mirror of
https://github.com/mapbox/tippecanoe.git
synced 2025-01-22 04:18:01 +00:00
1b26becad9
Now the count is always adjacent to whereever the key/value pair is stored, and is not kept in the serial feature object other than as the length of the vectors of keys and values.
2832 lines
84 KiB
C++
2832 lines
84 KiB
C++
#ifdef __APPLE__
|
|
#define _DARWIN_UNLIMITED_STREAMS
|
|
#endif
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <stack>
|
|
#include <vector>
|
|
#include <map>
|
|
#include <set>
|
|
#include <algorithm>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <limits.h>
|
|
#include <zlib.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
#include <cmath>
|
|
#include <sqlite3.h>
|
|
#include <pthread.h>
|
|
#include <errno.h>
|
|
#include <time.h>
|
|
#include <fcntl.h>
|
|
#include <sys/wait.h>
|
|
#include "mvt.hpp"
|
|
#include "mbtiles.hpp"
|
|
#include "dirtiles.hpp"
|
|
#include "geometry.hpp"
|
|
#include "tile.hpp"
|
|
#include "pool.hpp"
|
|
#include "projection.hpp"
|
|
#include "serial.hpp"
|
|
#include "options.hpp"
|
|
#include "main.hpp"
|
|
#include "write_json.hpp"
|
|
#include "milo/dtoa_milo.h"
|
|
#include "evaluator.hpp"
|
|
|
|
extern "C" {
|
|
#include "jsonpull/jsonpull.h"
|
|
}
|
|
|
|
#include "plugin.hpp"
|
|
|
|
#define CMD_BITS 3
|
|
|
|
#define XSTRINGIFY(s) STRINGIFY(s)
|
|
#define STRINGIFY(s) #s
|
|
|
|
pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
pthread_mutex_t var_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
std::vector<mvt_geometry> to_feature(drawvec &geom) {
|
|
std::vector<mvt_geometry> out;
|
|
|
|
for (size_t i = 0; i < geom.size(); i++) {
|
|
out.push_back(mvt_geometry(geom[i].op, geom[i].x, geom[i].y));
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
bool draws_something(drawvec &geom) {
|
|
for (size_t i = 1; i < geom.size(); i++) {
|
|
if (geom[i].op == VT_LINETO && (geom[i].x != geom[i - 1].x || geom[i].y != geom[i - 1].y)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int metacmp(const std::vector<long long> &keys1, const std::vector<long long> &values1, char *stringpool1, const std::vector<long long> &keys2, const std::vector<long long> &values2, char *stringpool2);
|
|
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2);
|
|
|
|
struct coalesce {
|
|
char *stringpool = NULL;
|
|
std::vector<long long> keys = std::vector<long long>();
|
|
std::vector<long long> values = std::vector<long long>();
|
|
std::vector<std::string> full_keys = std::vector<std::string>();
|
|
std::vector<serial_val> full_values = std::vector<serial_val>();
|
|
drawvec geom = drawvec();
|
|
unsigned long long index = 0;
|
|
long long original_seq = 0;
|
|
int type = 0;
|
|
bool coalesced = false;
|
|
double spacing = 0;
|
|
bool has_id = false;
|
|
unsigned long long id = 0;
|
|
|
|
bool operator<(const coalesce &o) const {
|
|
int cmp = coalindexcmp(this, &o);
|
|
if (cmp < 0) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct preservecmp {
|
|
bool operator()(const struct coalesce &a, const struct coalesce &b) {
|
|
return a.original_seq < b.original_seq;
|
|
}
|
|
} preservecmp;
|
|
|
|
int coalcmp(const void *v1, const void *v2) {
|
|
const struct coalesce *c1 = (const struct coalesce *) v1;
|
|
const struct coalesce *c2 = (const struct coalesce *) v2;
|
|
|
|
int cmp = c1->type - c2->type;
|
|
if (cmp != 0) {
|
|
return cmp;
|
|
}
|
|
|
|
if (c1->has_id != c2->has_id) {
|
|
return (int) c1->has_id - (int) c2->has_id;
|
|
}
|
|
|
|
if (c1->has_id && c2->has_id) {
|
|
if (c1->id < c2->id) {
|
|
return -1;
|
|
}
|
|
if (c1->id > c2->id) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
cmp = metacmp(c1->keys, c1->values, c1->stringpool, c2->keys, c2->values, c2->stringpool);
|
|
if (cmp != 0) {
|
|
return cmp;
|
|
}
|
|
|
|
if (c1->full_keys.size() < c2->full_keys.size()) {
|
|
return -1;
|
|
} else if (c1->full_keys.size() > c2->full_keys.size()) {
|
|
return 1;
|
|
}
|
|
|
|
for (size_t i = 0; i < c1->full_keys.size(); i++) {
|
|
if (c1->full_keys[i] < c1->full_keys[i]) {
|
|
return -1;
|
|
} else if (c1->full_keys[i] > c1->full_keys[i]) {
|
|
return 1;
|
|
}
|
|
|
|
if (c1->full_values[i].type < c1->full_values[i].type) {
|
|
return -1;
|
|
} else if (c1->full_values[i].type > c1->full_values[i].type) {
|
|
return 1;
|
|
}
|
|
|
|
if (c1->full_values[i].s < c1->full_values[i].s) {
|
|
return -1;
|
|
} else if (c1->full_values[i].s > c1->full_values[i].s) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) {
|
|
int cmp = coalcmp((const void *) c1, (const void *) c2);
|
|
|
|
if (cmp == 0) {
|
|
if (c1->index < c2->index) {
|
|
return -1;
|
|
} else if (c1->index > c2->index) {
|
|
return 1;
|
|
}
|
|
|
|
if (c1->geom < c2->geom) {
|
|
return -1;
|
|
} else if (c1->geom > c2->geom) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return cmp;
|
|
}
|
|
|
|
mvt_value retrieve_string(long long off, char *stringpool, int *otype) {
|
|
int type = stringpool[off];
|
|
char *s = stringpool + off + 1;
|
|
|
|
if (otype != NULL) {
|
|
*otype = type;
|
|
}
|
|
|
|
return stringified_to_mvt_value(type, s);
|
|
}
|
|
|
|
void decode_meta(std::vector<long long> const &metakeys, std::vector<long long> const &metavals, char *stringpool, mvt_layer &layer, mvt_feature &feature) {
|
|
size_t i;
|
|
for (i = 0; i < metakeys.size(); i++) {
|
|
int otype;
|
|
mvt_value key = retrieve_string(metakeys[i], stringpool, NULL);
|
|
mvt_value value = retrieve_string(metavals[i], stringpool, &otype);
|
|
|
|
layer.tag(feature, key.string_value, value);
|
|
}
|
|
}
|
|
|
|
static int metacmp(const std::vector<long long> &keys1, const std::vector<long long> &values1, char *stringpool1, const std::vector<long long> &keys2, const std::vector<long long> &values2, char *stringpool2) {
|
|
size_t i;
|
|
for (i = 0; i < keys1.size() && i < keys2.size(); i++) {
|
|
mvt_value key1 = retrieve_string(keys1[i], stringpool1, NULL);
|
|
mvt_value key2 = retrieve_string(keys2[i], stringpool2, NULL);
|
|
|
|
if (key1.string_value < key2.string_value) {
|
|
return -1;
|
|
} else if (key1.string_value > key2.string_value) {
|
|
return 1;
|
|
}
|
|
|
|
long long off1 = values1[i];
|
|
int type1 = stringpool1[off1];
|
|
char *s1 = stringpool1 + off1 + 1;
|
|
|
|
long long off2 = values2[i];
|
|
int type2 = stringpool2[off2];
|
|
char *s2 = stringpool2 + off2 + 1;
|
|
|
|
if (type1 != type2) {
|
|
return type1 - type2;
|
|
}
|
|
int cmp = strcmp(s1, s2);
|
|
if (cmp != 0) {
|
|
return cmp;
|
|
}
|
|
}
|
|
|
|
if (keys1.size() < keys2.size()) {
|
|
return -1;
|
|
} else if (keys1.size() > keys2.size()) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void rewrite(drawvec &geom, int z, int nextzoom, int maxzoom, long long *bbox, unsigned tx, unsigned ty, int buffer, int *within, long long *geompos, FILE **geomfile, const char *fname, signed char t, int layer, long long metastart, signed char feature_minzoom, int child_shards, int max_zoom_increment, long long seq, int tippecanoe_minzoom, int tippecanoe_maxzoom, int segment, unsigned *initial_x, unsigned *initial_y, std::vector<long long> &metakeys, std::vector<long long> &metavals, bool has_id, unsigned long long id, unsigned long long index, long long extent) {
|
|
if (geom.size() > 0 && (nextzoom <= maxzoom || additional[A_EXTEND_ZOOMS])) {
|
|
int xo, yo;
|
|
int span = 1 << (nextzoom - z);
|
|
|
|
// Get the feature bounding box in pixel (256) coordinates at the child zoom
|
|
// in order to calculate which sub-tiles it can touch including the buffer.
|
|
long long bbox2[4];
|
|
int k;
|
|
for (k = 0; k < 4; k++) {
|
|
// Division instead of right-shift because coordinates can be negative
|
|
bbox2[k] = bbox[k] / (1 << (32 - nextzoom - 8));
|
|
}
|
|
// Decrement the top and left edges so that any features that are
|
|
// touching the edge can potentially be included in the adjacent tiles too.
|
|
bbox2[0] -= buffer + 1;
|
|
bbox2[1] -= buffer + 1;
|
|
bbox2[2] += buffer;
|
|
bbox2[3] += buffer;
|
|
|
|
for (k = 0; k < 4; k++) {
|
|
if (bbox2[k] < 0) {
|
|
bbox2[k] = 0;
|
|
}
|
|
if (bbox2[k] >= 256 * span) {
|
|
bbox2[k] = 256 * (span - 1);
|
|
}
|
|
|
|
bbox2[k] /= 256;
|
|
}
|
|
|
|
// Offset from tile coordinates back to world coordinates
|
|
unsigned sx = 0, sy = 0;
|
|
if (z != 0) {
|
|
sx = tx << (32 - z);
|
|
sy = ty << (32 - z);
|
|
}
|
|
|
|
drawvec geom2;
|
|
for (size_t i = 0; i < geom.size(); i++) {
|
|
geom2.push_back(draw(geom[i].op, (geom[i].x + sx) >> geometry_scale, (geom[i].y + sy) >> geometry_scale));
|
|
}
|
|
|
|
for (xo = bbox2[0]; xo <= bbox2[2]; xo++) {
|
|
for (yo = bbox2[1]; yo <= bbox2[3]; yo++) {
|
|
unsigned jx = tx * span + xo;
|
|
unsigned jy = ty * span + yo;
|
|
|
|
// j is the shard that the child tile's data is being written to.
|
|
//
|
|
// Be careful: We can't jump more zoom levels than max_zoom_increment
|
|
// because that could break the constraint that each of the children
|
|
// of the current tile must have its own shard, because the data for
|
|
// the child tile must be contiguous within the shard.
|
|
//
|
|
// But it's OK to spread children across all the shards, not just
|
|
// the four that would normally result from splitting one tile,
|
|
// because it will go through all the shards when it does the
|
|
// next zoom.
|
|
//
|
|
// If child_shards is a power of 2 but not a power of 4, this will
|
|
// shard X more widely than Y. XXX Is there a better way to do this
|
|
// without causing collisions?
|
|
|
|
int j = ((jx << max_zoom_increment) |
|
|
((jy & ((1 << max_zoom_increment) - 1)))) &
|
|
(child_shards - 1);
|
|
|
|
{
|
|
if (!within[j]) {
|
|
serialize_int(geomfile[j], nextzoom, &geompos[j], fname);
|
|
serialize_uint(geomfile[j], tx * span + xo, &geompos[j], fname);
|
|
serialize_uint(geomfile[j], ty * span + yo, &geompos[j], fname);
|
|
within[j] = 1;
|
|
}
|
|
|
|
serial_feature sf;
|
|
sf.layer = layer;
|
|
sf.segment = segment;
|
|
sf.seq = seq;
|
|
sf.t = t;
|
|
sf.has_id = has_id;
|
|
sf.id = id;
|
|
sf.has_tippecanoe_minzoom = tippecanoe_minzoom != -1;
|
|
sf.tippecanoe_minzoom = tippecanoe_minzoom;
|
|
sf.has_tippecanoe_maxzoom = tippecanoe_maxzoom != -1;
|
|
sf.tippecanoe_maxzoom = tippecanoe_maxzoom;
|
|
sf.metapos = metastart;
|
|
sf.geometry = geom2;
|
|
sf.index = index;
|
|
sf.extent = extent;
|
|
sf.feature_minzoom = feature_minzoom;
|
|
|
|
if (metastart < 0) {
|
|
for (size_t i = 0; i < metakeys.size(); i++) {
|
|
sf.keys.push_back(metakeys[i]);
|
|
sf.values.push_back(metavals[i]);
|
|
}
|
|
}
|
|
|
|
serialize_feature(geomfile[j], &sf, &geompos[j], fname, initial_x[segment] >> geometry_scale, initial_y[segment] >> geometry_scale, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct partial {
|
|
std::vector<drawvec> geoms = std::vector<drawvec>();
|
|
std::vector<long long> keys = std::vector<long long>();
|
|
std::vector<long long> values = std::vector<long long>();
|
|
std::vector<std::string> full_keys = std::vector<std::string>();
|
|
std::vector<serial_val> full_values = std::vector<serial_val>();
|
|
std::vector<ssize_t> arc_polygon = std::vector<ssize_t>();
|
|
long long layer = 0;
|
|
long long original_seq = 0;
|
|
unsigned long long index = 0;
|
|
int segment = 0;
|
|
bool reduced = 0;
|
|
int z = 0;
|
|
int line_detail = 0;
|
|
int maxzoom = 0;
|
|
double spacing = 0;
|
|
double simplification = 0;
|
|
signed char t = 0;
|
|
unsigned long long id = 0;
|
|
bool has_id = 0;
|
|
ssize_t renamed = 0;
|
|
long long extent = 0;
|
|
long long clustered = 0;
|
|
std::set<std::string> need_tilestats;
|
|
};
|
|
|
|
struct partial_arg {
|
|
std::vector<struct partial> *partials = NULL;
|
|
int task = 0;
|
|
int tasks = 0;
|
|
};
|
|
|
|
drawvec revive_polygon(drawvec &geom, double area, int z, int detail) {
|
|
// From area in world coordinates to area in tile coordinates
|
|
long long divisor = 1LL << (32 - detail - z);
|
|
area /= divisor * divisor;
|
|
|
|
if (area == 0) {
|
|
return drawvec();
|
|
}
|
|
|
|
int height = ceil(sqrt(area));
|
|
int width = round(area / height);
|
|
if (width == 0) {
|
|
width = 1;
|
|
}
|
|
|
|
long long sx = 0, sy = 0, n = 0;
|
|
for (size_t i = 0; i < geom.size(); i++) {
|
|
if (geom[i].op == VT_MOVETO || geom[i].op == VT_LINETO) {
|
|
sx += geom[i].x;
|
|
sy += geom[i].y;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
if (n > 0) {
|
|
sx /= n;
|
|
sy /= n;
|
|
|
|
drawvec out;
|
|
out.push_back(draw(VT_MOVETO, sx - (width / 2), sy - (height / 2)));
|
|
out.push_back(draw(VT_LINETO, sx - (width / 2) + width, sy - (height / 2)));
|
|
out.push_back(draw(VT_LINETO, sx - (width / 2) + width, sy - (height / 2) + height));
|
|
out.push_back(draw(VT_LINETO, sx - (width / 2), sy - (height / 2) + height));
|
|
out.push_back(draw(VT_LINETO, sx - (width / 2), sy - (height / 2)));
|
|
|
|
return out;
|
|
} else {
|
|
return drawvec();
|
|
}
|
|
}
|
|
|
|
void *partial_feature_worker(void *v) {
|
|
struct partial_arg *a = (struct partial_arg *) v;
|
|
std::vector<struct partial> *partials = a->partials;
|
|
|
|
for (size_t i = a->task; i < (*partials).size(); i += a->tasks) {
|
|
drawvec geom;
|
|
|
|
for (size_t j = 0; j < (*partials)[i].geoms.size(); j++) {
|
|
for (size_t k = 0; k < (*partials)[i].geoms[j].size(); k++) {
|
|
geom.push_back((*partials)[i].geoms[j][k]);
|
|
}
|
|
}
|
|
|
|
(*partials)[i].geoms.clear(); // avoid keeping two copies in memory
|
|
signed char t = (*partials)[i].t;
|
|
int z = (*partials)[i].z;
|
|
int line_detail = (*partials)[i].line_detail;
|
|
int maxzoom = (*partials)[i].maxzoom;
|
|
|
|
if (additional[A_GRID_LOW_ZOOMS] && z < maxzoom) {
|
|
geom = stairstep(geom, z, line_detail);
|
|
}
|
|
|
|
double area = 0;
|
|
if (t == VT_POLYGON) {
|
|
area = get_mp_area(geom);
|
|
}
|
|
|
|
if ((t == VT_LINE || t == VT_POLYGON) && !(prevent[P_SIMPLIFY] || (z == maxzoom && prevent[P_SIMPLIFY_LOW]) || (z < maxzoom && additional[A_GRID_LOW_ZOOMS]))) {
|
|
if (1 /* !reduced */) { // XXX why did this not simplify if reduced?
|
|
if (t == VT_LINE) {
|
|
geom = remove_noop(geom, t, 32 - z - line_detail);
|
|
}
|
|
|
|
bool already_marked = false;
|
|
if (additional[A_DETECT_SHARED_BORDERS] && t == VT_POLYGON) {
|
|
already_marked = true;
|
|
}
|
|
|
|
if (!already_marked) {
|
|
drawvec ngeom = simplify_lines(geom, z, line_detail, !(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), (*partials)[i].simplification, t == VT_POLYGON ? 4 : 0);
|
|
|
|
if (t != VT_POLYGON || ngeom.size() >= 3) {
|
|
geom = ngeom;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
if (t == VT_LINE && z != basezoom) {
|
|
geom = shrink_lines(geom, z, line_detail, basezoom, &along);
|
|
}
|
|
#endif
|
|
|
|
if (t == VT_LINE && additional[A_REVERSE]) {
|
|
geom = reorder_lines(geom);
|
|
}
|
|
|
|
to_tile_scale(geom, z, line_detail);
|
|
|
|
std::vector<drawvec> geoms;
|
|
geoms.push_back(geom);
|
|
|
|
if (t == VT_POLYGON) {
|
|
// Scaling may have made the polygon degenerate.
|
|
// Give Clipper a chance to try to fix it.
|
|
for (size_t g = 0; g < geoms.size(); g++) {
|
|
drawvec before = geoms[g];
|
|
geoms[g] = clean_or_clip_poly(geoms[g], 0, 0, false);
|
|
if (additional[A_DEBUG_POLYGON]) {
|
|
check_polygon(geoms[g]);
|
|
}
|
|
|
|
if (geoms[g].size() < 3) {
|
|
if (area > 0) {
|
|
geoms[g] = revive_polygon(before, area / geoms.size(), z, line_detail);
|
|
} else {
|
|
geoms[g].clear();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
(*partials)[i].index = i;
|
|
(*partials)[i].geoms = geoms;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int manage_gap(unsigned long long index, unsigned long long *previndex, double scale, double gamma, double *gap) {
|
|
if (gamma > 0) {
|
|
if (*gap > 0) {
|
|
if (index == *previndex) {
|
|
return 1; // Exact duplicate: can't fulfil the gap requirement
|
|
}
|
|
|
|
if (index < *previndex || std::exp(std::log((index - *previndex) / scale) * gamma) >= *gap) {
|
|
// Dot is further from the previous than the nth root of the gap,
|
|
// so produce it, and choose a new gap at the next point.
|
|
*gap = 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
} else if (index >= *previndex) {
|
|
*gap = (index - *previndex) / scale;
|
|
|
|
if (*gap == 0) {
|
|
return 1; // Exact duplicate: skip
|
|
} else if (*gap < 1) {
|
|
return 1; // Narrow dot spacing: need to stretch out
|
|
} else {
|
|
*gap = 0; // Wider spacing than minimum: so pass through unchanged
|
|
}
|
|
}
|
|
|
|
*previndex = index;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Does not fix up moveto/lineto
|
|
static drawvec reverse_subring(drawvec const &dv) {
|
|
drawvec out;
|
|
|
|
for (size_t i = dv.size(); i > 0; i--) {
|
|
out.push_back(dv[i - 1]);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
struct edge {
|
|
unsigned x1 = 0;
|
|
unsigned y1 = 0;
|
|
unsigned x2 = 0;
|
|
unsigned y2 = 0;
|
|
unsigned ring = 0;
|
|
|
|
edge(unsigned _x1, unsigned _y1, unsigned _x2, unsigned _y2, unsigned _ring) {
|
|
x1 = _x1;
|
|
y1 = _y1;
|
|
x2 = _x2;
|
|
y2 = _y2;
|
|
ring = _ring;
|
|
}
|
|
|
|
bool operator<(const edge &s) const {
|
|
long long cmp = (long long) y1 - s.y1;
|
|
if (cmp == 0) {
|
|
cmp = (long long) x1 - s.x1;
|
|
}
|
|
if (cmp == 0) {
|
|
cmp = (long long) y2 - s.y2;
|
|
}
|
|
if (cmp == 0) {
|
|
cmp = (long long) x2 - s.x2;
|
|
}
|
|
return cmp < 0;
|
|
}
|
|
};
|
|
|
|
struct edgecmp_ring {
|
|
bool operator()(const edge &a, const edge &b) {
|
|
long long cmp = (long long) a.y1 - b.y1;
|
|
if (cmp == 0) {
|
|
cmp = (long long) a.x1 - b.x1;
|
|
}
|
|
if (cmp == 0) {
|
|
cmp = (long long) a.y2 - b.y2;
|
|
}
|
|
if (cmp == 0) {
|
|
cmp = (long long) a.x2 - b.x2;
|
|
}
|
|
if (cmp == 0) {
|
|
cmp = (long long) a.ring - b.ring;
|
|
}
|
|
return cmp < 0;
|
|
}
|
|
} edgecmp_ring;
|
|
|
|
bool edges_same(std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e1, std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e2) {
|
|
if ((e2.second - e2.first) != (e1.second - e1.first)) {
|
|
return false;
|
|
}
|
|
|
|
while (e1.first != e1.second) {
|
|
if (e1.first->ring != e2.first->ring) {
|
|
return false;
|
|
}
|
|
|
|
++e1.first;
|
|
++e2.first;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool find_common_edges(std::vector<partial> &partials, int z, int line_detail, double simplification, int maxzoom, double merge_fraction) {
|
|
size_t merge_count = ceil((1 - merge_fraction) * partials.size());
|
|
|
|
for (size_t i = 0; i < partials.size(); i++) {
|
|
if (partials[i].t == VT_POLYGON) {
|
|
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
|
|
drawvec &g = partials[i].geoms[j];
|
|
drawvec out;
|
|
|
|
for (size_t k = 0; k < g.size(); k++) {
|
|
if (g[k].op == VT_LINETO && k > 0 && g[k - 1] == g[k]) {
|
|
;
|
|
} else {
|
|
out.push_back(g[k]);
|
|
}
|
|
}
|
|
|
|
partials[i].geoms[j] = out;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Construct a mapping from all polygon edges to the set of rings
|
|
// that each edge appears in. (The ring number is across all polygons;
|
|
// we don't need to look it back up, just to tell where it changes.)
|
|
|
|
std::vector<edge> edges;
|
|
size_t ring = 0;
|
|
for (size_t i = 0; i < partials.size(); i++) {
|
|
if (partials[i].t == VT_POLYGON) {
|
|
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
|
|
for (size_t k = 0; k + 1 < partials[i].geoms[j].size(); k++) {
|
|
if (partials[i].geoms[j][k].op == VT_MOVETO) {
|
|
ring++;
|
|
}
|
|
|
|
if (partials[i].geoms[j][k + 1].op == VT_LINETO) {
|
|
drawvec dv;
|
|
if (partials[i].geoms[j][k] < partials[i].geoms[j][k + 1]) {
|
|
dv.push_back(partials[i].geoms[j][k]);
|
|
dv.push_back(partials[i].geoms[j][k + 1]);
|
|
} else {
|
|
dv.push_back(partials[i].geoms[j][k + 1]);
|
|
dv.push_back(partials[i].geoms[j][k]);
|
|
}
|
|
|
|
edges.push_back(edge(dv[0].x, dv[0].y, dv[1].x, dv[1].y, ring));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::sort(edges.begin(), edges.end(), edgecmp_ring);
|
|
std::set<draw> necessaries;
|
|
|
|
// Now mark all the points where the set of rings using the edge on one side
|
|
// is not the same as the set of rings using the edge on the other side.
|
|
|
|
for (size_t i = 0; i < partials.size(); i++) {
|
|
if (partials[i].t == VT_POLYGON) {
|
|
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
|
|
drawvec &g = partials[i].geoms[j];
|
|
|
|
for (size_t k = 0; k < g.size(); k++) {
|
|
g[k].necessary = 0;
|
|
}
|
|
|
|
for (size_t a = 0; a < g.size(); a++) {
|
|
if (g[a].op == VT_MOVETO) {
|
|
size_t b;
|
|
|
|
for (b = a + 1; b < g.size(); b++) {
|
|
if (g[b].op != VT_LINETO) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// -1 because of duplication at the end
|
|
size_t s = b - a - 1;
|
|
|
|
if (s > 0) {
|
|
drawvec left;
|
|
if (g[a + (s - 1) % s] < g[a]) {
|
|
left.push_back(g[a + (s - 1) % s]);
|
|
left.push_back(g[a]);
|
|
} else {
|
|
left.push_back(g[a]);
|
|
left.push_back(g[a + (s - 1) % s]);
|
|
}
|
|
if (left[1] < left[0]) {
|
|
fprintf(stderr, "left misordered\n");
|
|
}
|
|
std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e1 = std::equal_range(edges.begin(), edges.end(), edge(left[0].x, left[0].y, left[1].x, left[1].y, 0));
|
|
|
|
for (size_t k = 0; k < s; k++) {
|
|
drawvec right;
|
|
|
|
if (g[a + k] < g[a + k + 1]) {
|
|
right.push_back(g[a + k]);
|
|
right.push_back(g[a + k + 1]);
|
|
} else {
|
|
right.push_back(g[a + k + 1]);
|
|
right.push_back(g[a + k]);
|
|
}
|
|
|
|
std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e2 = std::equal_range(edges.begin(), edges.end(), edge(right[0].x, right[0].y, right[1].x, right[1].y, 0));
|
|
|
|
if (right[1] < right[0]) {
|
|
fprintf(stderr, "left misordered\n");
|
|
}
|
|
|
|
if (e1.first == e1.second || e2.first == e2.second) {
|
|
fprintf(stderr, "Internal error: polygon edge lookup failed for %lld,%lld to %lld,%lld or %lld,%lld to %lld,%lld\n", left[0].x, left[0].y, left[1].x, left[1].y, right[0].x, right[0].y, right[1].x, right[1].y);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (!edges_same(e1, e2)) {
|
|
g[a + k].necessary = 1;
|
|
necessaries.insert(g[a + k]);
|
|
}
|
|
|
|
e1 = e2;
|
|
}
|
|
}
|
|
|
|
a = b - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
edges.clear();
|
|
std::map<drawvec, size_t> arcs;
|
|
std::multimap<ssize_t, size_t> merge_candidates; // from arc to partial
|
|
|
|
// Roll rings that include a necessary point around so they start at one
|
|
|
|
for (size_t i = 0; i < partials.size(); i++) {
|
|
if (partials[i].t == VT_POLYGON) {
|
|
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
|
|
drawvec &g = partials[i].geoms[j];
|
|
|
|
for (size_t k = 0; k < g.size(); k++) {
|
|
if (necessaries.count(g[k]) != 0) {
|
|
g[k].necessary = 1;
|
|
}
|
|
}
|
|
|
|
for (size_t k = 0; k < g.size(); k++) {
|
|
if (g[k].op == VT_MOVETO) {
|
|
ssize_t necessary = -1;
|
|
ssize_t lowest = k;
|
|
size_t l;
|
|
for (l = k + 1; l < g.size(); l++) {
|
|
if (g[l].op != VT_LINETO) {
|
|
break;
|
|
}
|
|
|
|
if (g[l].necessary) {
|
|
necessary = l;
|
|
}
|
|
if (g[l] < g[lowest]) {
|
|
lowest = l;
|
|
}
|
|
}
|
|
|
|
if (necessary < 0) {
|
|
necessary = lowest;
|
|
// Add a necessary marker if there was none in the ring,
|
|
// so the arc code below can find it.
|
|
g[lowest].necessary = 1;
|
|
}
|
|
|
|
{
|
|
drawvec tmp;
|
|
|
|
// l - 1 because the endpoint is duplicated
|
|
for (size_t m = necessary; m < l - 1; m++) {
|
|
tmp.push_back(g[m]);
|
|
}
|
|
for (ssize_t m = k; m < necessary; m++) {
|
|
tmp.push_back(g[m]);
|
|
}
|
|
|
|
// replace the endpoint
|
|
tmp.push_back(g[necessary]);
|
|
|
|
if (tmp.size() != l - k) {
|
|
fprintf(stderr, "internal error shifting ring\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
for (size_t m = 0; m < tmp.size(); m++) {
|
|
if (m == 0) {
|
|
tmp[m].op = VT_MOVETO;
|
|
} else {
|
|
tmp[m].op = VT_LINETO;
|
|
}
|
|
|
|
g[k + m] = tmp[m];
|
|
}
|
|
}
|
|
|
|
// Now peel off each set of segments from one necessary point to the next
|
|
// into an "arc" as in TopoJSON
|
|
|
|
for (size_t m = k; m < l; m++) {
|
|
if (!g[m].necessary) {
|
|
fprintf(stderr, "internal error in arc building\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
drawvec arc;
|
|
size_t n;
|
|
for (n = m; n < l; n++) {
|
|
arc.push_back(g[n]);
|
|
if (n > m && g[n].necessary) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
auto f = arcs.find(arc);
|
|
if (f == arcs.end()) {
|
|
drawvec arc2 = reverse_subring(arc);
|
|
|
|
auto f2 = arcs.find(arc2);
|
|
if (f2 == arcs.end()) {
|
|
// Add new arc
|
|
size_t added = arcs.size() + 1;
|
|
arcs.insert(std::pair<drawvec, size_t>(arc, added));
|
|
partials[i].arc_polygon.push_back(added);
|
|
merge_candidates.insert(std::pair<ssize_t, size_t>(added, i));
|
|
} else {
|
|
partials[i].arc_polygon.push_back(-(ssize_t) f2->second);
|
|
merge_candidates.insert(std::pair<ssize_t, size_t>(-(ssize_t) f2->second, i));
|
|
}
|
|
} else {
|
|
partials[i].arc_polygon.push_back(f->second);
|
|
merge_candidates.insert(std::pair<ssize_t, size_t>(f->second, i));
|
|
}
|
|
|
|
m = n - 1;
|
|
}
|
|
|
|
partials[i].arc_polygon.push_back(0);
|
|
|
|
k = l - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Simplify each arc
|
|
|
|
std::vector<drawvec> simplified_arcs;
|
|
|
|
size_t count = 0;
|
|
for (auto ai = arcs.begin(); ai != arcs.end(); ++ai) {
|
|
if (simplified_arcs.size() < ai->second + 1) {
|
|
simplified_arcs.resize(ai->second + 1);
|
|
}
|
|
|
|
drawvec dv = ai->first;
|
|
for (size_t i = 0; i < dv.size(); i++) {
|
|
if (i == 0) {
|
|
dv[i].op = VT_MOVETO;
|
|
} else {
|
|
dv[i].op = VT_LINETO;
|
|
}
|
|
}
|
|
if (!(prevent[P_SIMPLIFY] || (z == maxzoom && prevent[P_SIMPLIFY_LOW]) || (z < maxzoom && additional[A_GRID_LOW_ZOOMS]))) {
|
|
simplified_arcs[ai->second] = simplify_lines(dv, z, line_detail, !(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), simplification, 4);
|
|
} else {
|
|
simplified_arcs[ai->second] = dv;
|
|
}
|
|
count++;
|
|
}
|
|
|
|
// If necessary, merge some adjacent polygons into some other polygons
|
|
|
|
struct merge_order {
|
|
ssize_t edge = 0;
|
|
unsigned long long gap = 0;
|
|
size_t p1 = 0;
|
|
size_t p2 = 0;
|
|
|
|
bool operator<(const merge_order &m) const {
|
|
return gap < m.gap;
|
|
}
|
|
};
|
|
std::vector<merge_order> order;
|
|
|
|
for (ssize_t i = 0; i < (ssize_t) simplified_arcs.size(); i++) {
|
|
auto r1 = merge_candidates.equal_range(i);
|
|
for (auto r1i = r1.first; r1i != r1.second; ++r1i) {
|
|
auto r2 = merge_candidates.equal_range(-i);
|
|
for (auto r2i = r2.first; r2i != r2.second; ++r2i) {
|
|
if (r1i->second != r2i->second) {
|
|
merge_order mo;
|
|
mo.edge = i;
|
|
if (partials[r1i->second].index > partials[r2i->second].index) {
|
|
mo.gap = partials[r1i->second].index - partials[r2i->second].index;
|
|
} else {
|
|
mo.gap = partials[r2i->second].index - partials[r1i->second].index;
|
|
}
|
|
mo.p1 = r1i->second;
|
|
mo.p2 = r2i->second;
|
|
order.push_back(mo);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
std::sort(order.begin(), order.end());
|
|
|
|
size_t merged = 0;
|
|
for (size_t o = 0; o < order.size(); o++) {
|
|
if (merged >= merge_count) {
|
|
break;
|
|
}
|
|
|
|
size_t i = order[o].p1;
|
|
while (partials[i].renamed >= 0) {
|
|
i = partials[i].renamed;
|
|
}
|
|
size_t i2 = order[o].p2;
|
|
while (partials[i2].renamed >= 0) {
|
|
i2 = partials[i2].renamed;
|
|
}
|
|
|
|
for (size_t j = 0; j < partials[i].arc_polygon.size() && merged < merge_count; j++) {
|
|
if (partials[i].arc_polygon[j] == order[o].edge) {
|
|
{
|
|
// XXX snap links
|
|
if (partials[order[o].p2].arc_polygon.size() > 0) {
|
|
// This has to merge the ring that contains the anti-arc to this arc
|
|
// into the current ring, and then add whatever other rings were in
|
|
// that feature on to the end.
|
|
//
|
|
// This can't be good for keeping parent-child relationships among
|
|
// the rings in order, but Wagyu should sort that out later
|
|
|
|
std::vector<ssize_t> additions;
|
|
std::vector<ssize_t> &here = partials[i].arc_polygon;
|
|
std::vector<ssize_t> &other = partials[i2].arc_polygon;
|
|
|
|
#if 0
|
|
printf("seeking %zd\n", partials[i].arc_polygon[j]);
|
|
printf("before: ");
|
|
for (size_t k = 0; k < here.size(); k++) {
|
|
printf("%zd ", here[k]);
|
|
}
|
|
printf("\n");
|
|
printf("other: ");
|
|
for (size_t k = 0; k < other.size(); k++) {
|
|
printf("%zd ", other[k]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
for (size_t k = 0; k < other.size(); k++) {
|
|
size_t l;
|
|
for (l = k; l < other.size(); l++) {
|
|
if (other[l] == 0) {
|
|
break;
|
|
}
|
|
}
|
|
if (l >= other.size()) {
|
|
l--;
|
|
}
|
|
|
|
#if 0
|
|
for (size_t m = k; m <= l; m++) {
|
|
printf("%zd ", other[m]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
size_t m;
|
|
for (m = k; m <= l; m++) {
|
|
if (other[m] == -partials[i].arc_polygon[j]) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (m <= l) {
|
|
// Found the shared arc
|
|
|
|
here.erase(here.begin() + j);
|
|
|
|
size_t off = 0;
|
|
for (size_t n = m + 1; n < l; n++) {
|
|
here.insert(here.begin() + j + off, other[n]);
|
|
off++;
|
|
}
|
|
for (size_t n = k; n < m; n++) {
|
|
here.insert(here.begin() + j + off, other[n]);
|
|
off++;
|
|
}
|
|
} else {
|
|
// Looking at some other ring
|
|
|
|
for (size_t n = k; n <= l; n++) {
|
|
additions.push_back(other[n]);
|
|
}
|
|
}
|
|
|
|
k = l;
|
|
}
|
|
|
|
partials[i2].arc_polygon.clear();
|
|
partials[i2].renamed = i;
|
|
merged++;
|
|
|
|
for (size_t k = 0; k < additions.size(); k++) {
|
|
partials[i].arc_polygon.push_back(additions[k]);
|
|
}
|
|
|
|
#if 0
|
|
printf("after: ");
|
|
for (size_t k = 0; k < here.size(); k++) {
|
|
printf("%zd ", here[k]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
#if 0
|
|
for (size_t k = 0; k + 1 < here.size(); k++) {
|
|
if (here[k] != 0 && here[k + 1] != 0) {
|
|
if (simplified_arcs[here[k + 1]][0] != simplified_arcs[here[k]][simplified_arcs[here[k]].size() - 1]) {
|
|
printf("error from %zd to %zd\n", here[k], here[k + 1]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Turn the arc representations of the polygons back into standard polygon geometries
|
|
|
|
for (size_t i = 0; i < partials.size(); i++) {
|
|
if (partials[i].t == VT_POLYGON) {
|
|
partials[i].geoms.resize(0);
|
|
partials[i].geoms.push_back(drawvec());
|
|
bool at_start = true;
|
|
draw first(-1, 0, 0);
|
|
|
|
for (size_t j = 0; j < partials[i].arc_polygon.size(); j++) {
|
|
ssize_t p = partials[i].arc_polygon[j];
|
|
|
|
if (p == 0) {
|
|
if (first.op >= 0) {
|
|
partials[i].geoms[0].push_back(first);
|
|
first = draw(-1, 0, 0);
|
|
}
|
|
at_start = true;
|
|
} else if (p > 0) {
|
|
for (size_t k = 0; k + 1 < simplified_arcs[p].size(); k++) {
|
|
if (at_start) {
|
|
partials[i].geoms[0].push_back(draw(VT_MOVETO, simplified_arcs[p][k].x, simplified_arcs[p][k].y));
|
|
first = draw(VT_LINETO, simplified_arcs[p][k].x, simplified_arcs[p][k].y);
|
|
} else {
|
|
partials[i].geoms[0].push_back(draw(VT_LINETO, simplified_arcs[p][k].x, simplified_arcs[p][k].y));
|
|
}
|
|
at_start = 0;
|
|
}
|
|
} else { /* p < 0 */
|
|
for (ssize_t k = simplified_arcs[-p].size() - 1; k > 0; k--) {
|
|
if (at_start) {
|
|
partials[i].geoms[0].push_back(draw(VT_MOVETO, simplified_arcs[-p][k].x, simplified_arcs[-p][k].y));
|
|
first = draw(VT_LINETO, simplified_arcs[-p][k].x, simplified_arcs[-p][k].y);
|
|
} else {
|
|
partials[i].geoms[0].push_back(draw(VT_LINETO, simplified_arcs[-p][k].x, simplified_arcs[-p][k].y));
|
|
}
|
|
at_start = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (merged >= merge_count) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
unsigned long long choose_mingap(std::vector<unsigned long long> const &indices, double f) {
|
|
unsigned long long bot = ULLONG_MAX;
|
|
unsigned long long top = 0;
|
|
|
|
for (size_t i = 0; i < indices.size(); i++) {
|
|
if (i > 0 && indices[i] >= indices[i - 1]) {
|
|
if (indices[i] - indices[i - 1] > top) {
|
|
top = indices[i] - indices[i - 1];
|
|
}
|
|
if (indices[i] - indices[i - 1] < bot) {
|
|
bot = indices[i] - indices[i - 1];
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t want = indices.size() * f;
|
|
while (top - bot > 2) {
|
|
unsigned long long guess = bot / 2 + top / 2;
|
|
size_t count = 0;
|
|
unsigned long long prev = 0;
|
|
|
|
for (size_t i = 0; i < indices.size(); i++) {
|
|
if (indices[i] - prev >= guess) {
|
|
count++;
|
|
prev = indices[i];
|
|
}
|
|
}
|
|
|
|
if (count > want) {
|
|
bot = guess;
|
|
} else if (count < want) {
|
|
top = guess;
|
|
} else {
|
|
return guess;
|
|
}
|
|
}
|
|
|
|
return top;
|
|
}
|
|
|
|
long long choose_minextent(std::vector<long long> &extents, double f) {
|
|
std::sort(extents.begin(), extents.end());
|
|
return extents[(extents.size() - 1) * (1 - f)];
|
|
}
|
|
|
|
struct write_tile_args {
|
|
struct task *tasks = NULL;
|
|
char *metabase = NULL;
|
|
char *stringpool = NULL;
|
|
int min_detail = 0;
|
|
sqlite3 *outdb = NULL;
|
|
const char *outdir = NULL;
|
|
int buffer = 0;
|
|
const char *fname = NULL;
|
|
FILE **geomfile = NULL;
|
|
double todo = 0;
|
|
std::atomic<long long> *along = NULL;
|
|
double gamma = 0;
|
|
double gamma_out = 0;
|
|
int child_shards = 0;
|
|
int *geomfd = NULL;
|
|
off_t *geom_size = NULL;
|
|
std::atomic<unsigned> *midx = NULL;
|
|
std::atomic<unsigned> *midy = NULL;
|
|
int maxzoom = 0;
|
|
int minzoom = 0;
|
|
int full_detail = 0;
|
|
int low_detail = 0;
|
|
double simplification = 0;
|
|
std::atomic<long long> *most = NULL;
|
|
long long *meta_off = NULL;
|
|
long long *pool_off = NULL;
|
|
unsigned *initial_x = NULL;
|
|
unsigned *initial_y = NULL;
|
|
std::atomic<int> *running = NULL;
|
|
int err = 0;
|
|
std::vector<std::map<std::string, layermap_entry>> *layermaps = NULL;
|
|
std::vector<std::vector<std::string>> *layer_unmaps = NULL;
|
|
size_t pass = 0;
|
|
size_t passes = 0;
|
|
unsigned long long mingap = 0;
|
|
unsigned long long mingap_out = 0;
|
|
long long minextent = 0;
|
|
long long minextent_out = 0;
|
|
double fraction = 0;
|
|
double fraction_out = 0;
|
|
const char *prefilter = NULL;
|
|
const char *postfilter = NULL;
|
|
std::map<std::string, attribute_op> const *attribute_accum = NULL;
|
|
bool still_dropping = false;
|
|
int wrote_zoom = 0;
|
|
size_t tiling_seg = 0;
|
|
struct json_object *filter = NULL;
|
|
};
|
|
|
|
bool clip_to_tile(serial_feature &sf, int z, long long buffer) {
|
|
int quick = quick_check(sf.bbox, z, buffer);
|
|
if (quick == 0) {
|
|
return true;
|
|
}
|
|
|
|
if (z == 0) {
|
|
if (sf.bbox[0] < 0 || sf.bbox[2] > 1LL << 32) {
|
|
// If the geometry extends off the edge of the world, concatenate on another copy
|
|
// shifted by 360 degrees, and then make sure both copies get clipped down to size.
|
|
|
|
size_t n = sf.geometry.size();
|
|
|
|
if (sf.bbox[0] < 0) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
sf.geometry.push_back(draw(sf.geometry[i].op, sf.geometry[i].x + (1LL << 32), sf.geometry[i].y));
|
|
}
|
|
}
|
|
|
|
if (sf.bbox[2] > 1LL << 32) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
sf.geometry.push_back(draw(sf.geometry[i].op, sf.geometry[i].x - (1LL << 32), sf.geometry[i].y));
|
|
}
|
|
}
|
|
|
|
sf.bbox[0] = 0;
|
|
sf.bbox[2] = 1LL << 32;
|
|
|
|
quick = -1;
|
|
}
|
|
}
|
|
|
|
// Can't accept the quick check if guaranteeing no duplication, since the
|
|
// overlap might have been in the buffer.
|
|
if (quick != 1 || prevent[P_DUPLICATION]) {
|
|
drawvec clipped;
|
|
|
|
// Do the clipping, even if we are going to include the whole feature,
|
|
// so that we can know whether the feature itself, or only the feature's
|
|
// bounding box, touches the tile.
|
|
|
|
if (sf.t == VT_LINE) {
|
|
clipped = clip_lines(sf.geometry, z, buffer);
|
|
}
|
|
if (sf.t == VT_POLYGON) {
|
|
clipped = simple_clip_poly(sf.geometry, z, buffer);
|
|
}
|
|
if (sf.t == VT_POINT) {
|
|
clipped = clip_point(sf.geometry, z, buffer);
|
|
}
|
|
|
|
clipped = remove_noop(clipped, sf.t, 0);
|
|
|
|
// Must clip at z0 even if we don't want clipping, to handle features
|
|
// that are duplicated across the date line
|
|
|
|
if (prevent[P_DUPLICATION] && z != 0) {
|
|
if (point_within_tile((sf.bbox[0] + sf.bbox[2]) / 2, (sf.bbox[1] + sf.bbox[3]) / 2, z)) {
|
|
// sf.geometry is unchanged
|
|
} else {
|
|
sf.geometry.clear();
|
|
}
|
|
} else if (prevent[P_CLIPPING] && z != 0) {
|
|
if (clipped.size() == 0) {
|
|
sf.geometry.clear();
|
|
} else {
|
|
// sf.geometry is unchanged
|
|
}
|
|
} else {
|
|
sf.geometry = clipped;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
serial_feature next_feature(FILE *geoms, long long *geompos_in, char *metabase, long long *meta_off, int z, unsigned tx, unsigned ty, unsigned *initial_x, unsigned *initial_y, long long *original_features, long long *unclipped_features, int nextzoom, int maxzoom, int minzoom, int max_zoom_increment, size_t pass, size_t passes, std::atomic<long long> *along, long long alongminus, int buffer, int *within, bool *first_time, FILE **geomfile, long long *geompos, std::atomic<double> *oprogress, double todo, const char *fname, int child_shards, struct json_object *filter, const char *stringpool, long long *pool_off, std::vector<std::vector<std::string>> *layer_unmaps) {
|
|
while (1) {
|
|
serial_feature sf = deserialize_feature(geoms, geompos_in, metabase, meta_off, z, tx, ty, initial_x, initial_y);
|
|
if (sf.t < 0) {
|
|
return sf;
|
|
}
|
|
|
|
double progress = floor(((((*geompos_in + *along - alongminus) / (double) todo) + (pass - (2 - passes))) / passes + z) / (maxzoom + 1) * 1000) / 10;
|
|
if (progress >= *oprogress + 0.1) {
|
|
if (!quiet && !quiet_progress && progress_time()) {
|
|
fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty);
|
|
}
|
|
*oprogress = progress;
|
|
}
|
|
|
|
(*original_features)++;
|
|
|
|
if (clip_to_tile(sf, z, buffer)) {
|
|
continue;
|
|
}
|
|
|
|
if (sf.geometry.size() > 0) {
|
|
(*unclipped_features)++;
|
|
}
|
|
|
|
if (*first_time && pass == 1) { /* only write out the next zoom once, even if we retry */
|
|
if (sf.tippecanoe_maxzoom == -1 || sf.tippecanoe_maxzoom >= nextzoom) {
|
|
rewrite(sf.geometry, z, nextzoom, maxzoom, sf.bbox, tx, ty, buffer, within, geompos, geomfile, fname, sf.t, sf.layer, sf.metapos, sf.feature_minzoom, child_shards, max_zoom_increment, sf.seq, sf.tippecanoe_minzoom, sf.tippecanoe_maxzoom, sf.segment, initial_x, initial_y, sf.keys, sf.values, sf.has_id, sf.id, sf.index, sf.extent);
|
|
}
|
|
}
|
|
|
|
if (z < minzoom) {
|
|
continue;
|
|
}
|
|
|
|
if (sf.tippecanoe_minzoom != -1 && z < sf.tippecanoe_minzoom) {
|
|
continue;
|
|
}
|
|
if (sf.tippecanoe_maxzoom != -1 && z > sf.tippecanoe_maxzoom) {
|
|
continue;
|
|
}
|
|
|
|
if (filter != NULL) {
|
|
std::map<std::string, mvt_value> attributes;
|
|
std::string layername = (*layer_unmaps)[sf.segment][sf.layer];
|
|
|
|
for (size_t i = 0; i < sf.keys.size(); i++) {
|
|
std::string key = stringpool + pool_off[sf.segment] + sf.keys[i] + 1;
|
|
|
|
serial_val sv;
|
|
sv.type = (stringpool + pool_off[sf.segment])[sf.values[i]];
|
|
sv.s = stringpool + pool_off[sf.segment] + sf.values[i] + 1;
|
|
|
|
mvt_value val = stringified_to_mvt_value(sv.type, sv.s.c_str());
|
|
attributes.insert(std::pair<std::string, mvt_value>(key, val));
|
|
}
|
|
|
|
for (size_t i = 0; i < sf.full_keys.size(); i++) {
|
|
std::string key = sf.full_keys[i];
|
|
mvt_value val = stringified_to_mvt_value(sf.full_values[i].type, sf.full_values[i].s.c_str());
|
|
|
|
attributes.insert(std::pair<std::string, mvt_value>(key, val));
|
|
}
|
|
|
|
if (sf.has_id) {
|
|
mvt_value v;
|
|
v.type = mvt_uint;
|
|
v.numeric_value.uint_value = sf.id;
|
|
|
|
attributes.insert(std::pair<std::string, mvt_value>("$id", v));
|
|
}
|
|
|
|
mvt_value v;
|
|
v.type = mvt_string;
|
|
|
|
if (sf.t == mvt_point) {
|
|
v.string_value = "Point";
|
|
} else if (sf.t == mvt_linestring) {
|
|
v.string_value = "LineString";
|
|
} else if (sf.t == mvt_polygon) {
|
|
v.string_value = "Polygon";
|
|
}
|
|
|
|
attributes.insert(std::pair<std::string, mvt_value>("$type", v));
|
|
|
|
mvt_value v2;
|
|
v2.type = mvt_uint;
|
|
v2.numeric_value.uint_value = z;
|
|
|
|
attributes.insert(std::pair<std::string, mvt_value>("$zoom", v2));
|
|
|
|
if (!evaluate(attributes, layername, filter)) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (sf.tippecanoe_minzoom == -1 && z < sf.feature_minzoom) {
|
|
sf.dropped = true;
|
|
}
|
|
|
|
// Remove nulls, now that the filter has run
|
|
|
|
for (ssize_t i = sf.keys.size() - 1; i >= 0; i--) {
|
|
int type = (stringpool + pool_off[sf.segment])[sf.values[i]];
|
|
|
|
if (type == mvt_null) {
|
|
sf.keys.erase(sf.keys.begin() + i);
|
|
sf.values.erase(sf.values.begin() + i);
|
|
}
|
|
}
|
|
|
|
for (ssize_t i = (ssize_t) sf.full_keys.size() - 1; i >= 0; i--) {
|
|
if (sf.full_values[i].type == mvt_null) {
|
|
sf.full_keys.erase(sf.full_keys.begin() + i);
|
|
sf.full_values.erase(sf.full_values.begin() + i);
|
|
}
|
|
}
|
|
|
|
return sf;
|
|
}
|
|
}
|
|
|
|
struct run_prefilter_args {
|
|
FILE *geoms = NULL;
|
|
long long *geompos_in = NULL;
|
|
char *metabase = NULL;
|
|
long long *meta_off = NULL;
|
|
int z = 0;
|
|
unsigned tx = 0;
|
|
unsigned ty = 0;
|
|
unsigned *initial_x = 0;
|
|
unsigned *initial_y = 0;
|
|
long long *original_features = 0;
|
|
long long *unclipped_features = 0;
|
|
int nextzoom = 0;
|
|
int maxzoom = 0;
|
|
int minzoom = 0;
|
|
int max_zoom_increment = 0;
|
|
size_t pass = 0;
|
|
size_t passes = 0;
|
|
std::atomic<long long> *along = 0;
|
|
long long alongminus = 0;
|
|
int buffer = 0;
|
|
int *within = NULL;
|
|
bool *first_time = NULL;
|
|
FILE **geomfile = NULL;
|
|
long long *geompos = NULL;
|
|
std::atomic<double> *oprogress = NULL;
|
|
double todo = 0;
|
|
const char *fname = 0;
|
|
int child_shards = 0;
|
|
std::vector<std::vector<std::string>> *layer_unmaps = NULL;
|
|
char *stringpool = NULL;
|
|
long long *pool_off = NULL;
|
|
FILE *prefilter_fp = NULL;
|
|
struct json_object *filter = NULL;
|
|
};
|
|
|
|
void *run_prefilter(void *v) {
|
|
run_prefilter_args *rpa = (run_prefilter_args *) v;
|
|
json_writer state(rpa->prefilter_fp);
|
|
|
|
while (1) {
|
|
serial_feature sf = next_feature(rpa->geoms, rpa->geompos_in, rpa->metabase, rpa->meta_off, rpa->z, rpa->tx, rpa->ty, rpa->initial_x, rpa->initial_y, rpa->original_features, rpa->unclipped_features, rpa->nextzoom, rpa->maxzoom, rpa->minzoom, rpa->max_zoom_increment, rpa->pass, rpa->passes, rpa->along, rpa->alongminus, rpa->buffer, rpa->within, rpa->first_time, rpa->geomfile, rpa->geompos, rpa->oprogress, rpa->todo, rpa->fname, rpa->child_shards, rpa->filter, rpa->stringpool, rpa->pool_off, rpa->layer_unmaps);
|
|
if (sf.t < 0) {
|
|
break;
|
|
}
|
|
|
|
mvt_layer tmp_layer;
|
|
tmp_layer.extent = 1LL << 32;
|
|
tmp_layer.name = (*(rpa->layer_unmaps))[sf.segment][sf.layer];
|
|
|
|
if (sf.t == VT_POLYGON) {
|
|
sf.geometry = close_poly(sf.geometry);
|
|
}
|
|
|
|
mvt_feature tmp_feature;
|
|
tmp_feature.type = sf.t;
|
|
tmp_feature.geometry = to_feature(sf.geometry);
|
|
tmp_feature.id = sf.id;
|
|
tmp_feature.has_id = sf.has_id;
|
|
tmp_feature.dropped = sf.dropped;
|
|
|
|
// Offset from tile coordinates back to world coordinates
|
|
unsigned sx = 0, sy = 0;
|
|
if (rpa->z != 0) {
|
|
sx = rpa->tx << (32 - rpa->z);
|
|
sy = rpa->ty << (32 - rpa->z);
|
|
}
|
|
for (size_t i = 0; i < tmp_feature.geometry.size(); i++) {
|
|
tmp_feature.geometry[i].x += sx;
|
|
tmp_feature.geometry[i].y += sy;
|
|
}
|
|
|
|
decode_meta(sf.keys, sf.values, rpa->stringpool + rpa->pool_off[sf.segment], tmp_layer, tmp_feature);
|
|
tmp_layer.features.push_back(tmp_feature);
|
|
|
|
layer_to_geojson(tmp_layer, 0, 0, 0, false, true, false, true, sf.index, sf.seq, sf.extent, true, state);
|
|
}
|
|
|
|
if (fclose(rpa->prefilter_fp) != 0) {
|
|
if (errno == EPIPE) {
|
|
static bool warned = false;
|
|
if (!warned) {
|
|
fprintf(stderr, "Warning: broken pipe in prefilter\n");
|
|
warned = true;
|
|
}
|
|
} else {
|
|
perror("fclose output to prefilter");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void add_tilestats(std::string const &layername, int z, std::vector<std::map<std::string, layermap_entry>> *layermaps, size_t tiling_seg, std::vector<std::vector<std::string>> *layer_unmaps, std::string const &key, serial_val const &val) {
|
|
std::map<std::string, layermap_entry> &layermap = (*layermaps)[tiling_seg];
|
|
if (layermap.count(layername) == 0) {
|
|
layermap_entry lme = layermap_entry(layermap.size());
|
|
lme.minzoom = z;
|
|
lme.maxzoom = z;
|
|
lme.retain = 1;
|
|
|
|
layermap.insert(std::pair<std::string, layermap_entry>(layername, lme));
|
|
|
|
if (lme.id >= (*layer_unmaps)[tiling_seg].size()) {
|
|
(*layer_unmaps)[tiling_seg].resize(lme.id + 1);
|
|
(*layer_unmaps)[tiling_seg][lme.id] = layername;
|
|
}
|
|
}
|
|
auto fk = layermap.find(layername);
|
|
if (fk == layermap.end()) {
|
|
fprintf(stderr, "Internal error: layer %s not found\n", layername.c_str());
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
type_and_string attrib;
|
|
attrib.type = val.type;
|
|
attrib.string = val.s;
|
|
|
|
add_to_file_keys(fk->second.file_keys, key, attrib);
|
|
}
|
|
|
|
struct accum_state {
|
|
double sum = 0;
|
|
double count = 0;
|
|
};
|
|
|
|
void preserve_attribute(attribute_op op, std::map<std::string, accum_state> &attribute_accum_state, serial_feature &, char *stringpool, long long *pool_off, std::string &key, serial_val &val, partial &p) {
|
|
if (p.need_tilestats.count(key) == 0) {
|
|
p.need_tilestats.insert(key);
|
|
}
|
|
|
|
// If the feature being merged into has this key as a metadata reference,
|
|
// promote it to a full_key so it can be modified
|
|
|
|
for (size_t i = 0; i < p.keys.size(); i++) {
|
|
if (strcmp(key.c_str(), stringpool + pool_off[p.segment] + p.keys[i] + 1) == 0) {
|
|
serial_val sv;
|
|
sv.s = stringpool + pool_off[p.segment] + p.values[i] + 1;
|
|
sv.type = (stringpool + pool_off[p.segment])[p.values[i]];
|
|
|
|
p.full_keys.push_back(key);
|
|
p.full_values.push_back(sv);
|
|
|
|
p.keys.erase(p.keys.begin() + i);
|
|
p.values.erase(p.values.begin() + i);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < p.full_keys.size(); i++) {
|
|
if (key == p.full_keys[i]) {
|
|
switch (op) {
|
|
case op_sum:
|
|
p.full_values[i].s = milo::dtoa_milo(atof(p.full_values[i].s.c_str()) + atof(val.s.c_str()));
|
|
p.full_values[i].type = mvt_double;
|
|
break;
|
|
|
|
case op_product:
|
|
p.full_values[i].s = milo::dtoa_milo(atof(p.full_values[i].s.c_str()) * atof(val.s.c_str()));
|
|
p.full_values[i].type = mvt_double;
|
|
break;
|
|
|
|
case op_max: {
|
|
double existing = atof(p.full_values[i].s.c_str());
|
|
double maybe = atof(val.s.c_str());
|
|
if (maybe > existing) {
|
|
p.full_values[i].s = val.s.c_str();
|
|
p.full_values[i].type = mvt_double;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case op_min: {
|
|
double existing = atof(p.full_values[i].s.c_str());
|
|
double maybe = atof(val.s.c_str());
|
|
if (maybe < existing) {
|
|
p.full_values[i].s = val.s.c_str();
|
|
p.full_values[i].type = mvt_double;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case op_mean: {
|
|
auto state = attribute_accum_state.find(key);
|
|
if (state == attribute_accum_state.end()) {
|
|
accum_state s;
|
|
s.sum = atof(p.full_values[i].s.c_str()) + atof(val.s.c_str());
|
|
s.count = 2;
|
|
attribute_accum_state.insert(std::pair<std::string, accum_state>(key, s));
|
|
|
|
p.full_values[i].s = milo::dtoa_milo(s.sum / s.count);
|
|
} else {
|
|
state->second.sum += atof(val.s.c_str());
|
|
state->second.count += 1;
|
|
|
|
p.full_values[i].s = milo::dtoa_milo(state->second.sum / state->second.count);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case op_concat:
|
|
p.full_values[i].s += val.s;
|
|
p.full_values[i].type = mvt_string;
|
|
break;
|
|
|
|
case op_comma:
|
|
p.full_values[i].s += std::string(",") + val.s;
|
|
p.full_values[i].type = mvt_string;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void preserve_attributes(std::map<std::string, attribute_op> const *attribute_accum, std::map<std::string, accum_state> &attribute_accum_state, serial_feature &sf, char *stringpool, long long *pool_off, partial &p) {
|
|
for (size_t i = 0; i < sf.keys.size(); i++) {
|
|
std::string key = stringpool + pool_off[sf.segment] + sf.keys[i] + 1;
|
|
|
|
serial_val sv;
|
|
sv.type = (stringpool + pool_off[sf.segment])[sf.values[i]];
|
|
sv.s = stringpool + pool_off[sf.segment] + sf.values[i] + 1;
|
|
|
|
auto f = attribute_accum->find(key);
|
|
if (f != attribute_accum->end()) {
|
|
preserve_attribute(f->second, attribute_accum_state, sf, stringpool, pool_off, key, sv, p);
|
|
}
|
|
}
|
|
for (size_t i = 0; i < sf.full_keys.size(); i++) {
|
|
std::string key = sf.full_keys[i];
|
|
serial_val sv = sf.full_values[i];
|
|
|
|
auto f = attribute_accum->find(key);
|
|
if (f != attribute_accum->end()) {
|
|
preserve_attribute(f->second, attribute_accum_state, sf, stringpool, pool_off, key, sv, p);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool find_partial(std::vector<partial> &partials, serial_feature &sf, ssize_t &out, std::vector<std::vector<std::string>> *layer_unmaps) {
|
|
for (size_t i = partials.size(); i > 0; i--) {
|
|
if (partials[i - 1].t == sf.t) {
|
|
std::string &layername1 = (*layer_unmaps)[partials[i - 1].segment][partials[i - 1].layer];
|
|
std::string &layername2 = (*layer_unmaps)[sf.segment][sf.layer];
|
|
|
|
if (layername1 == layername2) {
|
|
out = i - 1;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
long long write_tile(FILE *geoms, long long *geompos_in, char *metabase, char *stringpool, int z, unsigned tx, unsigned ty, int detail, int min_detail, sqlite3 *outdb, const char *outdir, int buffer, const char *fname, FILE **geomfile, int minzoom, int maxzoom, double todo, std::atomic<long long> *along, long long alongminus, double gamma, int child_shards, long long *meta_off, long long *pool_off, unsigned *initial_x, unsigned *initial_y, std::atomic<int> *running, double simplification, std::vector<std::map<std::string, layermap_entry>> *layermaps, std::vector<std::vector<std::string>> *layer_unmaps, size_t tiling_seg, size_t pass, size_t passes, unsigned long long mingap, long long minextent, double fraction, const char *prefilter, const char *postfilter, struct json_object *filter, write_tile_args *arg) {
|
|
int line_detail;
|
|
double merge_fraction = 1;
|
|
double mingap_fraction = 1;
|
|
double minextent_fraction = 1;
|
|
|
|
static std::atomic<double> oprogress(0);
|
|
long long og = *geompos_in;
|
|
|
|
// XXX is there a way to do this without floating point?
|
|
int max_zoom_increment = std::log(child_shards) / std::log(4);
|
|
if (child_shards < 4 || max_zoom_increment < 1) {
|
|
fprintf(stderr, "Internal error: %d shards, max zoom increment %d\n", child_shards, max_zoom_increment);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if ((((child_shards - 1) << 1) & child_shards) != child_shards) {
|
|
fprintf(stderr, "Internal error: %d shards not a power of 2\n", child_shards);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
int nextzoom = z + 1;
|
|
if (nextzoom < minzoom) {
|
|
if (z + max_zoom_increment > minzoom) {
|
|
nextzoom = minzoom;
|
|
} else {
|
|
nextzoom = z + max_zoom_increment;
|
|
}
|
|
}
|
|
|
|
bool has_polygons = false;
|
|
|
|
bool first_time = true;
|
|
// This only loops if the tile data didn't fit, in which case the detail
|
|
// goes down and the progress indicator goes backward for the next try.
|
|
for (line_detail = detail; line_detail >= min_detail || line_detail == detail; line_detail--, oprogress = 0) {
|
|
long long count = 0;
|
|
double accum_area = 0;
|
|
|
|
double fraction_accum = 0;
|
|
|
|
unsigned long long previndex = 0, density_previndex = 0, merge_previndex = 0;
|
|
double scale = (double) (1LL << (64 - 2 * (z + 8)));
|
|
double gap = 0, density_gap = 0;
|
|
double spacing = 0;
|
|
|
|
long long original_features = 0;
|
|
long long unclipped_features = 0;
|
|
|
|
std::vector<struct partial> partials;
|
|
std::map<std::string, std::vector<coalesce>> layers;
|
|
std::vector<unsigned long long> indices;
|
|
std::vector<long long> extents;
|
|
std::map<std::string, accum_state> attribute_accum_state;
|
|
double coalesced_area = 0;
|
|
|
|
int within[child_shards];
|
|
long long geompos[child_shards];
|
|
memset(within, '\0', child_shards * sizeof(int));
|
|
memset(geompos, '\0', child_shards * sizeof(long long));
|
|
|
|
if (*geompos_in != og) {
|
|
if (fseek(geoms, og, SEEK_SET) != 0) {
|
|
perror("fseek geom");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
*geompos_in = og;
|
|
}
|
|
|
|
int prefilter_write = -1, prefilter_read = -1;
|
|
pid_t prefilter_pid = 0;
|
|
FILE *prefilter_fp = NULL;
|
|
pthread_t prefilter_writer;
|
|
run_prefilter_args rpa; // here so it stays in scope until joined
|
|
FILE *prefilter_read_fp = NULL;
|
|
json_pull *prefilter_jp = NULL;
|
|
|
|
if (prefilter != NULL) {
|
|
setup_filter(prefilter, &prefilter_write, &prefilter_read, &prefilter_pid, z, tx, ty);
|
|
prefilter_fp = fdopen(prefilter_write, "w");
|
|
if (prefilter_fp == NULL) {
|
|
perror("freopen prefilter");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
rpa.geoms = geoms;
|
|
rpa.geompos_in = geompos_in;
|
|
rpa.metabase = metabase;
|
|
rpa.meta_off = meta_off;
|
|
rpa.z = z;
|
|
rpa.tx = tx;
|
|
rpa.ty = ty;
|
|
rpa.initial_x = initial_x;
|
|
rpa.initial_y = initial_y;
|
|
rpa.original_features = &original_features;
|
|
rpa.unclipped_features = &unclipped_features;
|
|
rpa.nextzoom = nextzoom;
|
|
rpa.maxzoom = maxzoom;
|
|
rpa.minzoom = minzoom;
|
|
rpa.max_zoom_increment = max_zoom_increment;
|
|
rpa.pass = pass;
|
|
rpa.passes = passes;
|
|
rpa.along = along;
|
|
rpa.alongminus = alongminus;
|
|
rpa.buffer = buffer;
|
|
rpa.within = within;
|
|
rpa.first_time = &first_time;
|
|
rpa.geomfile = geomfile;
|
|
rpa.geompos = geompos;
|
|
rpa.oprogress = &oprogress;
|
|
rpa.todo = todo;
|
|
rpa.fname = fname;
|
|
rpa.child_shards = child_shards;
|
|
rpa.prefilter_fp = prefilter_fp;
|
|
rpa.layer_unmaps = layer_unmaps;
|
|
rpa.stringpool = stringpool;
|
|
rpa.pool_off = pool_off;
|
|
rpa.filter = filter;
|
|
|
|
if (pthread_create(&prefilter_writer, NULL, run_prefilter, &rpa) != 0) {
|
|
perror("pthread_create (prefilter writer)");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
prefilter_read_fp = fdopen(prefilter_read, "r");
|
|
if (prefilter_read_fp == NULL) {
|
|
perror("fdopen prefilter output");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
prefilter_jp = json_begin_file(prefilter_read_fp);
|
|
}
|
|
|
|
while (1) {
|
|
serial_feature sf;
|
|
ssize_t which_partial = -1;
|
|
|
|
if (prefilter == NULL) {
|
|
sf = next_feature(geoms, geompos_in, metabase, meta_off, z, tx, ty, initial_x, initial_y, &original_features, &unclipped_features, nextzoom, maxzoom, minzoom, max_zoom_increment, pass, passes, along, alongminus, buffer, within, &first_time, geomfile, geompos, &oprogress, todo, fname, child_shards, filter, stringpool, pool_off, layer_unmaps);
|
|
} else {
|
|
sf = parse_feature(prefilter_jp, z, tx, ty, layermaps, tiling_seg, layer_unmaps, postfilter != NULL);
|
|
}
|
|
|
|
if (sf.t < 0) {
|
|
break;
|
|
}
|
|
|
|
if (sf.dropped) {
|
|
if (find_partial(partials, sf, which_partial, layer_unmaps)) {
|
|
preserve_attributes(arg->attribute_accum, attribute_accum_state, sf, stringpool, pool_off, partials[which_partial]);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (gamma > 0) {
|
|
if (manage_gap(sf.index, &previndex, scale, gamma, &gap) && find_partial(partials, sf, which_partial, layer_unmaps)) {
|
|
preserve_attributes(arg->attribute_accum, attribute_accum_state, sf, stringpool, pool_off, partials[which_partial]);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (additional[A_CLUSTER_DENSEST_AS_NEEDED] || cluster_distance != 0) {
|
|
indices.push_back(sf.index);
|
|
if ((sf.index < merge_previndex || sf.index - merge_previndex < mingap) && find_partial(partials, sf, which_partial, layer_unmaps)) {
|
|
partials[which_partial].clustered++;
|
|
|
|
if (partials[which_partial].t == VT_POINT &&
|
|
partials[which_partial].geoms.size() == 1 &&
|
|
partials[which_partial].geoms[0].size() == 1 &&
|
|
sf.geometry.size() == 1) {
|
|
double x = (double) partials[which_partial].geoms[0][0].x * partials[which_partial].clustered;
|
|
double y = (double) partials[which_partial].geoms[0][0].y * partials[which_partial].clustered;
|
|
x += sf.geometry[0].x;
|
|
y += sf.geometry[0].y;
|
|
partials[which_partial].geoms[0][0].x = x / (partials[which_partial].clustered + 1);
|
|
partials[which_partial].geoms[0][0].y = y / (partials[which_partial].clustered + 1);
|
|
}
|
|
|
|
preserve_attributes(arg->attribute_accum, attribute_accum_state, sf, stringpool, pool_off, partials[which_partial]);
|
|
continue;
|
|
}
|
|
} else if (additional[A_DROP_DENSEST_AS_NEEDED]) {
|
|
indices.push_back(sf.index);
|
|
if (sf.index - merge_previndex < mingap && find_partial(partials, sf, which_partial, layer_unmaps)) {
|
|
preserve_attributes(arg->attribute_accum, attribute_accum_state, sf, stringpool, pool_off, partials[which_partial]);
|
|
continue;
|
|
}
|
|
} else if (additional[A_COALESCE_DENSEST_AS_NEEDED]) {
|
|
indices.push_back(sf.index);
|
|
if (sf.index - merge_previndex < mingap && find_partial(partials, sf, which_partial, layer_unmaps)) {
|
|
partials[which_partial].geoms.push_back(sf.geometry);
|
|
coalesced_area += sf.extent;
|
|
preserve_attributes(arg->attribute_accum, attribute_accum_state, sf, stringpool, pool_off, partials[which_partial]);
|
|
continue;
|
|
}
|
|
} else if (additional[A_DROP_SMALLEST_AS_NEEDED]) {
|
|
extents.push_back(sf.extent);
|
|
if (sf.extent + coalesced_area <= minextent && sf.t != VT_POINT && find_partial(partials, sf, which_partial, layer_unmaps)) {
|
|
preserve_attributes(arg->attribute_accum, attribute_accum_state, sf, stringpool, pool_off, partials[which_partial]);
|
|
continue;
|
|
}
|
|
} else if (additional[A_COALESCE_SMALLEST_AS_NEEDED]) {
|
|
extents.push_back(sf.extent);
|
|
if (sf.extent + coalesced_area <= minextent && find_partial(partials, sf, which_partial, layer_unmaps)) {
|
|
partials[which_partial].geoms.push_back(sf.geometry);
|
|
coalesced_area += sf.extent;
|
|
preserve_attributes(arg->attribute_accum, attribute_accum_state, sf, stringpool, pool_off, partials[which_partial]);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (additional[A_CALCULATE_FEATURE_DENSITY]) {
|
|
// Gamma is always 1 for this calculation so there is a reasonable
|
|
// interpretation when no features are being dropped.
|
|
// The spacing is only calculated if a feature would be retained by
|
|
// that standard, so that duplicates aren't reported as infinitely dense.
|
|
|
|
double o_density_previndex = density_previndex;
|
|
if (!manage_gap(sf.index, &density_previndex, scale, 1, &density_gap)) {
|
|
spacing = (sf.index - o_density_previndex) / scale;
|
|
}
|
|
}
|
|
|
|
fraction_accum += fraction;
|
|
if (fraction_accum < 1 && find_partial(partials, sf, which_partial, layer_unmaps)) {
|
|
if (additional[A_COALESCE_FRACTION_AS_NEEDED]) {
|
|
partials[which_partial].geoms.push_back(sf.geometry);
|
|
coalesced_area += sf.extent;
|
|
}
|
|
preserve_attributes(arg->attribute_accum, attribute_accum_state, sf, stringpool, pool_off, partials[which_partial]);
|
|
continue;
|
|
}
|
|
fraction_accum -= 1;
|
|
|
|
bool reduced = false;
|
|
if (sf.t == VT_POLYGON) {
|
|
if (!prevent[P_TINY_POLYGON_REDUCTION] && !additional[A_GRID_LOW_ZOOMS]) {
|
|
sf.geometry = reduce_tiny_poly(sf.geometry, z, line_detail, &reduced, &accum_area);
|
|
}
|
|
has_polygons = true;
|
|
}
|
|
|
|
if (sf.geometry.size() > 0) {
|
|
partial p;
|
|
p.geoms.push_back(sf.geometry);
|
|
p.layer = sf.layer;
|
|
p.t = sf.t;
|
|
p.segment = sf.segment;
|
|
p.original_seq = sf.seq;
|
|
p.reduced = reduced;
|
|
p.z = z;
|
|
p.line_detail = line_detail;
|
|
p.maxzoom = maxzoom;
|
|
p.keys = sf.keys;
|
|
p.values = sf.values;
|
|
p.full_keys = sf.full_keys;
|
|
p.full_values = sf.full_values;
|
|
p.spacing = spacing;
|
|
p.simplification = simplification;
|
|
p.id = sf.id;
|
|
p.has_id = sf.has_id;
|
|
p.index = sf.index;
|
|
p.renamed = -1;
|
|
p.extent = sf.extent;
|
|
p.clustered = 0;
|
|
partials.push_back(p);
|
|
}
|
|
|
|
merge_previndex = sf.index;
|
|
coalesced_area = 0;
|
|
}
|
|
|
|
for (size_t i = 0; i < partials.size(); i++) {
|
|
partial &p = partials[i];
|
|
|
|
if (p.clustered > 0) {
|
|
std::string layername = (*layer_unmaps)[p.segment][p.layer];
|
|
serial_val sv, sv2, sv3;
|
|
|
|
p.full_keys.push_back("clustered");
|
|
sv.type = mvt_bool;
|
|
sv.s = "true";
|
|
p.full_values.push_back(sv);
|
|
|
|
add_tilestats(layername, z, layermaps, tiling_seg, layer_unmaps, "clustered", sv);
|
|
|
|
p.full_keys.push_back("point_count");
|
|
sv2.type = mvt_double;
|
|
sv2.s = std::to_string(p.clustered + 1);
|
|
p.full_values.push_back(sv2);
|
|
|
|
add_tilestats(layername, z, layermaps, tiling_seg, layer_unmaps, "point_count", sv2);
|
|
|
|
p.full_keys.push_back("sqrt_point_count");
|
|
sv3.type = mvt_double;
|
|
sv3.s = std::to_string(round(100 * sqrt(p.clustered + 1)) / 100.0);
|
|
p.full_values.push_back(sv3);
|
|
|
|
add_tilestats(layername, z, layermaps, tiling_seg, layer_unmaps, "sqrt_point_count", sv3);
|
|
}
|
|
|
|
if (p.need_tilestats.size() > 0) {
|
|
std::string layername = (*layer_unmaps)[p.segment][p.layer];
|
|
|
|
for (size_t j = 0; j < p.full_keys.size(); j++) {
|
|
if (p.need_tilestats.count(p.full_keys[j]) > 0) {
|
|
add_tilestats(layername, z, layermaps, tiling_seg, layer_unmaps, p.full_keys[j], p.full_values[j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (prefilter != NULL) {
|
|
json_end(prefilter_jp);
|
|
if (fclose(prefilter_read_fp) != 0) {
|
|
perror("close output from prefilter");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
while (1) {
|
|
int stat_loc;
|
|
if (waitpid(prefilter_pid, &stat_loc, 0) < 0) {
|
|
perror("waitpid for prefilter\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (WIFEXITED(stat_loc) || WIFSIGNALED(stat_loc)) {
|
|
break;
|
|
}
|
|
}
|
|
void *ret;
|
|
if (pthread_join(prefilter_writer, &ret) != 0) {
|
|
perror("pthread_join prefilter writer");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
first_time = false;
|
|
bool merge_successful = true;
|
|
|
|
if (additional[A_DETECT_SHARED_BORDERS] || (additional[A_MERGE_POLYGONS_AS_NEEDED] && merge_fraction < 1)) {
|
|
merge_successful = find_common_edges(partials, z, line_detail, simplification, maxzoom, merge_fraction);
|
|
}
|
|
|
|
int tasks = ceil((double) CPUS / *running);
|
|
if (tasks < 1) {
|
|
tasks = 1;
|
|
}
|
|
|
|
pthread_t pthreads[tasks];
|
|
std::vector<partial_arg> args;
|
|
args.resize(tasks);
|
|
for (int i = 0; i < tasks; i++) {
|
|
args[i].task = i;
|
|
args[i].tasks = tasks;
|
|
args[i].partials = &partials;
|
|
|
|
if (tasks > 1) {
|
|
if (pthread_create(&pthreads[i], NULL, partial_feature_worker, &args[i]) != 0) {
|
|
perror("pthread_create");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
} else {
|
|
partial_feature_worker(&args[i]);
|
|
}
|
|
}
|
|
|
|
if (tasks > 1) {
|
|
for (int i = 0; i < tasks; i++) {
|
|
void *retval;
|
|
|
|
if (pthread_join(pthreads[i], &retval) != 0) {
|
|
perror("pthread_join");
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < partials.size(); i++) {
|
|
std::vector<drawvec> &pgeoms = partials[i].geoms;
|
|
signed char t = partials[i].t;
|
|
long long original_seq = partials[i].original_seq;
|
|
|
|
// A complex polygon may have been split up into multiple geometries.
|
|
// Break them out into multiple features if necessary.
|
|
for (size_t j = 0; j < pgeoms.size(); j++) {
|
|
if (t == VT_POINT || draws_something(pgeoms[j])) {
|
|
struct coalesce c;
|
|
|
|
c.type = t;
|
|
c.index = partials[i].index;
|
|
c.geom = pgeoms[j];
|
|
pgeoms[j].clear();
|
|
c.coalesced = false;
|
|
c.original_seq = original_seq;
|
|
c.stringpool = stringpool + pool_off[partials[i].segment];
|
|
c.keys = partials[i].keys;
|
|
c.values = partials[i].values;
|
|
c.full_keys = partials[i].full_keys;
|
|
c.full_values = partials[i].full_values;
|
|
c.spacing = partials[i].spacing;
|
|
c.id = partials[i].id;
|
|
c.has_id = partials[i].has_id;
|
|
|
|
// printf("segment %d layer %lld is %s\n", partials[i].segment, partials[i].layer, (*layer_unmaps)[partials[i].segment][partials[i].layer].c_str());
|
|
|
|
std::string layername = (*layer_unmaps)[partials[i].segment][partials[i].layer];
|
|
if (layers.count(layername) == 0) {
|
|
layers.insert(std::pair<std::string, std::vector<coalesce>>(layername, std::vector<coalesce>()));
|
|
}
|
|
|
|
auto l = layers.find(layername);
|
|
if (l == layers.end()) {
|
|
fprintf(stderr, "Internal error: couldn't find layer %s\n", layername.c_str());
|
|
fprintf(stderr, "segment %d\n", partials[i].segment);
|
|
fprintf(stderr, "layer %lld\n", partials[i].layer);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
l->second.push_back(c);
|
|
}
|
|
}
|
|
}
|
|
|
|
partials.clear();
|
|
|
|
int j;
|
|
for (j = 0; j < child_shards; j++) {
|
|
if (within[j]) {
|
|
serialize_byte(geomfile[j], -2, &geompos[j], fname);
|
|
within[j] = 0;
|
|
}
|
|
}
|
|
|
|
for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) {
|
|
std::vector<coalesce> &layer_features = layer_iterator->second;
|
|
|
|
if (additional[A_REORDER]) {
|
|
std::sort(layer_features.begin(), layer_features.end());
|
|
}
|
|
|
|
std::vector<coalesce> out;
|
|
if (layer_features.size() > 0) {
|
|
out.push_back(layer_features[0]);
|
|
}
|
|
for (size_t x = 1; x < layer_features.size(); x++) {
|
|
size_t y = out.size() - 1;
|
|
|
|
#if 0
|
|
if (out.size() > 0 && coalcmp(&layer_features[x], &out[y]) < 0) {
|
|
fprintf(stderr, "\nfeature out of order\n");
|
|
}
|
|
#endif
|
|
|
|
if (additional[A_COALESCE] && out.size() > 0 && coalcmp(&layer_features[x], &out[y]) == 0 && layer_features[x].type != VT_POINT) {
|
|
for (size_t g = 0; g < layer_features[x].geom.size(); g++) {
|
|
out[y].geom.push_back(layer_features[x].geom[g]);
|
|
}
|
|
out[y].coalesced = true;
|
|
} else {
|
|
out.push_back(layer_features[x]);
|
|
}
|
|
}
|
|
|
|
layer_features = out;
|
|
|
|
out.clear();
|
|
for (size_t x = 0; x < layer_features.size(); x++) {
|
|
if (layer_features[x].coalesced && layer_features[x].type == VT_LINE) {
|
|
layer_features[x].geom = remove_noop(layer_features[x].geom, layer_features[x].type, 0);
|
|
layer_features[x].geom = simplify_lines(layer_features[x].geom, 32, 0,
|
|
!(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), simplification, layer_features[x].type == VT_POLYGON ? 4 : 0);
|
|
}
|
|
|
|
if (layer_features[x].type == VT_POLYGON) {
|
|
if (layer_features[x].coalesced) {
|
|
layer_features[x].geom = clean_or_clip_poly(layer_features[x].geom, 0, 0, false);
|
|
}
|
|
|
|
layer_features[x].geom = close_poly(layer_features[x].geom);
|
|
}
|
|
|
|
if (layer_features[x].geom.size() > 0) {
|
|
out.push_back(layer_features[x]);
|
|
}
|
|
}
|
|
layer_features = out;
|
|
|
|
if (prevent[P_INPUT_ORDER]) {
|
|
std::sort(layer_features.begin(), layer_features.end(), preservecmp);
|
|
}
|
|
}
|
|
|
|
mvt_tile tile;
|
|
|
|
for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) {
|
|
std::vector<coalesce> &layer_features = layer_iterator->second;
|
|
|
|
mvt_layer layer;
|
|
layer.name = layer_iterator->first;
|
|
layer.version = 2;
|
|
layer.extent = 1 << line_detail;
|
|
|
|
for (size_t x = 0; x < layer_features.size(); x++) {
|
|
mvt_feature feature;
|
|
|
|
if (layer_features[x].type == VT_LINE || layer_features[x].type == VT_POLYGON) {
|
|
layer_features[x].geom = remove_noop(layer_features[x].geom, layer_features[x].type, 0);
|
|
}
|
|
|
|
if (layer_features[x].geom.size() == 0) {
|
|
continue;
|
|
}
|
|
|
|
feature.type = layer_features[x].type;
|
|
feature.geometry = to_feature(layer_features[x].geom);
|
|
count += layer_features[x].geom.size();
|
|
layer_features[x].geom.clear();
|
|
|
|
feature.id = layer_features[x].id;
|
|
feature.has_id = layer_features[x].has_id;
|
|
|
|
decode_meta(layer_features[x].keys, layer_features[x].values, layer_features[x].stringpool, layer, feature);
|
|
for (size_t a = 0; a < layer_features[x].full_keys.size(); a++) {
|
|
serial_val sv = layer_features[x].full_values[a];
|
|
mvt_value v = stringified_to_mvt_value(sv.type, sv.s.c_str());
|
|
layer.tag(feature, layer_features[x].full_keys[a], v);
|
|
}
|
|
|
|
if (additional[A_CALCULATE_FEATURE_DENSITY]) {
|
|
int glow = 255;
|
|
if (layer_features[x].spacing > 0) {
|
|
glow = (1 / layer_features[x].spacing);
|
|
if (glow > 255) {
|
|
glow = 255;
|
|
}
|
|
}
|
|
|
|
mvt_value v;
|
|
v.type = mvt_sint;
|
|
v.numeric_value.sint_value = glow;
|
|
layer.tag(feature, "tippecanoe_feature_density", v);
|
|
|
|
serial_val sv;
|
|
sv.type = mvt_double;
|
|
sv.s = std::to_string(glow);
|
|
|
|
add_tilestats(layer.name, z, layermaps, tiling_seg, layer_unmaps, "tippecanoe_feature_density", sv);
|
|
}
|
|
|
|
layer.features.push_back(feature);
|
|
}
|
|
|
|
if (layer.features.size() > 0) {
|
|
tile.layers.push_back(layer);
|
|
}
|
|
}
|
|
|
|
if (postfilter != NULL) {
|
|
tile.layers = filter_layers(postfilter, tile.layers, z, tx, ty, layermaps, tiling_seg, layer_unmaps, 1 << line_detail);
|
|
}
|
|
|
|
if (z == 0 && unclipped_features < original_features / 2) {
|
|
fprintf(stderr, "\n\nMore than half the features were clipped away at zoom level 0.\n");
|
|
fprintf(stderr, "Is your data in the wrong projection? It should be in WGS84/EPSG:4326.\n");
|
|
}
|
|
|
|
size_t totalsize = 0;
|
|
for (auto layer_iterator = layers.begin(); layer_iterator != layers.end(); ++layer_iterator) {
|
|
std::vector<coalesce> &layer_features = layer_iterator->second;
|
|
totalsize += layer_features.size();
|
|
}
|
|
|
|
double progress = floor(((((*geompos_in + *along - alongminus) / (double) todo) + (pass - (2 - passes))) / passes + z) / (maxzoom + 1) * 1000) / 10;
|
|
if (progress >= oprogress + 0.1) {
|
|
if (!quiet && !quiet_progress && progress_time()) {
|
|
fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty);
|
|
}
|
|
oprogress = progress;
|
|
}
|
|
|
|
if (totalsize > 0 && tile.layers.size() > 0) {
|
|
if (totalsize > max_tile_features && !prevent[P_FEATURE_LIMIT]) {
|
|
fprintf(stderr, "tile %d/%u/%u has %zu features, >%zu \n", z, tx, ty, totalsize, max_tile_features);
|
|
|
|
if (has_polygons && additional[A_MERGE_POLYGONS_AS_NEEDED] && merge_fraction > .05 && merge_successful) {
|
|
merge_fraction = merge_fraction * max_tile_features / tile.layers.size() * 0.95;
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try merging %0.2f%% of the polygons to make it fit\n", 100 - merge_fraction * 100);
|
|
}
|
|
line_detail++; // to keep it the same when the loop decrements it
|
|
continue;
|
|
} else if (additional[A_INCREASE_GAMMA_AS_NEEDED] && gamma < 10) {
|
|
if (gamma < 1) {
|
|
gamma = 1;
|
|
} else {
|
|
gamma = gamma * 1.25;
|
|
}
|
|
|
|
if (gamma > arg->gamma_out) {
|
|
arg->gamma_out = gamma;
|
|
arg->still_dropping = true;
|
|
}
|
|
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try gamma of %0.3f to make it fit\n", gamma);
|
|
}
|
|
line_detail++; // to keep it the same when the loop decrements it
|
|
continue;
|
|
} else if (mingap < ULONG_MAX && (additional[A_DROP_DENSEST_AS_NEEDED] || additional[A_COALESCE_DENSEST_AS_NEEDED] || additional[A_CLUSTER_DENSEST_AS_NEEDED])) {
|
|
mingap_fraction = mingap_fraction * max_tile_features / totalsize * 0.90;
|
|
unsigned long long mg = choose_mingap(indices, mingap_fraction);
|
|
if (mg <= mingap) {
|
|
mg = (mingap + 1) * 1.5;
|
|
|
|
if (mg <= mingap) {
|
|
mg = ULONG_MAX;
|
|
}
|
|
}
|
|
mingap = mg;
|
|
if (mingap > arg->mingap_out) {
|
|
arg->mingap_out = mingap;
|
|
arg->still_dropping = true;
|
|
}
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try keeping the sparsest %0.2f%% of the features to make it fit\n", mingap_fraction * 100.0);
|
|
}
|
|
line_detail++;
|
|
continue;
|
|
} else if (additional[A_DROP_SMALLEST_AS_NEEDED] || additional[A_COALESCE_SMALLEST_AS_NEEDED]) {
|
|
minextent_fraction = minextent_fraction * max_tile_features / totalsize * 0.90;
|
|
long long m = choose_minextent(extents, minextent_fraction);
|
|
if (m != minextent) {
|
|
minextent = m;
|
|
if (minextent > arg->minextent_out) {
|
|
arg->minextent_out = minextent;
|
|
arg->still_dropping = true;
|
|
}
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try keeping the biggest %0.2f%% of the features to make it fit\n", minextent_fraction * 100.0);
|
|
}
|
|
line_detail++;
|
|
continue;
|
|
}
|
|
} else if (totalsize > layers.size() && (prevent[P_DYNAMIC_DROP] || additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_COALESCE_FRACTION_AS_NEEDED])) {
|
|
// The 95% is a guess to avoid too many retries
|
|
// and probably actually varies based on how much duplicated metadata there is
|
|
|
|
fraction = fraction * max_tile_features / totalsize * 0.95;
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100);
|
|
}
|
|
if ((additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_COALESCE_FRACTION_AS_NEEDED]) && fraction < arg->fraction_out) {
|
|
arg->fraction_out = fraction;
|
|
arg->still_dropping = true;
|
|
}
|
|
line_detail++; // to keep it the same when the loop decrements it
|
|
continue;
|
|
} else {
|
|
fprintf(stderr, "Try using --drop-fraction-as-needed or --drop-densest-as-needed.\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
std::string compressed;
|
|
std::string pbf = tile.encode();
|
|
|
|
if (!prevent[P_TILE_COMPRESSION]) {
|
|
compress(pbf, compressed);
|
|
} else {
|
|
compressed = pbf;
|
|
}
|
|
|
|
if (compressed.size() > max_tile_size && !prevent[P_KILOBYTE_LIMIT]) {
|
|
if (!quiet) {
|
|
fprintf(stderr, "tile %d/%u/%u size is %lld with detail %d, >%zu \n", z, tx, ty, (long long) compressed.size(), line_detail, max_tile_size);
|
|
}
|
|
|
|
if (has_polygons && additional[A_MERGE_POLYGONS_AS_NEEDED] && merge_fraction > .05 && merge_successful) {
|
|
merge_fraction = merge_fraction * max_tile_size / compressed.size() * 0.95;
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try merging %0.2f%% of the polygons to make it fit\n", 100 - merge_fraction * 100);
|
|
}
|
|
line_detail++; // to keep it the same when the loop decrements it
|
|
} else if (additional[A_INCREASE_GAMMA_AS_NEEDED] && gamma < 10) {
|
|
if (gamma < 1) {
|
|
gamma = 1;
|
|
} else {
|
|
gamma = gamma * 1.25;
|
|
}
|
|
|
|
if (gamma > arg->gamma_out) {
|
|
arg->gamma_out = gamma;
|
|
arg->still_dropping = true;
|
|
}
|
|
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try gamma of %0.3f to make it fit\n", gamma);
|
|
}
|
|
line_detail++; // to keep it the same when the loop decrements it
|
|
} else if (mingap < ULONG_MAX && (additional[A_DROP_DENSEST_AS_NEEDED] || additional[A_COALESCE_DENSEST_AS_NEEDED] || additional[A_CLUSTER_DENSEST_AS_NEEDED])) {
|
|
mingap_fraction = mingap_fraction * max_tile_size / compressed.size() * 0.90;
|
|
unsigned long long mg = choose_mingap(indices, mingap_fraction);
|
|
if (mg <= mingap) {
|
|
mg = (mingap + 1) * 1.5;
|
|
|
|
if (mg <= mingap) {
|
|
mg = ULONG_MAX;
|
|
}
|
|
}
|
|
mingap = mg;
|
|
if (mingap > arg->mingap_out) {
|
|
arg->mingap_out = mingap;
|
|
arg->still_dropping = true;
|
|
}
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try keeping the sparsest %0.2f%% of the features to make it fit\n", mingap_fraction * 100.0);
|
|
}
|
|
line_detail++;
|
|
} else if (additional[A_DROP_SMALLEST_AS_NEEDED] || additional[A_COALESCE_SMALLEST_AS_NEEDED]) {
|
|
minextent_fraction = minextent_fraction * max_tile_size / compressed.size() * 0.90;
|
|
long long m = choose_minextent(extents, minextent_fraction);
|
|
if (m != minextent) {
|
|
minextent = m;
|
|
if (minextent > arg->minextent_out) {
|
|
arg->minextent_out = minextent;
|
|
arg->still_dropping = true;
|
|
}
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try keeping the biggest %0.2f%% of the features to make it fit\n", minextent_fraction * 100.0);
|
|
}
|
|
line_detail++;
|
|
continue;
|
|
}
|
|
} else if (totalsize > layers.size() && (prevent[P_DYNAMIC_DROP] || additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_COALESCE_FRACTION_AS_NEEDED])) {
|
|
// The 95% is a guess to avoid too many retries
|
|
// and probably actually varies based on how much duplicated metadata there is
|
|
|
|
fraction = fraction * max_tile_size / compressed.size() * 0.95;
|
|
if (!quiet) {
|
|
fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100);
|
|
}
|
|
if ((additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_COALESCE_FRACTION_AS_NEEDED]) && fraction < arg->fraction_out) {
|
|
arg->fraction_out = fraction;
|
|
arg->still_dropping = true;
|
|
}
|
|
line_detail++; // to keep it the same when the loop decrements it
|
|
}
|
|
} else {
|
|
if (pass == 1) {
|
|
if (pthread_mutex_lock(&db_lock) != 0) {
|
|
perror("pthread_mutex_lock");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (outdb != NULL) {
|
|
mbtiles_write_tile(outdb, z, tx, ty, compressed.data(), compressed.size());
|
|
} else if (outdir != NULL) {
|
|
dir_write_tile(outdir, z, tx, ty, compressed);
|
|
}
|
|
|
|
if (pthread_mutex_unlock(&db_lock) != 0) {
|
|
perror("pthread_mutex_unlock");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
} else {
|
|
return count;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "could not make tile %d/%u/%u small enough\n", z, tx, ty);
|
|
return -1;
|
|
}
|
|
|
|
struct task {
|
|
int fileno = 0;
|
|
struct task *next = NULL;
|
|
};
|
|
|
|
void *run_thread(void *vargs) {
|
|
write_tile_args *arg = (write_tile_args *) vargs;
|
|
struct task *task;
|
|
|
|
for (task = arg->tasks; task != NULL; task = task->next) {
|
|
int j = task->fileno;
|
|
|
|
if (arg->geomfd[j] < 0) {
|
|
// only one source file for zoom level 0
|
|
continue;
|
|
}
|
|
if (arg->geom_size[j] == 0) {
|
|
continue;
|
|
}
|
|
|
|
// printf("%lld of geom_size\n", (long long) geom_size[j]);
|
|
|
|
FILE *geom = fdopen(arg->geomfd[j], "rb");
|
|
if (geom == NULL) {
|
|
perror("mmap geom");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
long long geompos = 0;
|
|
long long prevgeom = 0;
|
|
|
|
while (1) {
|
|
int z;
|
|
unsigned x, y;
|
|
|
|
if (!deserialize_int_io(geom, &z, &geompos)) {
|
|
break;
|
|
}
|
|
deserialize_uint_io(geom, &x, &geompos);
|
|
deserialize_uint_io(geom, &y, &geompos);
|
|
|
|
arg->wrote_zoom = z;
|
|
|
|
// fprintf(stderr, "%d/%u/%u\n", z, x, y);
|
|
|
|
long long len = write_tile(geom, &geompos, arg->metabase, arg->stringpool, z, x, y, z == arg->maxzoom ? arg->full_detail : arg->low_detail, arg->min_detail, arg->outdb, arg->outdir, arg->buffer, arg->fname, arg->geomfile, arg->minzoom, arg->maxzoom, arg->todo, arg->along, geompos, arg->gamma, arg->child_shards, arg->meta_off, arg->pool_off, arg->initial_x, arg->initial_y, arg->running, arg->simplification, arg->layermaps, arg->layer_unmaps, arg->tiling_seg, arg->pass, arg->passes, arg->mingap, arg->minextent, arg->fraction, arg->prefilter, arg->postfilter, arg->filter, arg);
|
|
|
|
if (len < 0) {
|
|
int *err = &arg->err;
|
|
*err = z - 1;
|
|
return err;
|
|
}
|
|
|
|
if (pthread_mutex_lock(&var_lock) != 0) {
|
|
perror("pthread_mutex_lock");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (z == arg->maxzoom) {
|
|
if (len > *arg->most) {
|
|
*arg->midx = x;
|
|
*arg->midy = y;
|
|
*arg->most = len;
|
|
} else if (len == *arg->most) {
|
|
unsigned long long a = (((unsigned long long) x) << 32) | y;
|
|
unsigned long long b = (((unsigned long long) *arg->midx) << 32) | *arg->midy;
|
|
|
|
if (a < b) {
|
|
*arg->midx = x;
|
|
*arg->midy = y;
|
|
*arg->most = len;
|
|
}
|
|
}
|
|
}
|
|
|
|
*arg->along += geompos - prevgeom;
|
|
prevgeom = geompos;
|
|
|
|
if (pthread_mutex_unlock(&var_lock) != 0) {
|
|
perror("pthread_mutex_unlock");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
if (arg->pass == 1) {
|
|
// Since the fclose() has closed the underlying file descriptor
|
|
arg->geomfd[j] = -1;
|
|
} else {
|
|
int newfd = dup(arg->geomfd[j]);
|
|
if (newfd < 0) {
|
|
perror("dup geometry");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (lseek(newfd, 0, SEEK_SET) < 0) {
|
|
perror("lseek geometry");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
arg->geomfd[j] = newfd;
|
|
}
|
|
|
|
if (fclose(geom) != 0) {
|
|
perror("close geom");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
arg->running--;
|
|
return NULL;
|
|
}
|
|
|
|
int traverse_zooms(int *geomfd, off_t *geom_size, char *metabase, char *stringpool, std::atomic<unsigned> *midx, std::atomic<unsigned> *midy, int &maxzoom, int minzoom, sqlite3 *outdb, const char *outdir, int buffer, const char *fname, const char *tmpdir, double gamma, int full_detail, int low_detail, int min_detail, long long *meta_off, long long *pool_off, unsigned *initial_x, unsigned *initial_y, double simplification, std::vector<std::map<std::string, layermap_entry>> &layermaps, const char *prefilter, const char *postfilter, std::map<std::string, attribute_op> const *attribute_accum, struct json_object *filter) {
|
|
last_progress = 0;
|
|
|
|
// The existing layermaps are one table per input thread.
|
|
// We need to add another one per *tiling* thread so that it can be
|
|
// safely changed during tiling.
|
|
size_t layermaps_off = layermaps.size();
|
|
for (size_t i = 0; i < CPUS; i++) {
|
|
layermaps.push_back(std::map<std::string, layermap_entry>());
|
|
}
|
|
|
|
// Table to map segment and layer number back to layer name
|
|
std::vector<std::vector<std::string>> layer_unmaps;
|
|
for (size_t seg = 0; seg < layermaps.size(); seg++) {
|
|
layer_unmaps.push_back(std::vector<std::string>());
|
|
|
|
for (auto a = layermaps[seg].begin(); a != layermaps[seg].end(); ++a) {
|
|
if (a->second.id >= layer_unmaps[seg].size()) {
|
|
layer_unmaps[seg].resize(a->second.id + 1);
|
|
}
|
|
layer_unmaps[seg][a->second.id] = a->first;
|
|
}
|
|
}
|
|
|
|
int i;
|
|
for (i = 0; i <= maxzoom; i++) {
|
|
std::atomic<long long> most(0);
|
|
|
|
FILE *sub[TEMP_FILES];
|
|
int subfd[TEMP_FILES];
|
|
for (size_t j = 0; j < TEMP_FILES; j++) {
|
|
char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX" XSTRINGIFY(INT_MAX)) + 1];
|
|
sprintf(geomname, "%s/geom%zu.XXXXXXXX", tmpdir, j);
|
|
subfd[j] = mkstemp_cloexec(geomname);
|
|
// printf("%s\n", geomname);
|
|
if (subfd[j] < 0) {
|
|
perror(geomname);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
sub[j] = fopen_oflag(geomname, "wb", O_WRONLY | O_CLOEXEC);
|
|
if (sub[j] == NULL) {
|
|
perror(geomname);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
unlink(geomname);
|
|
}
|
|
|
|
size_t useful_threads = 0;
|
|
long long todo = 0;
|
|
for (size_t j = 0; j < TEMP_FILES; j++) {
|
|
todo += geom_size[j];
|
|
if (geom_size[j] > 0) {
|
|
useful_threads++;
|
|
}
|
|
}
|
|
|
|
size_t threads = CPUS;
|
|
if (threads > TEMP_FILES / 4) {
|
|
threads = TEMP_FILES / 4;
|
|
}
|
|
// XXX is it useful to divide further if we know we are skipping
|
|
// some zoom levels? Is it faster to have fewer CPUs working on
|
|
// sharding, but more deeply, or fewer CPUs, less deeply?
|
|
if (threads > useful_threads) {
|
|
threads = useful_threads;
|
|
}
|
|
|
|
// Round down to a power of 2
|
|
for (int e = 0; e < 30; e++) {
|
|
if (threads >= (1U << e) && threads < (1U << (e + 1))) {
|
|
threads = 1U << e;
|
|
break;
|
|
}
|
|
}
|
|
if (threads >= (1U << 30)) {
|
|
threads = 1U << 30;
|
|
}
|
|
if (threads < 1) {
|
|
threads = 1;
|
|
}
|
|
|
|
// Assign temporary files to threads
|
|
|
|
std::vector<struct task> tasks;
|
|
tasks.resize(TEMP_FILES);
|
|
|
|
struct dispatch {
|
|
struct task *tasks = NULL;
|
|
long long todo = 0;
|
|
struct dispatch *next = NULL;
|
|
};
|
|
std::vector<struct dispatch> dispatches;
|
|
dispatches.resize(threads);
|
|
|
|
struct dispatch *dispatch_head = &dispatches[0];
|
|
for (size_t j = 0; j < threads; j++) {
|
|
dispatches[j].tasks = NULL;
|
|
dispatches[j].todo = 0;
|
|
if (j + 1 < threads) {
|
|
dispatches[j].next = &dispatches[j + 1];
|
|
} else {
|
|
dispatches[j].next = NULL;
|
|
}
|
|
}
|
|
|
|
for (size_t j = 0; j < TEMP_FILES; j++) {
|
|
if (geom_size[j] == 0) {
|
|
continue;
|
|
}
|
|
|
|
tasks[j].fileno = j;
|
|
tasks[j].next = dispatch_head->tasks;
|
|
dispatch_head->tasks = &tasks[j];
|
|
dispatch_head->todo += geom_size[j];
|
|
|
|
struct dispatch *here = dispatch_head;
|
|
dispatch_head = dispatch_head->next;
|
|
|
|
dispatch **d;
|
|
for (d = &dispatch_head; *d != NULL; d = &((*d)->next)) {
|
|
if (here->todo < (*d)->todo) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
here->next = *d;
|
|
*d = here;
|
|
}
|
|
|
|
int err = INT_MAX;
|
|
|
|
size_t start = 1;
|
|
if (additional[A_INCREASE_GAMMA_AS_NEEDED] || additional[A_DROP_DENSEST_AS_NEEDED] || additional[A_COALESCE_DENSEST_AS_NEEDED] || additional[A_CLUSTER_DENSEST_AS_NEEDED] || additional[A_DROP_FRACTION_AS_NEEDED] || additional[A_COALESCE_FRACTION_AS_NEEDED] || additional[A_DROP_SMALLEST_AS_NEEDED] || additional[A_COALESCE_SMALLEST_AS_NEEDED]) {
|
|
start = 0;
|
|
}
|
|
|
|
double zoom_gamma = gamma;
|
|
unsigned long long zoom_mingap = ((1LL << (32 - i)) / 256 * cluster_distance) * ((1LL << (32 - i)) / 256 * cluster_distance);
|
|
long long zoom_minextent = 0;
|
|
double zoom_fraction = 1;
|
|
|
|
for (size_t pass = start; pass < 2; pass++) {
|
|
pthread_t pthreads[threads];
|
|
std::vector<write_tile_args> args;
|
|
args.resize(threads);
|
|
std::atomic<int> running(threads);
|
|
std::atomic<long long> along(0);
|
|
|
|
for (size_t thread = 0; thread < threads; thread++) {
|
|
args[thread].metabase = metabase;
|
|
args[thread].stringpool = stringpool;
|
|
args[thread].min_detail = min_detail;
|
|
args[thread].outdb = outdb; // locked with db_lock
|
|
args[thread].outdir = outdir;
|
|
args[thread].buffer = buffer;
|
|
args[thread].fname = fname;
|
|
args[thread].geomfile = sub + thread * (TEMP_FILES / threads);
|
|
args[thread].todo = todo;
|
|
args[thread].along = &along; // locked with var_lock
|
|
args[thread].gamma = zoom_gamma;
|
|
args[thread].gamma_out = zoom_gamma;
|
|
args[thread].mingap = zoom_mingap;
|
|
args[thread].mingap_out = zoom_mingap;
|
|
args[thread].minextent = zoom_minextent;
|
|
args[thread].minextent_out = zoom_minextent;
|
|
args[thread].fraction = zoom_fraction;
|
|
args[thread].fraction_out = zoom_fraction;
|
|
args[thread].child_shards = TEMP_FILES / threads;
|
|
args[thread].simplification = simplification;
|
|
|
|
args[thread].geomfd = geomfd;
|
|
args[thread].geom_size = geom_size;
|
|
args[thread].midx = midx; // locked with var_lock
|
|
args[thread].midy = midy; // locked with var_lock
|
|
args[thread].maxzoom = maxzoom;
|
|
args[thread].minzoom = minzoom;
|
|
args[thread].full_detail = full_detail;
|
|
args[thread].low_detail = low_detail;
|
|
args[thread].most = &most; // locked with var_lock
|
|
args[thread].meta_off = meta_off;
|
|
args[thread].pool_off = pool_off;
|
|
args[thread].initial_x = initial_x;
|
|
args[thread].initial_y = initial_y;
|
|
args[thread].layermaps = &layermaps;
|
|
args[thread].layer_unmaps = &layer_unmaps;
|
|
args[thread].tiling_seg = thread + layermaps_off;
|
|
args[thread].prefilter = prefilter;
|
|
args[thread].postfilter = postfilter;
|
|
args[thread].attribute_accum = attribute_accum;
|
|
args[thread].filter = filter;
|
|
|
|
args[thread].tasks = dispatches[thread].tasks;
|
|
args[thread].running = &running;
|
|
args[thread].pass = pass;
|
|
args[thread].passes = 2 - start;
|
|
args[thread].wrote_zoom = -1;
|
|
args[thread].still_dropping = false;
|
|
|
|
if (pthread_create(&pthreads[thread], NULL, run_thread, &args[thread]) != 0) {
|
|
perror("pthread_create");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
for (size_t thread = 0; thread < threads; thread++) {
|
|
void *retval;
|
|
|
|
if (pthread_join(pthreads[thread], &retval) != 0) {
|
|
perror("pthread_join");
|
|
}
|
|
|
|
if (retval != NULL) {
|
|
err = *((int *) retval);
|
|
}
|
|
|
|
if (args[thread].gamma_out > zoom_gamma) {
|
|
zoom_gamma = args[thread].gamma_out;
|
|
}
|
|
if (args[thread].mingap_out > zoom_mingap) {
|
|
zoom_mingap = args[thread].mingap_out;
|
|
}
|
|
if (args[thread].minextent_out > zoom_minextent) {
|
|
zoom_minextent = args[thread].minextent_out;
|
|
}
|
|
if (args[thread].fraction_out < zoom_fraction) {
|
|
zoom_fraction = args[thread].fraction_out;
|
|
}
|
|
|
|
// Zoom counter might be lower than reality if zooms are being skipped
|
|
if (args[thread].wrote_zoom > i) {
|
|
i = args[thread].wrote_zoom;
|
|
}
|
|
|
|
if (additional[A_EXTEND_ZOOMS] && i == maxzoom && args[thread].still_dropping && maxzoom < MAX_ZOOM) {
|
|
maxzoom++;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t j = 0; j < TEMP_FILES; j++) {
|
|
// Can be < 0 if there is only one source file, at z0
|
|
if (geomfd[j] >= 0) {
|
|
if (close(geomfd[j]) != 0) {
|
|
perror("close geom");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
if (fclose(sub[j]) != 0) {
|
|
perror("close subfile");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
struct stat geomst;
|
|
if (fstat(subfd[j], &geomst) != 0) {
|
|
perror("stat geom\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
geomfd[j] = subfd[j];
|
|
geom_size[j] = geomst.st_size;
|
|
}
|
|
|
|
if (err != INT_MAX) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
for (size_t j = 0; j < TEMP_FILES; j++) {
|
|
// Can be < 0 if there is only one source file, at z0
|
|
if (geomfd[j] >= 0) {
|
|
if (close(geomfd[j]) != 0) {
|
|
perror("close geom");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!quiet) {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
return maxzoom;
|
|
}
|