
|
|
#include <vector>
|
|
#include <map>
|
|
#include <set>
|
|
#include <algorithm>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <limits.h>
|
|
#include <zlib.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
#include <math.h>
|
|
#include <sqlite3.h>
|
|
#include <pthread.h>
|
|
#include <errno.h>
|
|
#include "vector_tile.pb.h"
|
|
#include "geometry.hh"
|
|
|
|
extern "C" {
|
|
#include "tile.h"
|
|
#include "pool.h"
|
|
#include "clip.h"
|
|
#include "mbtiles.h"
|
|
#include "projection.h"
|
|
}
|
|
|
|
#define CMD_BITS 3
|
|
|
|
#define XSTRINGIFY(s) STRINGIFY(s)
|
|
#define STRINGIFY(s) #s
|
|
|
|
pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
pthread_mutex_t var_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
// https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp
|
|
static inline int compress(std::string const &input, std::string &output) {
|
|
z_stream deflate_s;
|
|
deflate_s.zalloc = Z_NULL;
|
|
deflate_s.zfree = Z_NULL;
|
|
deflate_s.opaque = Z_NULL;
|
|
deflate_s.avail_in = 0;
|
|
deflate_s.next_in = Z_NULL;
|
|
deflateInit2(&deflate_s, Z_BEST_COMPRESSION, Z_DEFLATED, 31, 8, Z_DEFAULT_STRATEGY);
|
|
deflate_s.next_in = (Bytef *) input.data();
|
|
deflate_s.avail_in = input.size();
|
|
size_t length = 0;
|
|
do {
|
|
size_t increase = input.size() / 2 + 1024;
|
|
output.resize(length + increase);
|
|
deflate_s.avail_out = increase;
|
|
deflate_s.next_out = (Bytef *) (output.data() + length);
|
|
int ret = deflate(&deflate_s, Z_FINISH);
|
|
if (ret != Z_STREAM_END && ret != Z_OK && ret != Z_BUF_ERROR) {
|
|
return -1;
|
|
}
|
|
length += (increase - deflate_s.avail_out);
|
|
} while (deflate_s.avail_out == 0);
|
|
deflateEnd(&deflate_s);
|
|
output.resize(length);
|
|
return 0;
|
|
}
|
|
|
|
int to_feature(drawvec &geom, mapnik::vector::tile_feature *feature) {
|
|
int px = 0, py = 0;
|
|
int cmd_idx = -1;
|
|
int cmd = -1;
|
|
int length = 0;
|
|
int drew = 0;
|
|
int i;
|
|
|
|
int n = geom.size();
|
|
for (i = 0; i < n; i++) {
|
|
int op = geom[i].op;
|
|
|
|
if (op != cmd) {
|
|
if (cmd_idx >= 0) {
|
|
if (feature != NULL) {
|
|
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
|
|
}
|
|
}
|
|
|
|
cmd = op;
|
|
length = 0;
|
|
|
|
if (feature != NULL) {
|
|
cmd_idx = feature->geometry_size();
|
|
feature->add_geometry(0);
|
|
}
|
|
}
|
|
|
|
if (op == VT_MOVETO || op == VT_LINETO) {
|
|
long long wwx = geom[i].x;
|
|
long long wwy = geom[i].y;
|
|
|
|
int dx = wwx - px;
|
|
int dy = wwy - py;
|
|
|
|
if (feature != NULL) {
|
|
feature->add_geometry((dx << 1) ^ (dx >> 31));
|
|
feature->add_geometry((dy << 1) ^ (dy >> 31));
|
|
}
|
|
|
|
px = wwx;
|
|
py = wwy;
|
|
length++;
|
|
|
|
if (op == VT_LINETO && (dx != 0 || dy != 0)) {
|
|
drew = 1;
|
|
}
|
|
} else if (op == VT_CLOSEPATH) {
|
|
length++;
|
|
} else {
|
|
fprintf(stderr, "\nInternal error: corrupted geometry\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
if (cmd_idx >= 0) {
|
|
if (feature != NULL) {
|
|
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
|
|
}
|
|
}
|
|
|
|
return drew;
|
|
}
|
|
|
|
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2);
|
|
|
|
struct coalesce {
|
|
int type;
|
|
drawvec geom;
|
|
std::vector<int> meta;
|
|
unsigned long long index;
|
|
unsigned long long index2;
|
|
bool coalesced;
|
|
long long original_seq;
|
|
|
|
bool operator<(const coalesce &o) const {
|
|
int cmp = coalindexcmp(this, &o);
|
|
if (cmp < 0) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct preservecmp {
|
|
bool operator()(const struct coalesce &a, const struct coalesce &b) {
|
|
return a.original_seq < b.original_seq;
|
|
}
|
|
} preservecmp;
|
|
|
|
int coalcmp(const void *v1, const void *v2) {
|
|
const struct coalesce *c1 = (const struct coalesce *) v1;
|
|
const struct coalesce *c2 = (const struct coalesce *) v2;
|
|
|
|
int cmp = c1->type - c2->type;
|
|
if (cmp != 0) {
|
|
return cmp;
|
|
}
|
|
|
|
for (size_t i = 0; i < c1->meta.size() && i < c2->meta.size(); i++) {
|
|
cmp = c1->meta[i] - c2->meta[i];
|
|
|
|
if (cmp != 0) {
|
|
return cmp;
|
|
}
|
|
}
|
|
|
|
if (c1->meta.size() < c2->meta.size()) {
|
|
return -1;
|
|
} else if (c1->meta.size() > c2->meta.size()) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) {
|
|
int cmp = coalcmp((const void *) c1, (const void *) c2);
|
|
|
|
if (cmp == 0) {
|
|
if (c1->index < c2->index) {
|
|
return -1;
|
|
} else if (c1->index > c2->index) {
|
|
return 1;
|
|
}
|
|
|
|
if (c1->index2 > c2->index2) {
|
|
return -1;
|
|
} else if (c1->index2 < c2->index2) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return cmp;
|
|
}
|
|
|
|
struct pool_val *retrieve_string(char **f, struct pool *p, char *stringpool) {
|
|
struct pool_val *ret;
|
|
long long off;
|
|
|
|
deserialize_long_long(f, &off);
|
|
ret = pool(p, stringpool + off + 1, stringpool[off]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void decode_meta(int m, char **meta, char *stringpool, struct pool *keys, struct pool *values, struct pool *file_keys, std::vector<int> *intmeta) {
|
|
int i;
|
|
for (i = 0; i < m; i++) {
|
|
struct pool_val *key = retrieve_string(meta, keys, stringpool);
|
|
struct pool_val *value = retrieve_string(meta, values, stringpool);
|
|
|
|
intmeta->push_back(key->n);
|
|
intmeta->push_back(value->n);
|
|
|
|
if (!is_pooled(file_keys, key->s, value->type)) {
|
|
if (pthread_mutex_lock(&var_lock) != 0) {
|
|
perror("pthread_mutex_lock");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// Dup to retain after munmap
|
|
char *copy = strdup(key->s);
|
|
if (copy == NULL) {
|
|
perror("Out of memory");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
pool(file_keys, copy, value->type);
|
|
|
|
if (pthread_mutex_unlock(&var_lock) != 0) {
|
|
perror("pthread_mutex_unlock");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int is_integer(const char *s, long long *v) {
|
|
errno = 0;
|
|
char *endptr;
|
|
|
|
*v = strtoll(s, &endptr, 0);
|
|
if (*v == 0 && errno != 0) {
|
|
return 0;
|
|
}
|
|
if ((*v == LLONG_MIN || *v == LLONG_MAX) && (errno == ERANGE)) {
|
|
return 0;
|
|
}
|
|
if (*endptr != '\0') {
|
|
// Special case: If it is an integer followed by .0000 or similar,
|
|
// it is still an integer
|
|
|
|
if (*endptr != '.') {
|
|
return 0;
|
|
}
|
|
endptr++;
|
|
for (; *endptr != '\0'; endptr++) {
|
|
if (*endptr != '0') {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
mapnik::vector::tile create_tile(char **layernames, int line_detail, std::vector<std::vector<coalesce> > &features, long long *count, struct pool **keys, struct pool **values, int nlayers) {
|
|
mapnik::vector::tile tile;
|
|
|
|
int i;
|
|
for (i = 0; i < nlayers; i++) {
|
|
if (features[i].size() == 0) {
|
|
continue;
|
|
}
|
|
|
|
mapnik::vector::tile_layer *layer = tile.add_layers();
|
|
|
|
layer->set_name(layernames[i]);
|
|
layer->set_version(1);
|
|
layer->set_extent(1 << line_detail);
|
|
|
|
for (size_t x = 0; x < features[i].size(); x++) {
|
|
if (features[i][x].type == VT_LINE || features[i][x].type == VT_POLYGON) {
|
|
features[i][x].geom = remove_noop(features[i][x].geom, features[i][x].type, 0);
|
|
}
|
|
|
|
mapnik::vector::tile_feature *feature = layer->add_features();
|
|
|
|
if (features[i][x].type == VT_POINT) {
|
|
feature->set_type(mapnik::vector::tile::Point);
|
|
} else if (features[i][x].type == VT_LINE) {
|
|
feature->set_type(mapnik::vector::tile::LineString);
|
|
} else if (features[i][x].type == VT_POLYGON) {
|
|
feature->set_type(mapnik::vector::tile::Polygon);
|
|
} else {
|
|
feature->set_type(mapnik::vector::tile::Unknown);
|
|
}
|
|
|
|
to_feature(features[i][x].geom, feature);
|
|
*count += features[i][x].geom.size();
|
|
|
|
for (size_t y = 0; y < features[i][x].meta.size(); y++) {
|
|
feature->add_tags(features[i][x].meta[y]);
|
|
}
|
|
}
|
|
|
|
struct pool_val *pv;
|
|
for (pv = keys[i]->head; pv != NULL; pv = pv->next) {
|
|
layer->add_keys(pv->s, strlen(pv->s));
|
|
}
|
|
for (pv = values[i]->head; pv != NULL; pv = pv->next) {
|
|
mapnik::vector::tile_value *tv = layer->add_values();
|
|
|
|
if (pv->type == VT_NUMBER) {
|
|
long long v;
|
|
if (is_integer(pv->s, &v)) {
|
|
if (v >= 0) {
|
|
tv->set_int_value(v);
|
|
} else {
|
|
tv->set_sint_value(v);
|
|
}
|
|
} else {
|
|
tv->set_double_value(atof(pv->s));
|
|
}
|
|
} else if (pv->type == VT_BOOLEAN) {
|
|
tv->set_bool_value(pv->s[0] == 't');
|
|
} else {
|
|
tv->set_string_value(pv->s);
|
|
}
|
|
}
|
|
}
|
|
|
|
return tile;
|
|
}
|
|
|
|
struct sll {
|
|
char *name;
|
|
long long val;
|
|
|
|
bool operator<(const sll &o) const {
|
|
if (this->val < o.val) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
sll(char *name, long long val) {
|
|
this->name = name;
|
|
this->val = val;
|
|
}
|
|
};
|
|
|
|
void rewrite(drawvec &geom, int z, int nextzoom, int maxzoom, long long *bbox, unsigned tx, unsigned ty, int buffer, int line_detail, int *within, long long *geompos, FILE **geomfile, const char *fname, signed char t, int layer, long long metastart, signed char feature_minzoom, int child_shards, int max_zoom_increment, long long seq, int tippecanoe_minzoom, int tippecanoe_maxzoom, int segment, unsigned *initial_x, unsigned *initial_y, int m) {
|
|
if (geom.size() > 0 && nextzoom <= maxzoom) {
|
|
int xo, yo;
|
|
int span = 1 << (nextzoom - z);
|
|
|
|
// Get the feature bounding box in pixel (256) coordinates at the child zoom
|
|
// in order to calculate which sub-tiles it can touch including the buffer.
|
|
long long bbox2[4];
|
|
int k;
|
|
for (k = 0; k < 4; k++) {
|
|
// Division instead of right-shift because coordinates can be negative
|
|
bbox2[k] = bbox[k] / (1 << (32 - nextzoom - 8));
|
|
}
|
|
// Decrement the top and left edges so that any features that are
|
|
// touching the edge can potentially be included in the adjacent tiles too.
|
|
bbox2[0] -= buffer + 1;
|
|
bbox2[1] -= buffer + 1;
|
|
bbox2[2] += buffer;
|
|
bbox2[3] += buffer;
|
|
|
|
for (k = 0; k < 4; k++) {
|
|
if (bbox2[k] < 0) {
|
|
bbox2[k] = 0;
|
|
}
|
|
if (bbox2[k] >= 256 * span) {
|
|
bbox2[k] = 256 * (span - 1);
|
|
}
|
|
|
|
bbox2[k] /= 256;
|
|
}
|
|
|
|
for (xo = bbox2[0]; xo <= bbox2[2]; xo++) {
|
|
for (yo = bbox2[1]; yo <= bbox2[3]; yo++) {
|
|
unsigned jx = tx * span + xo;
|
|
unsigned jy = ty * span + yo;
|
|
|
|
// j is the shard that the child tile's data is being written to.
|
|
//
|
|
// Be careful: We can't jump more zoom levels than max_zoom_increment
|
|
// because that could break the constraint that each of the children
|
|
// of the current tile must have its own shard, because the data for
|
|
// the child tile must be contiguous within the shard.
|
|
//
|
|
// But it's OK to spread children across all the shards, not just
|
|
// the four that would normally result from splitting one tile,
|
|
// because it will go through all the shards when it does the
|
|
// next zoom.
|
|
//
|
|
// If child_shards is a power of 2 but not a power of 4, this will
|
|
// shard X more widely than Y. XXX Is there a better way to do this
|
|
// without causing collisions?
|
|
|
|
int j = ((jx << max_zoom_increment) |
|
|
((jy & ((1 << max_zoom_increment) - 1)))) &
|
|
(child_shards - 1);
|
|
|
|
{
|
|
if (!within[j]) {
|
|
serialize_int(geomfile[j], nextzoom, &geompos[j], fname);
|
|
serialize_uint(geomfile[j], tx * span + xo, &geompos[j], fname);
|
|
serialize_uint(geomfile[j], ty * span + yo, &geompos[j], fname);
|
|
within[j] = 1;
|
|
}
|
|
|
|
// Offset from tile coordinates back to world coordinates
|
|
unsigned sx = 0, sy = 0;
|
|
if (z != 0) {
|
|
sx = tx << (32 - z);
|
|
sy = ty << (32 - z);
|
|
}
|
|
|
|
// printf("type %d, meta %lld\n", t, metastart);
|
|
serialize_byte(geomfile[j], t, &geompos[j], fname);
|
|
serialize_long_long(geomfile[j], seq, &geompos[j], fname);
|
|
serialize_long_long(geomfile[j], (layer << 2) | ((tippecanoe_minzoom != -1) << 1) | (tippecanoe_maxzoom != -1), &geompos[j], fname);
|
|
if (tippecanoe_minzoom != -1) {
|
|
serialize_int(geomfile[j], tippecanoe_minzoom, geompos, fname);
|
|
}
|
|
if (tippecanoe_maxzoom != -1) {
|
|
serialize_int(geomfile[j], tippecanoe_maxzoom, geompos, fname);
|
|
}
|
|
serialize_int(geomfile[j], segment, &geompos[j], fname);
|
|
serialize_long_long(geomfile[j], metastart, &geompos[j], fname);
|
|
serialize_int(geomfile[j], m, &geompos[j], fname);
|
|
long long wx = initial_x[segment], wy = initial_y[segment];
|
|
|
|
for (size_t u = 0; u < geom.size(); u++) {
|
|
serialize_byte(geomfile[j], geom[u].op, &geompos[j], fname);
|
|
|
|
if (geom[u].op != VT_CLOSEPATH) {
|
|
serialize_long_long(geomfile[j], ((geom[u].x + sx) >> geometry_scale) - (wx >> geometry_scale), &geompos[j], fname);
|
|
serialize_long_long(geomfile[j], ((geom[u].y + sy) >> geometry_scale) - (wy >> geometry_scale), &geompos[j], fname);
|
|
wx = geom[u].x + sx;
|
|
wy = geom[u].y + sy;
|
|
}
|
|
}
|
|
|
|
serialize_byte(geomfile[j], VT_END, &geompos[j], fname);
|
|
serialize_byte(geomfile[j], feature_minzoom, &geompos[j], fname);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct partial {
|
|
std::vector<drawvec> geoms;
|
|
long long layer;
|
|
int m;
|
|
char *meta;
|
|
signed char t;
|
|
int segment;
|
|
long long original_seq;
|
|
bool reduced;
|
|
unsigned long long index;
|
|
unsigned long long index2;
|
|
int z;
|
|
int line_detail;
|
|
int *prevent;
|
|
int *additional;
|
|
int maxzoom;
|
|
};
|
|
|
|
struct partial_arg {
|
|
std::vector<struct partial> *partials;
|
|
int task;
|
|
int tasks;
|
|
};
|
|
|
|
void *partial_feature_worker(void *v) {
|
|
struct partial_arg *a = (struct partial_arg *) v;
|
|
std::vector<struct partial> *partials = a->partials;
|
|
|
|
for (size_t i = a->task; i < (*partials).size(); i += a->tasks) {
|
|
drawvec geom = (*partials)[i].geoms[0]; // XXX assumption of a single geometry at the beginning
|
|
(*partials)[i].geoms.clear(); // avoid keeping two copies in memory
|
|
signed char t = (*partials)[i].t;
|
|
int z = (*partials)[i].z;
|
|
int line_detail = (*partials)[i].line_detail;
|
|
int *prevent = (*partials)[i].prevent;
|
|
int *additional = (*partials)[i].additional;
|
|
int maxzoom = (*partials)[i].maxzoom;
|
|
|
|
if ((t == VT_LINE || t == VT_POLYGON) && !(prevent[P_SIMPLIFY] || (z == maxzoom && prevent[P_SIMPLIFY_LOW]))) {
|
|
if (1 /* !reduced */) { // XXX why did this not simplify if reduced?
|
|
if (t == VT_LINE) {
|
|
geom = remove_noop(geom, t, 32 - z - line_detail);
|
|
}
|
|
|
|
geom = simplify_lines(geom, z, line_detail);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
if (t == VT_LINE && z != basezoom) {
|
|
geom = shrink_lines(geom, z, line_detail, basezoom, &along);
|
|
}
|
|
#endif
|
|
|
|
if (t == VT_LINE && additional[A_REVERSE]) {
|
|
geom = reorder_lines(geom);
|
|
}
|
|
|
|
to_tile_scale(geom, z, line_detail);
|
|
|
|
std::vector<drawvec> geoms;
|
|
geoms.push_back(geom);
|
|
|
|
if (t == VT_POLYGON && !prevent[P_POLYGON_SPLIT]) {
|
|
geoms = chop_polygon(geoms);
|
|
}
|
|
|
|
if (t == VT_POLYGON) {
|
|
// Scaling may have made the polygon degenerate.
|
|
// Give Clipper a chance to try to fix it.
|
|
for (size_t i = 0; i < geoms.size(); i++) {
|
|
geoms[i] = clean_or_clip_poly(geoms[i], 0, 0, 0, false);
|
|
geoms[i] = close_poly(geoms[i]);
|
|
}
|
|
}
|
|
|
|
// Worth skipping this if not coalescing anyway?
|
|
if (geoms.size() > 0 && geoms[0].size() > 0) {
|
|
(*partials)[i].index = encode(geoms[0][0].x, geoms[0][0].y);
|
|
(*partials)[i].index2 = encode(geoms[0][geoms[0].size() - 1].x, geoms[0][geoms[0].size() - 1].y);
|
|
|
|
// Anything numbered below the start of the line
|
|
// can't possibly be the next feature.
|
|
// We want lowest-but-not-under.
|
|
if ((*partials)[i].index2 < (*partials)[i].index) {
|
|
(*partials)[i].index2 = ~0LL;
|
|
}
|
|
} else {
|
|
(*partials)[i].index = 0;
|
|
(*partials)[i].index2 = 0;
|
|
}
|
|
|
|
(*partials)[i].geoms = geoms;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int manage_gap(unsigned long long index, unsigned long long *previndex, double scale, double gamma, double *gap) {
|
|
if (gamma > 0) {
|
|
if (*gap > 0) {
|
|
if (index == *previndex) {
|
|
return 1; // Exact duplicate: can't fulfil the gap requirement
|
|
}
|
|
|
|
if (exp(log((index - *previndex) / scale) * gamma) >= *gap) {
|
|
// Dot is further from the previous than the nth root of the gap,
|
|
// so produce it, and choose a new gap at the next point.
|
|
*gap = 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
} else {
|
|
*gap = (index - *previndex) / scale;
|
|
|
|
if (*gap == 0) {
|
|
return 1; // Exact duplicate: skip
|
|
} else if (*gap < 1) {
|
|
return 1; // Narrow dot spacing: need to stretch out
|
|
} else {
|
|
*gap = 0; // Wider spacing than minimum: so pass through unchanged
|
|
}
|
|
}
|
|
|
|
*previndex = index;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
long long write_tile(char **geoms, char *metabase, char *stringpool, int z, unsigned tx, unsigned ty, int detail, int min_detail, int basezoom, struct pool **file_keys, char **layernames, sqlite3 *outdb, double droprate, int buffer, const char *fname, FILE **geomfile, int minzoom, int maxzoom, double todo, char *geomstart, volatile long long *along, double gamma, int nlayers, int *prevent, int *additional, int child_shards, long long *meta_off, long long *pool_off, unsigned *initial_x, unsigned *initial_y, volatile int *running) {
|
|
int line_detail;
|
|
double fraction = 1;
|
|
|
|
char *og = *geoms;
|
|
|
|
// XXX is there a way to do this without floating point?
|
|
int max_zoom_increment = log(child_shards) / log(4);
|
|
if (child_shards < 4 || max_zoom_increment < 1) {
|
|
fprintf(stderr, "Internal error: %d shards, max zoom increment %d\n", child_shards, max_zoom_increment);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if ((((child_shards - 1) << 1) & child_shards) != child_shards) {
|
|
fprintf(stderr, "Internal error: %d shards not a power of 2\n", child_shards);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
int nextzoom = z + 1;
|
|
if (nextzoom < minzoom) {
|
|
if (z + max_zoom_increment > minzoom) {
|
|
nextzoom = minzoom;
|
|
} else {
|
|
nextzoom = z + max_zoom_increment;
|
|
}
|
|
}
|
|
|
|
static volatile double oprogress = 0;
|
|
|
|
// This only loops if the tile data didn't fit, in which case the detail
|
|
// goes down and the progress indicator goes backward for the next try.
|
|
for (line_detail = detail; line_detail >= min_detail || line_detail == detail; line_detail--, oprogress = 0) {
|
|
GOOGLE_PROTOBUF_VERIFY_VERSION;
|
|
|
|
struct pool keys1[nlayers], values1[nlayers];
|
|
struct pool *keys[nlayers], *values[nlayers];
|
|
int i;
|
|
for (i = 0; i < nlayers; i++) {
|
|
pool_init(&keys1[i], 0);
|
|
pool_init(&values1[i], 0);
|
|
|
|
keys[i] = &keys1[i];
|
|
values[i] = &values1[i];
|
|
}
|
|
|
|
long long count = 0;
|
|
double accum_area = 0;
|
|
|
|
double interval = 0;
|
|
double seq = 0;
|
|
if (z < basezoom) {
|
|
interval = exp(log(droprate) * (basezoom - z));
|
|
}
|
|
|
|
double fraction_accum = 0;
|
|
|
|
unsigned long long previndex = 0;
|
|
double scale = (double) (1LL << (64 - 2 * (z + 8)));
|
|
double gap = 0;
|
|
|
|
long long original_features = 0;
|
|
long long unclipped_features = 0;
|
|
|
|
std::vector<struct partial> partials;
|
|
std::vector<std::vector<coalesce> > features;
|
|
for (i = 0; i < nlayers; i++) {
|
|
features.push_back(std::vector<coalesce>());
|
|
}
|
|
|
|
int within[child_shards];
|
|
long long geompos[child_shards];
|
|
memset(within, '\0', sizeof(within));
|
|
memset(geompos, '\0', sizeof(geompos));
|
|
|
|
*geoms = og;
|
|
|
|
while (1) {
|
|
signed char t;
|
|
deserialize_byte(geoms, &t);
|
|
if (t < 0) {
|
|
break;
|
|
}
|
|
|
|
long long original_seq;
|
|
deserialize_long_long(geoms, &original_seq);
|
|
|
|
long long layer;
|
|
deserialize_long_long(geoms, &layer);
|
|
int tippecanoe_minzoom = -1, tippecanoe_maxzoom = -1;
|
|
if (layer & 2) {
|
|
deserialize_int(geoms, &tippecanoe_minzoom);
|
|
}
|
|
if (layer & 1) {
|
|
deserialize_int(geoms, &tippecanoe_maxzoom);
|
|
}
|
|
layer >>= 2;
|
|
|
|
int segment;
|
|
deserialize_int(geoms, &segment);
|
|
|
|
long long metastart;
|
|
int m;
|
|
deserialize_long_long(geoms, &metastart);
|
|
deserialize_int(geoms, &m);
|
|
char *meta = metabase + metastart + meta_off[segment];
|
|
long long bbox[4];
|
|
|
|
drawvec geom = decode_geometry(geoms, z, tx, ty, line_detail, bbox, initial_x[segment], initial_y[segment]);
|
|
|
|
signed char feature_minzoom;
|
|
deserialize_byte(geoms, &feature_minzoom);
|
|
|
|
double progress = floor((((*geoms - geomstart + *along) / (double) todo) + z) / (maxzoom + 1) * 1000) / 10;
|
|
if (progress >= oprogress + 0.1) {
|
|
if (!quiet) {
|
|
fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty);
|
|
}
|
|
oprogress = progress;
|
|
}
|
|
|
|
original_features++;
|
|
|
|
if (z == 0 && t == VT_POLYGON) {
|
|
geom = fix_polygon(geom);
|
|
}
|
|
|
|
int quick = quick_check(bbox, z, line_detail, buffer);
|
|
if (quick == 0) {
|
|
continue;
|
|
}
|
|
|
|
if (z == 0) {
|
|
if (bbox[0] < 0 || bbox[2] > 1LL << 32) {
|
|
// If the geometry extends off the edge of the world, concatenate on another copy
|
|
// shifted by 360 degrees, and then make sure both copies get clipped down to size.
|
|
|
|
size_t n = geom.size();
|
|
|
|
if (bbox[0] < 0) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
geom.push_back(draw(geom[i].op, geom[i].x + (1LL << 32), geom[i].y));
|
|
}
|
|
}
|
|
|
|
if (bbox[2] > 1LL << 32) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
geom.push_back(draw(geom[i].op, geom[i].x - (1LL << 32), geom[i].y));
|
|
}
|
|
}
|
|
|
|
bbox[0] = 0;
|
|
bbox[2] = 1LL << 32;
|
|
|
|
quick = -1;
|
|
}
|
|
}
|
|
|
|
if (quick != 1) {
|
|
if (t == VT_LINE) {
|
|
geom = clip_lines(geom, z, line_detail, buffer);
|
|
}
|
|
if (t == VT_POLYGON) {
|
|
geom = simple_clip_poly(geom, z, line_detail, buffer);
|
|
}
|
|
if (t == VT_POINT) {
|
|
geom = clip_point(geom, z, line_detail, buffer);
|
|
}
|
|
|
|
geom = remove_noop(geom, t, 0);
|
|
}
|
|
|
|
if (geom.size() > 0) {
|
|
unclipped_features++;
|
|
}
|
|
|
|
if (line_detail == detail && fraction == 1) { /* only write out the next zoom once, even if we retry */
|
|
rewrite(geom, z, nextzoom, maxzoom, bbox, tx, ty, buffer, line_detail, within, geompos, geomfile, fname, t, layer, metastart, feature_minzoom, child_shards, max_zoom_increment, original_seq, tippecanoe_minzoom, tippecanoe_maxzoom, segment, initial_x, initial_y, m);
|
|
}
|
|
|
|
if (z < minzoom) {
|
|
continue;
|
|
}
|
|
|
|
if (tippecanoe_minzoom != -1 && z < tippecanoe_minzoom) {
|
|
continue;
|
|
}
|
|
if (tippecanoe_maxzoom != -1 && z > tippecanoe_maxzoom) {
|
|
continue;
|
|
}
|
|
|
|
if (t == VT_LINE && z + line_detail <= feature_minzoom) {
|
|
continue;
|
|
}
|
|
|
|
if (t == VT_POINT && z < feature_minzoom && gamma < 0) {
|
|
continue;
|
|
}
|
|
|
|
if (gamma >= 0 && (t == VT_POINT || (additional[A_LINE_DROP] && t == VT_LINE))) {
|
|
seq++;
|
|
if (seq >= 0) {
|
|
seq -= interval;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
if (gamma > 0) {
|
|
unsigned long long index = encode(bbox[0] / 2 + bbox[2] / 2, bbox[1] / 2 + bbox[3] / 2);
|
|
if (manage_gap(index, &previndex, scale, gamma, &gap)) {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
fraction_accum += fraction;
|
|
if (fraction_accum < 1) {
|
|
continue;
|
|
}
|
|
fraction_accum -= 1;
|
|
|
|
bool reduced = false;
|
|
if (t == VT_POLYGON) {
|
|
geom = reduce_tiny_poly(geom, z, line_detail, &reduced, &accum_area);
|
|
}
|
|
|
|
if (geom.size() > 0) {
|
|
partial p;
|
|
p.geoms.push_back(geom);
|
|
p.layer = layer;
|
|
p.m = m;
|
|
p.meta = meta;
|
|
p.t = t;
|
|
p.segment = segment;
|
|
p.original_seq = original_seq;
|
|
p.reduced = reduced;
|
|
p.z = z;
|
|
p.line_detail = line_detail;
|
|
p.prevent = prevent;
|
|
p.additional = additional;
|
|
p.maxzoom = maxzoom;
|
|
partials.push_back(p);
|
|
}
|
|
}
|
|
|
|
int tasks = ceil((double) CPUS / *running);
|
|
if (tasks < 1) {
|
|
tasks = 1;
|
|
}
|
|
|
|
pthread_t pthreads[tasks];
|
|
partial_arg args[tasks];
|
|
for (int i = 0; i < tasks; i++) {
|
|
args[i].task = i;
|
|
args[i].tasks = tasks;
|
|
args[i].partials = &partials;
|
|
|
|
if (tasks > 1) {
|
|
if (pthread_create(&pthreads[i], NULL, partial_feature_worker, &args[i]) != 0) {
|
|
perror("pthread_create");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
} else {
|
|
partial_feature_worker(&args[i]);
|
|
}
|
|
}
|
|
|
|
if (tasks > 1) {
|
|
for (int i = 0; i < tasks; i++) {
|
|
void *retval;
|
|
|
|
if (pthread_join(pthreads[i], &retval) != 0) {
|
|
perror("pthread_join");
|
|
}
|
|
}
|
|
}
|
|
|
|
// This is serial because decode_meta() unifies duplicates
|
|
for (size_t i = 0; i < partials.size(); i++) {
|
|
std::vector<drawvec> geoms = partials[i].geoms;
|
|
partials[i].geoms.clear(); // avoid keeping two copies in memory
|
|
long long layer = partials[i].layer;
|
|
signed char t = partials[i].t;
|
|
int segment = partials[i].segment;
|
|
long long original_seq = partials[i].original_seq;
|
|
|
|
// A complex polygon may have been split up into multiple geometries.
|
|
// Break them out into multiple features if necessary.
|
|
for (size_t j = 0; j < geoms.size(); j++) {
|
|
if (t == VT_POINT || to_feature(geoms[j], NULL)) {
|
|
struct coalesce c;
|
|
char *meta = partials[i].meta;
|
|
|
|
c.type = t;
|
|
c.index = partials[i].index;
|
|
c.index2 = partials[i].index2;
|
|
c.geom = geoms[j];
|
|
c.coalesced = false;
|
|
c.original_seq = original_seq;
|
|
|
|
decode_meta(partials[i].m, &meta, stringpool + pool_off[segment], keys[layer], values[layer], file_keys[layer], &c.meta);
|
|
features[layer].push_back(c);
|
|
}
|
|
}
|
|
}
|
|
|
|
int j;
|
|
for (j = 0; j < child_shards; j++) {
|
|
if (within[j]) {
|
|
serialize_byte(geomfile[j], -2, &geompos[j], fname);
|
|
within[j] = 0;
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < nlayers; j++) {
|
|
if (additional[A_REORDER]) {
|
|
std::sort(features[j].begin(), features[j].end());
|
|
}
|
|
|
|
std::vector<coalesce> out;
|
|
for (size_t x = 0; x < features[j].size(); x++) {
|
|
size_t y = out.size() - 1;
|
|
|
|
#if 0
|
|
if (out.size() > 0 && coalcmp(&features[j][x], &out[y]) < 0) {
|
|
fprintf(stderr, "\nfeature out of order\n");
|
|
}
|
|
#endif
|
|
|
|
if (additional[A_COALESCE] && out.size() > 0 && out[y].geom.size() + features[j][x].geom.size() < 700 && coalcmp(&features[j][x], &out[y]) == 0 && features[j][x].type != VT_POINT) {
|
|
for (size_t z = 0; z < features[j][x].geom.size(); z++) {
|
|
out[y].geom.push_back(features[j][x].geom[z]);
|
|
}
|
|
out[y].coalesced = true;
|
|
} else {
|
|
out.push_back(features[j][x]);
|
|
}
|
|
}
|
|
|
|
features[j] = out;
|
|
|
|
out.clear();
|
|
for (size_t x = 0; x < features[j].size(); x++) {
|
|
if (features[j][x].coalesced && features[j][x].type == VT_LINE) {
|
|
features[j][x].geom = remove_noop(features[j][x].geom, features[j][x].type, 0);
|
|
features[j][x].geom = simplify_lines(features[j][x].geom, 32, 0);
|
|
}
|
|
|
|
if (features[j][x].geom.size() > 0) {
|
|
out.push_back(features[j][x]);
|
|
}
|
|
}
|
|
features[j] = out;
|
|
|
|
if (prevent[P_INPUT_ORDER]) {
|
|
std::sort(features[j].begin(), features[j].end(), preservecmp);
|
|
}
|
|
}
|
|
|
|
if (z == 0 && unclipped_features < original_features / 2) {
|
|
fprintf(stderr, "\n\nMore than half the features were clipped away at zoom level 0.\n");
|
|
fprintf(stderr, "Is your data in the wrong projection? It should be in WGS84/EPSG:4326.\n");
|
|
}
|
|
|
|
long long totalsize = 0;
|
|
for (j = 0; j < nlayers; j++) {
|
|
totalsize += features[j].size();
|
|
}
|
|
|
|
if (totalsize > 0) {
|
|
if (totalsize > 200000 && !prevent[P_FEATURE_LIMIT]) {
|
|
fprintf(stderr, "tile %d/%u/%u has %lld features, >200000 \n", z, tx, ty, totalsize);
|
|
fprintf(stderr, "Try using -B to set a higher base zoom level.\n");
|
|
return -1;
|
|
}
|
|
|
|
mapnik::vector::tile tile = create_tile(layernames, line_detail, features, &count, keys, values, nlayers);
|
|
|
|
int i;
|
|
for (i = 0; i < nlayers; i++) {
|
|
pool_free(&keys1[i]);
|
|
pool_free(&values1[i]);
|
|
}
|
|
|
|
std::string s;
|
|
std::string compressed;
|
|
|
|
tile.SerializeToString(&s);
|
|
compress(s, compressed);
|
|
|
|
if (compressed.size() > 500000 && !prevent[P_KILOBYTE_LIMIT]) {
|
|
if (!quiet) {
|
|
fprintf(stderr, "tile %d/%u/%u size is %lld with detail %d, >500000 \n", z, tx, ty, (long long) compressed.size(), line_detail);
|
|
}
|
|
|
|
if (prevent[P_DYNAMIC_DROP]) {
|
|
// The 95% is a guess to avoid too many retries
|
|
// and probably actually varies based on how much duplicated metadata there is
|
|
|
|
fraction = fraction * 500000 / compressed.size() * 0.95;
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100);
|
|
}
|
|
line_detail++; // to keep it the same when the loop decrements it
|
|
}
|
|
} else {
|
|
if (pthread_mutex_lock(&db_lock) != 0) {
|
|
perror("pthread_mutex_lock");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
mbtiles_write_tile(outdb, z, tx, ty, compressed.data(), compressed.size());
|
|
|
|
if (pthread_mutex_unlock(&db_lock) != 0) {
|
|
perror("pthread_mutex_unlock");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
} else {
|
|
int i;
|
|
for (i = 0; i < nlayers; i++) {
|
|
pool_free(&keys1[i]);
|
|
pool_free(&values1[i]);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "could not make tile %d/%u/%u small enough\n", z, tx, ty);
|
|
return -1;
|
|
}
|
|
|
|
struct task {
|
|
int fileno;
|
|
struct task *next;
|
|
};
|
|
|
|
struct write_tile_args {
|
|
struct task *tasks;
|
|
char *metabase;
|
|
char *stringpool;
|
|
int min_detail;
|
|
int basezoom;
|
|
struct pool **file_keys;
|
|
char **layernames;
|
|
sqlite3 *outdb;
|
|
double droprate;
|
|
int buffer;
|
|
const char *fname;
|
|
FILE **geomfile;
|
|
double todo;
|
|
volatile long long *along;
|
|
double gamma;
|
|
int nlayers;
|
|
int *prevent;
|
|
int *additional;
|
|
int child_shards;
|
|
int *geomfd;
|
|
off_t *geom_size;
|
|
volatile unsigned *midx;
|
|
volatile unsigned *midy;
|
|
int maxzoom;
|
|
int minzoom;
|
|
int full_detail;
|
|
int low_detail;
|
|
volatile long long *most;
|
|
long long *meta_off;
|
|
long long *pool_off;
|
|
unsigned *initial_x;
|
|
unsigned *initial_y;
|
|
volatile int *running;
|
|
};
|
|
|
|
void *run_thread(void *vargs) {
|
|
write_tile_args *arg = (write_tile_args *) vargs;
|
|
struct task *task;
|
|
|
|
for (task = arg->tasks; task != NULL; task = task->next) {
|
|
int j = task->fileno;
|
|
|
|
if (arg->geomfd[j] < 0) {
|
|
// only one source file for zoom level 0
|
|
continue;
|
|
}
|
|
if (arg->geom_size[j] == 0) {
|
|
continue;
|
|
}
|
|
|
|
// printf("%lld of geom_size\n", (long long) geom_size[j]);
|
|
|
|
char *geom = (char *) mmap(NULL, arg->geom_size[j], PROT_READ, MAP_PRIVATE, arg->geomfd[j], 0);
|
|
if (geom == MAP_FAILED) {
|
|
perror("mmap geom");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
madvise(geom, arg->geom_size[j], MADV_SEQUENTIAL);
|
|
madvise(geom, arg->geom_size[j], MADV_WILLNEED);
|
|
|
|
char *geomstart = geom;
|
|
char *end = geom + arg->geom_size[j];
|
|
char *prevgeom = geom;
|
|
|
|
while (geom < end) {
|
|
int z;
|
|
unsigned x, y;
|
|
|
|
deserialize_int(&geom, &z);
|
|
deserialize_uint(&geom, &x);
|
|
deserialize_uint(&geom, &y);
|
|
|
|
// fprintf(stderr, "%d/%u/%u\n", z, x, y);
|
|
|
|
long long len = write_tile(&geom, arg->metabase, arg->stringpool, z, x, y, z == arg->maxzoom ? arg->full_detail : arg->low_detail, arg->min_detail, arg->basezoom, arg->file_keys, arg->layernames, arg->outdb, arg->droprate, arg->buffer, arg->fname, arg->geomfile, arg->minzoom, arg->maxzoom, arg->todo, geomstart, arg->along, arg->gamma, arg->nlayers, arg->prevent, arg->additional, arg->child_shards, arg->meta_off, arg->pool_off, arg->initial_x, arg->initial_y, arg->running);
|
|
|
|
if (len < 0) {
|
|
int *err = (int *) malloc(sizeof(int));
|
|
if (err == NULL) {
|
|
perror("Out of memory");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
*err = z - 1;
|
|
return err;
|
|
}
|
|
|
|
if (pthread_mutex_lock(&var_lock) != 0) {
|
|
perror("pthread_mutex_lock");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (z == arg->maxzoom) {
|
|
if (len > *arg->most) {
|
|
*arg->midx = x;
|
|
*arg->midy = y;
|
|
*arg->most = len;
|
|
} else if (len == *arg->most) {
|
|
unsigned long long a = (((unsigned long long) x) << 32) | y;
|
|
unsigned long long b = (((unsigned long long) *arg->midx) << 32) | *arg->midy;
|
|
|
|
if (a < b) {
|
|
*arg->midx = x;
|
|
*arg->midy = y;
|
|
*arg->most = len;
|
|
}
|
|
}
|
|
}
|
|
|
|
*arg->along += geom - prevgeom;
|
|
prevgeom = geom;
|
|
|
|
if (pthread_mutex_unlock(&var_lock) != 0) {
|
|
perror("pthread_mutex_unlock");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
if (munmap(geomstart, arg->geom_size[j]) != 0) {
|
|
perror("munmap geom");
|
|
}
|
|
}
|
|
|
|
arg->running--;
|
|
return NULL;
|
|
}
|
|
|
|
int traverse_zooms(int *geomfd, off_t *geom_size, char *metabase, char *stringpool, struct pool **file_keys, unsigned *midx, unsigned *midy, char **layernames, int maxzoom, int minzoom, int basezoom, sqlite3 *outdb, double droprate, int buffer, const char *fname, const char *tmpdir, double gamma, int nlayers, int *prevent, int *additional, int full_detail, int low_detail, int min_detail, long long *meta_off, long long *pool_off, unsigned *initial_x, unsigned *initial_y) {
|
|
int i;
|
|
for (i = 0; i <= maxzoom; i++) {
|
|
long long most = 0;
|
|
|
|
FILE *sub[TEMP_FILES];
|
|
int subfd[TEMP_FILES];
|
|
int j;
|
|
for (j = 0; j < TEMP_FILES; j++) {
|
|
char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX" XSTRINGIFY(INT_MAX)) + 1];
|
|
sprintf(geomname, "%s/geom%d.XXXXXXXX", tmpdir, j);
|
|
subfd[j] = mkstemp(geomname);
|
|
// printf("%s\n", geomname);
|
|
if (subfd[j] < 0) {
|
|
perror(geomname);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
sub[j] = fopen(geomname, "wb");
|
|
if (sub[j] == NULL) {
|
|
perror(geomname);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
unlink(geomname);
|
|
}
|
|
|
|
int useful_threads = 0;
|
|
long long todo = 0;
|
|
long long along = 0;
|
|
for (j = 0; j < TEMP_FILES; j++) {
|
|
todo += geom_size[j];
|
|
if (geom_size[j] > 0) {
|
|
useful_threads++;
|
|
}
|
|
}
|
|
|
|
int threads = CPUS;
|
|
if (threads > TEMP_FILES / 4) {
|
|
threads = TEMP_FILES / 4;
|
|
}
|
|
// XXX is it useful to divide further if we know we are skipping
|
|
// some zoom levels? Is it faster to have fewer CPUs working on
|
|
// sharding, but more deeply, or fewer CPUs, less deeply?
|
|
if (threads > useful_threads) {
|
|
threads = useful_threads;
|
|
}
|
|
// Round down to a power of 2
|
|
threads = 1 << (int) (log(threads) / log(2));
|
|
|
|
// Assign temporary files to threads
|
|
|
|
struct task tasks[TEMP_FILES];
|
|
struct dispatch {
|
|
struct task *tasks;
|
|
long long todo;
|
|
struct dispatch *next;
|
|
} dispatches[threads];
|
|
struct dispatch *dispatch_head = &dispatches[0];
|
|
for (j = 0; j < threads; j++) {
|
|
dispatches[j].tasks = NULL;
|
|
dispatches[j].todo = 0;
|
|
if (j + 1 < threads) {
|
|
dispatches[j].next = &dispatches[j + 1];
|
|
} else {
|
|
dispatches[j].next = NULL;
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < TEMP_FILES; j++) {
|
|
if (geom_size[j] == 0) {
|
|
continue;
|
|
}
|
|
|
|
tasks[j].fileno = j;
|
|
tasks[j].next = dispatch_head->tasks;
|
|
dispatch_head->tasks = &tasks[j];
|
|
dispatch_head->todo += geom_size[j];
|
|
|
|
struct dispatch *here = dispatch_head;
|
|
dispatch_head = dispatch_head->next;
|
|
|
|
dispatch **d;
|
|
for (d = &dispatch_head; *d != NULL; d = &((*d)->next)) {
|
|
if (here->todo < (*d)->todo) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
here->next = *d;
|
|
*d = here;
|
|
}
|
|
|
|
pthread_t pthreads[threads];
|
|
write_tile_args args[threads];
|
|
int running = threads;
|
|
|
|
int thread;
|
|
for (thread = 0; thread < threads; thread++) {
|
|
args[thread].metabase = metabase;
|
|
args[thread].stringpool = stringpool;
|
|
args[thread].min_detail = min_detail;
|
|
args[thread].basezoom = basezoom;
|
|
args[thread].file_keys = file_keys; // locked with var_lock
|
|
args[thread].layernames = layernames;
|
|
args[thread].outdb = outdb; // locked with db_lock
|
|
args[thread].droprate = droprate;
|
|
args[thread].buffer = buffer;
|
|
args[thread].fname = fname;
|
|
args[thread].geomfile = sub + thread * (TEMP_FILES / threads);
|
|
args[thread].todo = todo;
|
|
args[thread].along = &along; // locked with var_lock
|
|
args[thread].gamma = gamma;
|
|
args[thread].nlayers = nlayers;
|
|
args[thread].prevent = prevent;
|
|
args[thread].additional = additional;
|
|
args[thread].child_shards = TEMP_FILES / threads;
|
|
|
|
args[thread].geomfd = geomfd;
|
|
args[thread].geom_size = geom_size;
|
|
args[thread].midx = midx; // locked with var_lock
|
|
args[thread].midy = midy; // locked with var_lock
|
|
args[thread].maxzoom = maxzoom;
|
|
args[thread].minzoom = minzoom;
|
|
args[thread].full_detail = full_detail;
|
|
args[thread].low_detail = low_detail;
|
|
args[thread].most = &most; // locked with var_lock
|
|
args[thread].meta_off = meta_off;
|
|
args[thread].pool_off = pool_off;
|
|
args[thread].initial_x = initial_x;
|
|
args[thread].initial_y = initial_y;
|
|
|
|
args[thread].tasks = dispatches[thread].tasks;
|
|
args[thread].running = &running;
|
|
|
|
if (pthread_create(&pthreads[thread], NULL, run_thread, &args[thread]) != 0) {
|
|
perror("pthread_create");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
int err = INT_MAX;
|
|
|
|
for (thread = 0; thread < threads; thread++) {
|
|
void *retval;
|
|
|
|
if (pthread_join(pthreads[thread], &retval) != 0) {
|
|
perror("pthread_join");
|
|
}
|
|
|
|
if (retval != NULL) {
|
|
err = *((int *) retval);
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < TEMP_FILES; j++) {
|
|
close(geomfd[j]);
|
|
fclose(sub[j]);
|
|
|
|
struct stat geomst;
|
|
if (fstat(subfd[j], &geomst) != 0) {
|
|
perror("stat geom\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
geomfd[j] = subfd[j];
|
|
geom_size[j] = geomst.st_size;
|
|
}
|
|
|
|
if (err != INT_MAX) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (!quiet) {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
return maxzoom;
|
|
}
|