tippecanoe/mapbox/geometry/wagyu/local_minimum_util.hpp
2017-01-04 16:33:43 -08:00

322 lines
12 KiB
C++

#pragma once
#include <mapbox/geometry/wagyu/edge.hpp>
#include <mapbox/geometry/wagyu/local_minimum.hpp>
#ifdef DEBUG
#include <stdexcept>
#endif
namespace mapbox {
namespace geometry {
namespace wagyu {
template <typename T>
inline void reverse_horizontal(edge<T>& e) {
// swap horizontal edges' top and bottom x's so they follow the natural
// progression of the bounds - ie so their xbots will align with the
// adjoining lower edge. [Helpful in the process_horizontal() method.]
std::swap(e.top.x, e.bot.x);
}
// Make a list start on a local maximum by
// shifting all the points not on a local maximum to the
template <typename T>
void start_list_on_local_maximum(edge_list<T>& edges) {
if (edges.size() <= 2) {
return;
}
// Find the first local maximum going forward in the list
auto prev_edge = edges.end();
--prev_edge;
bool prev_edge_is_horizontal = is_horizontal(*prev_edge);
auto edge = edges.begin();
bool edge_is_horizontal;
bool y_decreasing_before_last_horizontal = false; // assume false at start
while (edge != edges.end()) {
edge_is_horizontal = is_horizontal(*edge);
if ((!prev_edge_is_horizontal && !edge_is_horizontal && edge->top == prev_edge->top)) {
break;
}
if (!edge_is_horizontal && prev_edge_is_horizontal) {
if (y_decreasing_before_last_horizontal &&
(edge->top == prev_edge->bot || edge->top == prev_edge->top)) {
break;
}
} else if (!y_decreasing_before_last_horizontal && !prev_edge_is_horizontal &&
edge_is_horizontal &&
(prev_edge->top == edge->top || prev_edge->top == edge->bot)) {
y_decreasing_before_last_horizontal = true;
}
prev_edge_is_horizontal = edge_is_horizontal;
prev_edge = edge;
++edge;
}
std::rotate(edges.begin(), edge, edges.end());
}
template <typename T>
bound<T> create_bound_towards_minimum(edge_list<T>& edges) {
if (edges.size() == 1) {
if (is_horizontal(edges.front())) {
reverse_horizontal(edges.front());
}
bound<T> bnd;
std::swap(bnd.edges, edges);
return bnd;
}
auto next_edge = edges.begin();
auto edge = next_edge;
++next_edge;
bool edge_is_horizontal = is_horizontal(*edge);
if (edge_is_horizontal) {
reverse_horizontal(*edge);
}
bool next_edge_is_horizontal;
bool y_increasing_before_last_horizontal = false; // assume false at start
while (next_edge != edges.end()) {
next_edge_is_horizontal = is_horizontal(*next_edge);
if ((!next_edge_is_horizontal && !edge_is_horizontal && edge->bot == next_edge->bot)) {
break;
}
if (!next_edge_is_horizontal && edge_is_horizontal) {
if (y_increasing_before_last_horizontal &&
(next_edge->bot == edge->bot || next_edge->bot == edge->top)) {
break;
}
} else if (!y_increasing_before_last_horizontal && !edge_is_horizontal &&
next_edge_is_horizontal &&
(edge->bot == next_edge->top || edge->bot == next_edge->bot)) {
y_increasing_before_last_horizontal = true;
}
edge_is_horizontal = next_edge_is_horizontal;
edge = next_edge;
if (edge_is_horizontal) {
reverse_horizontal(*edge);
}
++next_edge;
}
bound<T> bnd;
if (next_edge == edges.end()) {
std::swap(edges, bnd.edges);
} else {
bnd.edges.reserve(std::distance(edges.begin(), next_edge));
std::move(edges.begin(), next_edge, std::back_inserter(bnd.edges));
edges.erase(edges.begin(), next_edge);
}
std::reverse(bnd.edges.begin(), bnd.edges.end());
return bnd;
}
template <typename T>
bound<T> create_bound_towards_maximum(edge_list<T>& edges) {
if (edges.size() == 1) {
bound<T> bnd;
std::swap(bnd.edges, edges);
return bnd;
}
auto next_edge = edges.begin();
auto edge = next_edge;
++next_edge;
bool edge_is_horizontal = is_horizontal(*edge);
bool next_edge_is_horizontal;
bool y_decreasing_before_last_horizontal = false; // assume false at start
while (next_edge != edges.end()) {
next_edge_is_horizontal = is_horizontal(*next_edge);
if ((!next_edge_is_horizontal && !edge_is_horizontal && edge->top == next_edge->top)) {
break;
}
if (!next_edge_is_horizontal && edge_is_horizontal) {
if (y_decreasing_before_last_horizontal &&
(next_edge->top == edge->bot || next_edge->top == edge->top)) {
break;
}
} else if (!y_decreasing_before_last_horizontal && !edge_is_horizontal &&
next_edge_is_horizontal &&
(edge->top == next_edge->top || edge->top == next_edge->bot)) {
y_decreasing_before_last_horizontal = true;
}
edge_is_horizontal = next_edge_is_horizontal;
edge = next_edge;
++next_edge;
}
bound<T> bnd;
if (next_edge == edges.end()) {
std::swap(bnd.edges, edges);
} else {
bnd.edges.reserve(std::distance(edges.begin(), next_edge));
std::move(edges.begin(), next_edge, std::back_inserter(bnd.edges));
edges.erase(edges.begin(), next_edge);
}
return bnd;
}
template <typename T>
void fix_horizontals(bound<T>& bnd) {
auto edge_itr = bnd.edges.begin();
auto next_itr = std::next(edge_itr);
if (next_itr == bnd.edges.end()) {
return;
}
if (is_horizontal(*edge_itr) && next_itr->bot != edge_itr->top) {
reverse_horizontal(*edge_itr);
}
auto prev_itr = edge_itr++;
while (edge_itr != bnd.edges.end()) {
if (is_horizontal(*edge_itr) && prev_itr->top != edge_itr->bot) {
reverse_horizontal(*edge_itr);
}
prev_itr = edge_itr;
++edge_itr;
}
}
template <typename T>
void move_horizontals_on_left_to_right(bound<T>& left_bound, bound<T>& right_bound) {
// We want all the horizontal segments that are at the same Y as the minimum to be on the right
// bound
auto edge_itr = left_bound.edges.begin();
while (edge_itr != left_bound.edges.end()) {
if (!is_horizontal(*edge_itr)) {
break;
}
reverse_horizontal(*edge_itr);
++edge_itr;
}
if (edge_itr == left_bound.edges.begin()) {
return;
}
std::reverse(left_bound.edges.begin(), edge_itr);
auto dist = std::distance(left_bound.edges.begin(), edge_itr);
std::move(left_bound.edges.begin(), edge_itr, std::back_inserter(right_bound.edges));
left_bound.edges.erase(left_bound.edges.begin(), edge_itr);
std::rotate(right_bound.edges.begin(), std::prev(right_bound.edges.end(), dist),
right_bound.edges.end());
}
template <typename T>
void add_ring_to_local_minima_list(edge_list<T>& edges,
local_minimum_list<T>& minima_list,
polygon_type poly_type) {
if (edges.empty()) {
return;
}
// Adjust the order of the ring so we start on a local maximum
// therefore we start right away on a bound.
start_list_on_local_maximum(edges);
bound_ptr<T> first_minimum = nullptr;
bound_ptr<T> last_maximum = nullptr;
while (!edges.empty()) {
bool lm_minimum_has_horizontal = false;
auto to_minimum = create_bound_towards_minimum(edges);
if (edges.empty()) {
throw std::runtime_error("Edges is empty after only creating a single bound.");
}
auto to_maximum = create_bound_towards_maximum(edges);
fix_horizontals(to_minimum);
fix_horizontals(to_maximum);
auto to_max_first_non_horizontal = to_maximum.edges.begin();
auto to_min_first_non_horizontal = to_minimum.edges.begin();
bool minimum_is_left = true;
while (to_max_first_non_horizontal != to_maximum.edges.end() &&
is_horizontal(*to_max_first_non_horizontal)) {
lm_minimum_has_horizontal = true;
++to_max_first_non_horizontal;
}
while (to_min_first_non_horizontal != to_minimum.edges.end() &&
is_horizontal(*to_min_first_non_horizontal)) {
lm_minimum_has_horizontal = true;
++to_min_first_non_horizontal;
}
#ifdef DEBUG
if (to_max_first_non_horizontal == to_maximum.edges.end() ||
to_min_first_non_horizontal == to_minimum.edges.end()) {
throw std::runtime_error("should not have a horizontal only bound for a ring");
}
#endif
if (lm_minimum_has_horizontal) {
if (to_max_first_non_horizontal->bot.x > to_min_first_non_horizontal->bot.x) {
minimum_is_left = true;
move_horizontals_on_left_to_right(to_minimum, to_maximum);
} else {
minimum_is_left = false;
move_horizontals_on_left_to_right(to_maximum, to_minimum);
}
} else {
if (to_max_first_non_horizontal->dx > to_min_first_non_horizontal->dx) {
minimum_is_left = false;
} else {
minimum_is_left = true;
}
}
assert(!to_minimum.edges.empty());
assert(!to_maximum.edges.empty());
auto const& min_front = to_minimum.edges.front();
if (last_maximum) {
to_minimum.maximum_bound = last_maximum;
}
to_minimum.poly_type = poly_type;
to_maximum.poly_type = poly_type;
if (!minimum_is_left) {
to_minimum.side = edge_right;
to_maximum.side = edge_left;
to_minimum.winding_delta = -1;
to_maximum.winding_delta = 1;
minima_list.emplace_back(std::move(to_maximum), std::move(to_minimum), min_front.bot.y,
lm_minimum_has_horizontal);
if (!last_maximum) {
first_minimum = &(minima_list.back().right_bound);
} else {
last_maximum->maximum_bound = &(minima_list.back().right_bound);
}
last_maximum = &(minima_list.back().left_bound);
} else {
to_minimum.side = edge_left;
to_maximum.side = edge_right;
to_minimum.winding_delta = -1;
to_maximum.winding_delta = 1;
minima_list.emplace_back(std::move(to_minimum), std::move(to_maximum), min_front.bot.y,
lm_minimum_has_horizontal);
if (!last_maximum) {
first_minimum = &(minima_list.back().left_bound);
} else {
last_maximum->maximum_bound = &(minima_list.back().left_bound);
}
last_maximum = &(minima_list.back().right_bound);
}
}
last_maximum->maximum_bound = first_minimum;
first_minimum->maximum_bound = last_maximum;
}
template <typename T>
void initialize_lm(local_minimum_ptr_list_itr<T>& lm) {
if (!(*lm)->left_bound.edges.empty()) {
(*lm)->left_bound.current_edge = (*lm)->left_bound.edges.begin();
(*lm)->left_bound.next_edge = std::next((*lm)->left_bound.current_edge);
(*lm)->left_bound.current_x = static_cast<double>((*lm)->left_bound.current_edge->bot.x);
(*lm)->left_bound.winding_count = 0;
(*lm)->left_bound.winding_count2 = 0;
(*lm)->left_bound.side = edge_left;
(*lm)->left_bound.ring = nullptr;
}
if (!(*lm)->right_bound.edges.empty()) {
(*lm)->right_bound.current_edge = (*lm)->right_bound.edges.begin();
(*lm)->right_bound.next_edge = std::next((*lm)->right_bound.current_edge);
(*lm)->right_bound.current_x = static_cast<double>((*lm)->right_bound.current_edge->bot.x);
(*lm)->right_bound.winding_count = 0;
(*lm)->right_bound.winding_count2 = 0;
(*lm)->right_bound.side = edge_right;
(*lm)->right_bound.ring = nullptr;
}
}
}
}
}