tippecanoe/tile.cc

887 lines
24 KiB
C++

#include <iostream>
#include <fstream>
#include <string>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <stdio.h>
#include <unistd.h>
#include <zlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <math.h>
#include <sqlite3.h>
#include "vector_tile.pb.h"
#include "geometry.hh"
extern "C" {
#include "tile.h"
#include "pool.h"
#include "clip.h"
#include "mbtiles.h"
#include "projection.h"
}
#define CMD_BITS 3
// https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp
static inline int compress(std::string const &input, std::string &output) {
z_stream deflate_s;
deflate_s.zalloc = Z_NULL;
deflate_s.zfree = Z_NULL;
deflate_s.opaque = Z_NULL;
deflate_s.avail_in = 0;
deflate_s.next_in = Z_NULL;
deflateInit2(&deflate_s, Z_BEST_COMPRESSION, Z_DEFLATED, 31, 8, Z_DEFAULT_STRATEGY);
deflate_s.next_in = (Bytef *) input.data();
deflate_s.avail_in = input.size();
size_t length = 0;
do {
size_t increase = input.size() / 2 + 1024;
output.resize(length + increase);
deflate_s.avail_out = increase;
deflate_s.next_out = (Bytef *) (output.data() + length);
int ret = deflate(&deflate_s, Z_FINISH);
if (ret != Z_STREAM_END && ret != Z_OK && ret != Z_BUF_ERROR) {
return -1;
}
length += (increase - deflate_s.avail_out);
} while (deflate_s.avail_out == 0);
deflateEnd(&deflate_s);
output.resize(length);
return 0;
}
int to_feature(drawvec &geom, mapnik::vector::tile_feature *feature) {
int px = 0, py = 0;
int cmd_idx = -1;
int cmd = -1;
int length = 0;
int drew = 0;
int i;
int n = geom.size();
for (i = 0; i < n; i++) {
int op = geom[i].op;
if (op != cmd) {
if (cmd_idx >= 0) {
if (feature != NULL) {
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
}
}
cmd = op;
length = 0;
if (feature != NULL) {
cmd_idx = feature->geometry_size();
feature->add_geometry(0);
}
}
if (op == VT_MOVETO || op == VT_LINETO) {
long long wwx = geom[i].x;
long long wwy = geom[i].y;
int dx = wwx - px;
int dy = wwy - py;
if (feature != NULL) {
feature->add_geometry((dx << 1) ^ (dx >> 31));
feature->add_geometry((dy << 1) ^ (dy >> 31));
}
px = wwx;
py = wwy;
length++;
if (op == VT_LINETO && (dx != 0 || dy != 0)) {
drew = 1;
}
} else if (op == VT_CLOSEPATH) {
length++;
} else {
fprintf(stderr, "\nInternal error: corrupted geometry\n");
exit(EXIT_FAILURE);
}
}
if (cmd_idx >= 0) {
if (feature != NULL) {
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
}
}
return drew;
}
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2);
struct coalesce {
int type;
drawvec geom;
std::vector<int> meta;
unsigned long long index;
unsigned long long index2;
char *metasrc;
bool coalesced;
bool operator<(const coalesce &o) const {
int cmp = coalindexcmp(this, &o);
if (cmp < 0) {
return true;
} else {
return false;
}
}
};
int coalcmp(const void *v1, const void *v2) {
const struct coalesce *c1 = (const struct coalesce *) v1;
const struct coalesce *c2 = (const struct coalesce *) v2;
int cmp = c1->type - c2->type;
if (cmp != 0) {
return cmp;
}
unsigned i;
for (i = 0; i < c1->meta.size() && i < c2->meta.size(); i++) {
cmp = c1->meta[i] - c2->meta[i];
if (cmp != 0) {
return cmp;
}
}
if (c1->meta.size() < c2->meta.size()) {
return -1;
} else if (c1->meta.size() > c2->meta.size()) {
return 1;
} else {
return 0;
}
}
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) {
int cmp = coalcmp((const void *) c1, (const void *) c2);
if (cmp == 0) {
if (c1->index < c2->index) {
return -1;
} else if (c1->index > c2->index) {
return 1;
}
if (c1->index2 > c2->index2) {
return -1;
} else if (c1->index2 < c2->index2) {
return 1;
}
}
return cmp;
}
struct pool_val *retrieve_string(char **f, struct pool *p, char *stringpool) {
struct pool_val *ret;
long long off;
deserialize_long_long(f, &off);
ret = pool(p, stringpool + off + 1, stringpool[off]);
return ret;
}
void decode_meta(char **meta, char *stringpool, struct pool *keys, struct pool *values, struct pool *file_keys, std::vector<int> *intmeta, char *only) {
int m;
deserialize_int(meta, &m);
int i;
for (i = 0; i < m; i++) {
struct pool_val *key = retrieve_string(meta, keys, stringpool);
if (only != NULL && (strcmp(key->s, only) != 0)) {
// XXX if evaluate ever works again, check whether this is sufficient
(void) retrieve_string(meta, values, stringpool);
} else {
struct pool_val *value = retrieve_string(meta, values, stringpool);
intmeta->push_back(key->n);
intmeta->push_back(value->n);
if (!is_pooled(file_keys, key->s, value->type)) {
// Dup to retain after munmap
pool(file_keys, strdup(key->s), value->type);
}
}
}
}
mapnik::vector::tile create_tile(char **layernames, int line_detail, std::vector<std::vector<coalesce> > &features, long long *count, struct pool **keys, struct pool **values, int nlayers) {
mapnik::vector::tile tile;
int i;
for (i = 0; i < nlayers; i++) {
mapnik::vector::tile_layer *layer = tile.add_layers();
layer->set_name(layernames[i]);
layer->set_version(1);
layer->set_extent(1 << line_detail);
unsigned x;
for (x = 0; x < features[i].size(); x++) {
if (features[i][x].type == VT_LINE || features[i][x].type == VT_POLYGON) {
features[i][x].geom = remove_noop(features[i][x].geom, features[i][x].type, 0);
}
mapnik::vector::tile_feature *feature = layer->add_features();
if (features[i][x].type == VT_POINT) {
feature->set_type(mapnik::vector::tile::Point);
} else if (features[i][x].type == VT_LINE) {
feature->set_type(mapnik::vector::tile::LineString);
} else if (features[i][x].type == VT_POLYGON) {
feature->set_type(mapnik::vector::tile::Polygon);
} else {
feature->set_type(mapnik::vector::tile::Unknown);
}
to_feature(features[i][x].geom, feature);
*count += features[i][x].geom.size();
unsigned y;
for (y = 0; y < features[i][x].meta.size(); y++) {
feature->add_tags(features[i][x].meta[y]);
}
}
struct pool_val *pv;
for (pv = keys[i]->head; pv != NULL; pv = pv->next) {
layer->add_keys(pv->s, strlen(pv->s));
}
for (pv = values[i]->head; pv != NULL; pv = pv->next) {
mapnik::vector::tile_value *tv = layer->add_values();
if (pv->type == VT_NUMBER) {
tv->set_double_value(atof(pv->s));
} else if (pv->type == VT_BOOLEAN) {
tv->set_bool_value(pv->s[0] == 't');
} else {
tv->set_string_value(pv->s);
}
}
}
return tile;
}
struct sll {
char *name;
long long val;
bool operator<(const sll &o) const {
if (this->val < o.val) {
return true;
} else {
return false;
}
}
sll(char *name, long long val) {
this->name = name;
this->val = val;
}
};
#if 0
void evaluate(std::vector<coalesce> &features, char *metabase, struct pool *file_keys, const char *layername, int line_detail, long long orig) {
std::vector<sll> options;
struct pool_val *pv;
for (pv = file_keys->head; pv != NULL; pv = pv->next) {
struct pool keys, values;
pool_init(&keys, 0);
pool_init(&values, 0);
long long count = 0;
for (unsigned i = 0; i < features.size(); i++) {
char *meta = features[i].metasrc;
features[i].meta.resize(0);
decode_meta(&meta, &keys, &values, file_keys, &features[i].meta, pv->s);
}
std::vector<coalesce> empty;
mapnik::vector::tile tile = create_tile(layername, line_detail, empty, &count, &keys, &values, 1); // XXX layer
std::string s;
std::string compressed;
tile.SerializeToString(&s);
compress(s, compressed);
options.push_back(sll(pv->s, compressed.size()));
pool_free(&values);
pool_free(&keys);
}
std::sort(options.begin(), options.end());
for (unsigned i = 0; i < options.size(); i++) {
if (options[i].val > 1024) {
fprintf(stderr, "using -x %s would save about %lld, for a tile size of of %lld\n", options[i].name, options[i].val, orig - options[i].val);
}
}
struct pool keys, values;
pool_init(&keys, 0);
pool_init(&values, 0);
long long count = 0;
std::vector<coalesce> empty;
mapnik::vector::tile tile = create_tile(layername, line_detail, features, &count, &keys, &values, nlayers);
std::string s;
std::string compressed;
tile.SerializeToString(&s);
compress(s, compressed);
fprintf(stderr, "geometry alone (-X) would be %lld\n", (long long) compressed.size());
pool_free(&values);
pool_free(&keys);
}
#endif
void rewrite(drawvec &geom, int z, int nextzoom, int file_maxzoom, long long *bbox, unsigned tx, unsigned ty, int buffer, int line_detail, int *within, long long *geompos, FILE **geomfile, const char *fname, signed char t, signed char layer, long long metastart, signed char feature_minzoom) {
if (geom.size() > 0 && nextzoom <= file_maxzoom) {
int xo, yo;
int span = 1 << (nextzoom - z);
// Get the feature bounding box in pixel (256) coordinates at the child zoom
// in order to calculate which sub-tiles it can touch including the buffer.
long long bbox2[4];
int k;
for (k = 0; k < 4; k++) {
// Division instead of right-shift because coordinates can be negative
bbox2[k] = bbox[k] / (1 << (32 - nextzoom - 8));
}
bbox2[0] -= buffer;
bbox2[1] -= buffer;
bbox2[2] += buffer;
bbox2[3] += buffer;
for (k = 0; k < 4; k++) {
if (bbox2[k] < 0) {
bbox2[k] = 0;
}
if (bbox2[k] >= 256 * span) {
bbox2[k] = 256 * (span - 1);
}
bbox2[k] /= 256;
}
for (xo = bbox2[0]; xo <= bbox2[2]; xo++) {
for (yo = bbox2[1]; yo <= bbox2[3]; yo++) {
unsigned jx = tx * span + xo;
unsigned jy = ty * span + yo;
// j is the shard that the child tile's data is being written to.
//
// Be careful: We can't jump more zoom levels than MAX_ZOOM_INCREMENT
// because that could break the constraint that each of the children
// of the current tile must have its own shard, because the data for
// the child tile must be contiguous within the shard.
//
// But it's OK to spread children across all the shards, not just
// the four that would normally result from splitting one tile,
// because it will go through all the shards when it does the
// next zoom.
int j = ((jx & ((1 << MAX_ZOOM_INCREMENT) - 1)) << MAX_ZOOM_INCREMENT) |
((jy & ((1 << MAX_ZOOM_INCREMENT) - 1)));
{
if (!within[j]) {
serialize_int(geomfile[j], nextzoom, &geompos[j], fname);
serialize_uint(geomfile[j], tx * span + xo, &geompos[j], fname);
serialize_uint(geomfile[j], ty * span + yo, &geompos[j], fname);
within[j] = 1;
}
// Offset from tile coordinates back to world coordinates
unsigned sx = 0, sy = 0;
if (z != 0) {
sx = tx << (32 - z);
sy = ty << (32 - z);
}
// printf("type %d, meta %lld\n", t, metastart);
serialize_byte(geomfile[j], t, &geompos[j], fname);
serialize_byte(geomfile[j], layer, &geompos[j], fname);
serialize_long_long(geomfile[j], metastart, &geompos[j], fname);
long long wx = initial_x, wy = initial_y;
for (unsigned u = 0; u < geom.size(); u++) {
serialize_byte(geomfile[j], geom[u].op, &geompos[j], fname);
if (geom[u].op != VT_CLOSEPATH) {
serialize_long_long(geomfile[j], ((geom[u].x + sx) >> geometry_scale) - (wx >> geometry_scale), &geompos[j], fname);
serialize_long_long(geomfile[j], ((geom[u].y + sy) >> geometry_scale) - (wy >> geometry_scale), &geompos[j], fname);
wx = geom[u].x + sx;
wy = geom[u].y + sy;
}
}
serialize_byte(geomfile[j], VT_END, &geompos[j], fname);
serialize_byte(geomfile[j], feature_minzoom, &geompos[j], fname);
}
}
}
}
}
long long write_tile(char **geoms, char *metabase, char *stringpool, unsigned *file_bbox, int z, unsigned tx, unsigned ty, int detail, int min_detail, int basezoom, struct pool **file_keys, char **layernames, sqlite3 *outdb, double droprate, int buffer, const char *fname, FILE **geomfile, int file_minzoom, int file_maxzoom, double todo, char *geomstart, long long along, double gamma, int nlayers, char *prevent) {
int line_detail;
static bool evaluated = false;
double oprogress = 0;
double fraction = 1;
char *og = *geoms;
int nextzoom = z + 1;
if (nextzoom < file_minzoom) {
if (z + MAX_ZOOM_INCREMENT > file_minzoom) {
nextzoom = file_minzoom;
} else {
nextzoom = z + MAX_ZOOM_INCREMENT;
}
}
for (line_detail = detail; line_detail >= min_detail || line_detail == detail; line_detail--) {
GOOGLE_PROTOBUF_VERIFY_VERSION;
struct pool keys1[nlayers], values1[nlayers];
struct pool *keys[nlayers], *values[nlayers];
int i;
for (i = 0; i < nlayers; i++) {
pool_init(&keys1[i], 0);
pool_init(&values1[i], 0);
keys[i] = &keys1[i];
values[i] = &values1[i];
}
long long count = 0;
// long long along = 0;
double accum_area = 0;
double interval = 0;
double seq = 0;
if (z < basezoom) {
interval = exp(log(droprate) * (basezoom - z));
}
double fraction_accum = 0;
unsigned long long previndex = 0;
double scale = (double) (1LL << (64 - 2 * (z + 8)));
double gap = 0;
long long original_features = 0;
long long unclipped_features = 0;
std::vector<std::vector<coalesce> > features;
for (i = 0; i < nlayers; i++) {
features.push_back(std::vector<coalesce>());
}
int within[(1 << MAX_ZOOM_INCREMENT) * (1 << MAX_ZOOM_INCREMENT)] = {0};
long long geompos[(1 << MAX_ZOOM_INCREMENT) * (1 << MAX_ZOOM_INCREMENT)] = {0};
*geoms = og;
while (1) {
signed char t;
deserialize_byte(geoms, &t);
if (t < 0) {
break;
}
signed char layer;
deserialize_byte(geoms, &layer);
long long metastart;
deserialize_long_long(geoms, &metastart);
char *meta = metabase + metastart;
long long bbox[4];
drawvec geom = decode_geometry(geoms, z, tx, ty, line_detail, bbox);
signed char feature_minzoom;
deserialize_byte(geoms, &feature_minzoom);
double progress = floor((((*geoms - geomstart + along) / (double) todo) + z) / (file_maxzoom + 1) * 1000) / 10;
if (progress != oprogress) {
if (!quiet) {
fprintf(stderr, " %3.1f%% %d/%u/%u \r", progress, z, tx, ty);
}
oprogress = progress;
}
original_features++;
int quick = quick_check(bbox, z, line_detail, buffer);
if (quick == 0) {
continue;
}
if (quick != 1) {
if (t == VT_LINE) {
geom = clip_lines(geom, z, line_detail, buffer);
}
if (t == VT_POLYGON) {
geom = clip_poly(geom, z, line_detail, buffer);
}
if (t == VT_POINT) {
geom = clip_point(geom, z, line_detail, buffer);
}
geom = remove_noop(geom, t, 0);
}
if (geom.size() > 0) {
unclipped_features++;
}
if (line_detail == detail && fraction == 1) { /* only write out the next zoom once, even if we retry */
rewrite(geom, z, nextzoom, file_maxzoom, bbox, tx, ty, buffer, line_detail, within, geompos, geomfile, fname, t, layer, metastart, feature_minzoom);
}
if (z < file_minzoom) {
continue;
}
if (t == VT_LINE && z + line_detail <= feature_minzoom) {
continue;
}
if (t == VT_POINT && z < feature_minzoom && gamma < 0) {
continue;
}
if (gamma >= 0 && (t == VT_POINT || (prevent['l' & 0xFF] && t == VT_LINE))) {
seq++;
if (seq >= 0) {
seq -= interval;
} else {
continue;
}
if (gamma > 0) {
unsigned long long index = encode(bbox[0] / 2 + bbox[2] / 2, bbox[1] / 2 + bbox[3] / 2);
if (gap > 0) {
if (index == previndex) {
continue; // Exact duplicate: can't fulfil the gap requirement
}
if (exp(log((index - previndex) / scale) * gamma) >= gap) {
// Dot is further from the previous than the nth root of the gap,
// so produce it, and choose a new gap at the next point.
gap = 0;
} else {
continue;
}
} else {
gap = (index - previndex) / scale;
if (gap == 0) {
continue; // Exact duplicate: skip
} else if (gap < 1) {
continue; // Narrow dot spacing: need to stretch out
} else {
gap = 0; // Wider spacing than minimum: so pass through unchanged
}
}
previndex = index;
}
}
fraction_accum += fraction;
if (fraction_accum < 1) {
continue;
}
fraction_accum -= 1;
bool reduced = false;
if (t == VT_POLYGON) {
geom = reduce_tiny_poly(geom, z, line_detail, &reduced, &accum_area);
}
if ((t == VT_LINE || t == VT_POLYGON) && !prevent['s' & 0xFF]) {
if (!reduced) {
if (t == VT_LINE) {
geom = remove_noop(geom, t, 32 - z - line_detail);
}
geom = simplify_lines(geom, z, line_detail);
}
}
#if 0
if (t == VT_LINE && z != basezoom) {
geom = shrink_lines(geom, z, line_detail, basezoom, &along);
}
#endif
if (t == VT_LINE && !prevent['r' & 0xFF]) {
geom = reorder_lines(geom);
}
to_tile_scale(geom, z, line_detail);
if (t == VT_POINT || to_feature(geom, NULL)) {
struct coalesce c;
c.type = t;
if (geom.size() > 0) {
c.index = encode(geom[0].x, geom[0].y);
c.index2 = encode(geom[geom.size() - 1].x, geom[geom.size() - 1].y);
// Anything numbered below the start of the line
// can't possibly be the next feature.
// We want lowest-but-not-under.
if (c.index2 < c.index) {
c.index2 = ~0LL;
}
} else {
c.index = 0;
c.index2 = 0;
}
c.geom = geom;
c.metasrc = meta;
c.coalesced = false;
decode_meta(&meta, stringpool, keys[layer], values[layer], file_keys[layer], &c.meta, NULL);
features[layer].push_back(c);
}
}
int j;
for (j = 0; j < (1 << MAX_ZOOM_INCREMENT) * (1 << MAX_ZOOM_INCREMENT); j++) {
if (within[j]) {
serialize_byte(geomfile[j], -2, &geompos[j], fname);
within[j] = 0;
}
}
for (j = 0; j < nlayers; j++) {
if (!prevent['o' & 0xFF]) {
std::sort(features[j].begin(), features[j].end());
}
std::vector<coalesce> out;
unsigned x;
for (x = 0; x < features[j].size(); x++) {
unsigned y = out.size() - 1;
#if 0
if (out.size() > 0 && coalcmp(&features[j][x], &out[y]) < 0) {
fprintf(stderr, "\nfeature out of order\n");
}
#endif
if (!prevent['c' & 0xFF] && out.size() > 0 && out[y].geom.size() + features[j][x].geom.size() < 20000 && coalcmp(&features[j][x], &out[y]) == 0 && features[j][x].type != VT_POINT) {
unsigned z;
for (z = 0; z < features[j][x].geom.size(); z++) {
out[y].geom.push_back(features[j][x].geom[z]);
}
out[y].coalesced = true;
} else {
out.push_back(features[j][x]);
}
}
features[j] = out;
for (x = 0; x < features[j].size(); x++) {
if (features[j][x].coalesced && features[j][x].type == VT_LINE) {
features[j][x].geom = remove_noop(features[j][x].geom, features[j][x].type, 0);
features[j][x].geom = simplify_lines(features[j][x].geom, 32, 0);
}
}
}
if (z == 0 && unclipped_features < original_features / 2) {
fprintf(stderr, "\n\nMore than half the features were clipped away at zoom level 0.\n");
fprintf(stderr, "Is your data in the wrong projection? It should be in WGS84/EPSG:4326.\n");
}
long long totalsize = 0;
for (j = 0; j < nlayers; j++) {
totalsize += features[j].size();
}
if (totalsize > 0) {
if (totalsize > 200000 && !prevent['f' & 0xFF]) {
fprintf(stderr, "tile %d/%u/%u has %lld features, >200000 \n", z, tx, ty, totalsize);
fprintf(stderr, "Try using -z to set a higher base zoom level.\n");
return -1;
}
mapnik::vector::tile tile = create_tile(layernames, line_detail, features, &count, keys, values, nlayers);
int i;
for (i = 0; i < nlayers; i++) {
pool_free(&keys1[i]);
pool_free(&values1[i]);
}
std::string s;
std::string compressed;
tile.SerializeToString(&s);
compress(s, compressed);
if (compressed.size() > 500000 && !prevent['k' & 0xFF]) {
if (!quiet) {
fprintf(stderr, "tile %d/%u/%u size is %lld with detail %d, >500000 \n", z, tx, ty, (long long) compressed.size(), line_detail);
}
if (line_detail == min_detail || !evaluated) {
evaluated = true;
#if 0
evaluate(features[0], metabase, file_keys[0], layername, line_detail, compressed.size()); // XXX layer
#endif
}
if (prevent['d' & 0xFF]) {
// The 95% is a guess to avoid too many retries
// and probably actually varies based on how much duplicated metadata there is
fraction = fraction * 500000 / compressed.size() * 0.95;
if (!quiet) {
fprintf(stderr, "Going to try keeping %0.2f%% of the features to make it fit\n", fraction * 100);
}
line_detail++; // to keep it the same when the loop decrements it
}
} else {
mbtiles_write_tile(outdb, z, tx, ty, compressed.data(), compressed.size());
return count;
}
} else {
return count;
}
}
fprintf(stderr, "could not make tile %d/%u/%u small enough\n", z, tx, ty);
return -1;
}
int traverse_zooms(int *geomfd, off_t *geom_size, char *metabase, char *stringpool, unsigned *file_bbox, struct pool **file_keys, unsigned *midx, unsigned *midy, char **layernames, int maxzoom, int minzoom, sqlite3 *outdb, double droprate, int buffer, const char *fname, const char *tmpdir, double gamma, int nlayers, char *prevent, int full_detail, int low_detail, int min_detail) {
int i;
for (i = 0; i <= maxzoom; i++) {
long long most = 0;
FILE *sub[(1 << MAX_ZOOM_INCREMENT) * (1 << MAX_ZOOM_INCREMENT)];
int subfd[(1 << MAX_ZOOM_INCREMENT) * (1 << MAX_ZOOM_INCREMENT)];
int j;
for (j = 0; j < (1 << MAX_ZOOM_INCREMENT) * (1 << MAX_ZOOM_INCREMENT); j++) {
char geomname[strlen(tmpdir) + strlen("/geom2.XXXXXXXX") + 1];
sprintf(geomname, "%s/geom%d.XXXXXXXX", tmpdir, j);
subfd[j] = mkstemp(geomname);
// printf("%s\n", geomname);
if (subfd[j] < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
sub[j] = fopen(geomname, "wb");
if (sub[j] == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
unlink(geomname);
}
long long todo = 0;
long long along = 0;
for (j = 0; j < (1 << MAX_ZOOM_INCREMENT) * (1 << MAX_ZOOM_INCREMENT); j++) {
todo += geom_size[j];
}
for (j = 0; j < (1 << MAX_ZOOM_INCREMENT) * (1 << MAX_ZOOM_INCREMENT); j++) {
if (geomfd[j] < 0) {
// only one source file for zoom level 0
continue;
}
if (geom_size[j] == 0) {
continue;
}
// printf("%lld of geom_size\n", (long long) geom_size[j]);
char *geom = (char *) mmap(NULL, geom_size[j], PROT_READ, MAP_PRIVATE, geomfd[j], 0);
if (geom == MAP_FAILED) {
perror("mmap geom");
exit(EXIT_FAILURE);
}
char *geomstart = geom;
char *end = geom + geom_size[j];
while (geom < end) {
int z;
unsigned x, y;
deserialize_int(&geom, &z);
deserialize_uint(&geom, &x);
deserialize_uint(&geom, &y);
// fprintf(stderr, "%d/%u/%u\n", z, x, y);
long long len = write_tile(&geom, metabase, stringpool, file_bbox, z, x, y, z == maxzoom ? full_detail : low_detail, min_detail, maxzoom, file_keys, layernames, outdb, droprate, buffer, fname, sub, minzoom, maxzoom, todo, geomstart, along, gamma, nlayers, prevent);
if (len < 0) {
return i - 1;
}
if (z == maxzoom && len > most) {
*midx = x;
*midy = y;
most = len;
}
}
if (munmap(geomstart, geom_size[j]) != 0) {
perror("munmap geom");
}
along += geom_size[j];
}
for (j = 0; j < (1 << MAX_ZOOM_INCREMENT) * (1 << MAX_ZOOM_INCREMENT); j++) {
close(geomfd[j]);
fclose(sub[j]);
struct stat geomst;
if (fstat(subfd[j], &geomst) != 0) {
perror("stat geom\n");
exit(EXIT_FAILURE);
}
geomfd[j] = subfd[j];
geom_size[j] = geomst.st_size;
}
}
if (!quiet) {
fprintf(stderr, "\n");
}
return maxzoom;
}