tippecanoe/geojson.c

1051 lines
25 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <string.h>
#include <fcntl.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <sqlite3.h>
#include <stdarg.h>
#include "jsonpull.h"
#include "tile.h"
#include "pool.h"
#include "mbtiles.h"
#include "projection.h"
int low_detail = 10;
int full_detail = -1;
#define GEOM_POINT 0 /* array of positions */
#define GEOM_MULTIPOINT 1 /* array of arrays of positions */
#define GEOM_LINESTRING 2 /* array of arrays of positions */
#define GEOM_MULTILINESTRING 3 /* array of arrays of arrays of positions */
#define GEOM_POLYGON 4 /* array of arrays of arrays of positions */
#define GEOM_MULTIPOLYGON 5 /* array of arrays of arrays of arrays of positions */
#define GEOM_TYPES 6
const char *geometry_names[GEOM_TYPES] = {
"Point",
"MultiPoint",
"LineString",
"MultiLineString",
"Polygon",
"MultiPolygon",
};
int geometry_within[GEOM_TYPES] = {
-1, /* point */
GEOM_POINT, /* multipoint */
GEOM_POINT, /* linestring */
GEOM_LINESTRING, /* multilinestring */
GEOM_LINESTRING, /* polygon */
GEOM_POLYGON, /* multipolygon */
};
int mb_geometry[GEOM_TYPES] = {
VT_POINT,
VT_POINT,
VT_LINE,
VT_LINE,
VT_POLYGON,
VT_POLYGON,
};
size_t fwrite_check(const void *ptr, size_t size, size_t nitems, FILE *stream, const char *fname) {
size_t w = fwrite(ptr, size, nitems, stream);
if (w != nitems) {
fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno));
exit(EXIT_FAILURE);
}
return w;
}
void serialize_int(FILE *out, int n, long long *fpos, const char *fname) {
fwrite_check(&n, sizeof(int), 1, out, fname);
*fpos += sizeof(int);
}
void serialize_long_long(FILE *out, long long n, long long *fpos, const char *fname) {
fwrite_check(&n, sizeof(long long), 1, out, fname);
*fpos += sizeof(long long);
}
void serialize_byte(FILE *out, signed char n, long long *fpos, const char *fname) {
fwrite_check(&n, sizeof(signed char), 1, out, fname);
*fpos += sizeof(signed char);
}
void serialize_uint(FILE *out, unsigned n, long long *fpos, const char *fname) {
fwrite_check(&n, sizeof(unsigned), 1, out, fname);
*fpos += sizeof(unsigned);
}
void serialize_string(FILE *out, const char *s, long long *fpos, const char *fname) {
int len = strlen(s);
serialize_int(out, len + 1, fpos, fname);
fwrite_check(s, sizeof(char), len, out, fname);
fwrite_check("", sizeof(char), 1, out, fname);
*fpos += len + 1;
}
void parse_geometry(int t, json_object *j, unsigned *bbox, long long *fpos, FILE *out, int op, const char *fname, json_pull *source) {
if (j == NULL || j->type != JSON_ARRAY) {
fprintf(stderr, "%s:%d: expected array for type %d\n", fname, source->line, t);
return;
}
int within = geometry_within[t];
long long began = *fpos;
if (within >= 0) {
int i;
for (i = 0; i < j->length; i++) {
if (within == GEOM_POINT) {
if (i == 0 || mb_geometry[t] == GEOM_MULTIPOINT) {
op = VT_MOVETO;
} else {
op = VT_LINETO;
}
}
parse_geometry(within, j->array[i], bbox, fpos, out, op, fname, source);
}
} else {
if (j->length >= 2 && j->array[0]->type == JSON_NUMBER && j->array[1]->type == JSON_NUMBER) {
unsigned x, y;
double lon = j->array[0]->number;
double lat = j->array[1]->number;
latlon2tile(lat, lon, 32, &x, &y);
if (j->length > 2) {
static int warned = 0;
if (!warned) {
fprintf(stderr, "%s:%d: ignoring dimensions beyond two\n", fname, source->line);
warned = 1;
}
}
if (bbox != NULL) {
if (x < bbox[0]) {
bbox[0] = x;
}
if (y < bbox[1]) {
bbox[1] = y;
}
if (x > bbox[2]) {
bbox[2] = x;
}
if (y > bbox[3]) {
bbox[3] = y;
}
}
serialize_byte(out, op, fpos, fname);
serialize_uint(out, x, fpos, fname);
serialize_uint(out, y, fpos, fname);
} else {
fprintf(stderr, "%s:%d: malformed point\n", fname, source->line);
}
}
if (t == GEOM_POLYGON) {
if (*fpos != began) {
serialize_byte(out, VT_CLOSEPATH, fpos, fname);
}
}
}
void deserialize_int(char **f, int *n) {
memcpy(n, *f, sizeof(int));
*f += sizeof(int);
}
void deserialize_long_long(char **f, long long *n) {
memcpy(n, *f, sizeof(long long));
*f += sizeof(long long);
}
void deserialize_uint(char **f, unsigned *n) {
memcpy(n, *f, sizeof(unsigned));
*f += sizeof(unsigned);
}
void deserialize_byte(char **f, signed char *n) {
memcpy(n, *f, sizeof(signed char));
*f += sizeof(signed char);
}
struct pool_val *deserialize_string(char **f, struct pool *p, int type) {
struct pool_val *ret;
int len;
deserialize_int(f, &len);
ret = pool(p, *f, type);
*f += len;
return ret;
}
int traverse_zooms(int geomfd[4], off_t geom_size[4], char *metabase, unsigned *file_bbox, struct pool **file_keys, unsigned *midx, unsigned *midy, char **layernames, int maxzoom, int minzoom, sqlite3 *outdb, double droprate, int buffer, const char *fname, const char *tmpdir, double gamma, int nlayers) {
int i;
for (i = 0; i <= maxzoom; i++) {
long long most = 0;
FILE *sub[4];
int subfd[4];
int j;
for (j = 0; j < 4; j++) {
char geomname[strlen(tmpdir) + strlen("/geom2.XXXXXXXX") + 1];
sprintf(geomname, "%s/geom%d.XXXXXXXX", tmpdir, j);
subfd[j] = mkstemp(geomname);
//printf("%s\n", geomname);
if (subfd[j] < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
sub[j] = fopen(geomname, "wb");
if (sub[j] == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
unlink(geomname);
}
long long todo = 0;
long long along = 0;
for (j = 0; j < 4; j++) {
todo += geom_size[j];
}
for (j = 0; j < 4; j++) {
if (geomfd[j] < 0) {
// only one source file for zoom level 0
continue;
}
if (geom_size[j] == 0) {
continue;
}
// printf("%lld of geom_size\n", (long long) geom_size[j]);
char *geom = mmap(NULL, geom_size[j], PROT_READ, MAP_PRIVATE, geomfd[j], 0);
if (geom == MAP_FAILED) {
perror("mmap geom");
exit(EXIT_FAILURE);
}
char *geomstart = geom;
char *end = geom + geom_size[j];
while (geom < end) {
int z;
unsigned x, y;
deserialize_int(&geom, &z);
deserialize_uint(&geom, &x);
deserialize_uint(&geom, &y);
// fprintf(stderr, "%d/%u/%u\n", z, x, y);
long long len = write_tile(&geom, metabase, file_bbox, z, x, y, z == maxzoom ? full_detail : low_detail, maxzoom, file_keys, layernames, outdb, droprate, buffer, fname, sub, minzoom, maxzoom, todo, geomstart, along, gamma, nlayers);
if (len < 0) {
return i - 1;
}
if (z == maxzoom && len > most) {
*midx = x;
*midy = y;
most = len;
}
}
if (munmap(geomstart, geom_size[j]) != 0) {
perror("munmap geom");
}
along += geom_size[j];
}
for (j = 0; j < 4; j++) {
close(geomfd[j]);
fclose(sub[j]);
struct stat geomst;
if (fstat(subfd[j], &geomst) != 0) {
perror("stat geom\n");
exit(EXIT_FAILURE);
}
geomfd[j] = subfd[j];
geom_size[j] = geomst.st_size;
}
}
fprintf(stderr, "\n");
return maxzoom;
}
struct index {
long long start;
long long end;
unsigned long long index;
};
int indexcmp(const void *v1, const void *v2) {
const struct index *i1 = (const struct index *) v1;
const struct index *i2 = (const struct index *) v2;
if (i1->index < i2->index) {
return -1;
} else if (i1->index > i2->index) {
return 1;
}
return 0;
}
struct merge {
long long start;
long long end;
struct merge *next;
};
static void insert(struct merge *m, struct merge **head, unsigned char *map, int bytes) {
while (*head != NULL && indexcmp(map + m->start, map + (*head)->start) > 0) {
head = &((*head)->next);
}
m->next = *head;
*head = m;
}
static void merge(struct merge *merges, int nmerges, unsigned char *map, FILE *f, int bytes, long long nrec) {
int i;
struct merge *head = NULL;
long long along = 0;
long long reported = -1;
for (i = 0; i < nmerges; i++) {
if (merges[i].start < merges[i].end) {
insert(&(merges[i]), &head, map, bytes);
}
}
while (head != NULL) {
fwrite(map + head->start, bytes, 1, f);
head->start += bytes;
struct merge *m = head;
head = m->next;
m->next = NULL;
if (m->start < m->end) {
insert(m, &head, map, bytes);
}
along++;
long long report = 100 * along / nrec;
if (report != reported) {
fprintf(stderr, "Merging: %lld%%\r", report);
reported = report;
}
}
}
int read_json(int argc, char **argv, char *fname, const char *layername, int maxzoom, int minzoom, sqlite3 *outdb, struct pool *exclude, struct pool *include, int exclude_all, double droprate, int buffer, const char *tmpdir, double gamma) {
int ret = EXIT_SUCCESS;
char metaname[strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1];
char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1];
char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1];
sprintf(metaname, "%s%s", tmpdir, "/meta.XXXXXXXX");
sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX");
sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX");
int metafd = mkstemp(metaname);
if (metafd < 0) {
perror(metaname);
exit(EXIT_FAILURE);
}
int geomfd = mkstemp(geomname);
if (geomfd < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
int indexfd = mkstemp(indexname);
if (indexfd < 0) {
perror(indexname);
exit(EXIT_FAILURE);
}
FILE *metafile = fopen(metaname, "wb");
if (metafile == NULL) {
perror(metaname);
exit(EXIT_FAILURE);
}
FILE *geomfile = fopen(geomname, "wb");
if (geomfile == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
FILE *indexfile = fopen(indexname, "wb");
if (indexfile == NULL) {
perror(indexname);
exit(EXIT_FAILURE);
}
long long metapos = 0;
long long geompos = 0;
long long indexpos = 0;
unlink(metaname);
unlink(geomname);
unlink(indexname);
unsigned file_bbox[] = { UINT_MAX, UINT_MAX, 0, 0 };
unsigned midx = 0, midy = 0;
long long seq = 0;
int nlayers = argc;
if (nlayers == 0) {
nlayers = 1;
}
int n;
for (n = 0; n < nlayers; n++) {
json_pull *jp;
const char *reading;
FILE *fp;
if (n >= argc) {
reading = "standard input";
fp = stdin;
} else {
reading = argv[n];
fp = fopen(argv[n], "r");
if (fp == NULL) {
perror(argv[n]);
continue;
}
}
jp = json_begin_file(fp);
while (1) {
json_object *j = json_read(jp);
if (j == NULL) {
if (jp->error != NULL) {
fprintf(stderr, "%s:%d: %s\n", reading, jp->line, jp->error);
}
json_free(jp->root);
break;
}
json_object *type = json_hash_get(j, "type");
if (type == NULL || type->type != JSON_STRING || strcmp(type->string, "Feature") != 0) {
continue;
}
json_object *geometry = json_hash_get(j, "geometry");
if (geometry == NULL) {
fprintf(stderr, "%s:%d: feature with no geometry\n", reading, jp->line);
json_free(j);
continue;
}
json_object *geometry_type = json_hash_get(geometry, "type");
if (geometry_type == NULL) {
static int warned = 0;
if (!warned) {
fprintf(stderr, "%s:%d: null geometry (additional not reported)\n", reading, jp->line);
warned = 1;
}
json_free(j);
continue;
}
if (geometry_type->type != JSON_STRING) {
fprintf(stderr, "%s:%d: geometry without type\n", reading, jp->line);
json_free(j);
continue;
}
json_object *properties = json_hash_get(j, "properties");
if (properties == NULL || (properties->type != JSON_HASH && properties->type != JSON_NULL)) {
fprintf(stderr, "%s:%d: feature without properties hash\n", reading, jp->line);
json_free(j);
continue;
}
json_object *coordinates = json_hash_get(geometry, "coordinates");
if (coordinates == NULL || coordinates->type != JSON_ARRAY) {
fprintf(stderr, "%s:%d: feature without coordinates array\n", reading, jp->line);
json_free(j);
continue;
}
int t;
for (t = 0; t < GEOM_TYPES; t++) {
if (strcmp(geometry_type->string, geometry_names[t]) == 0) {
break;
}
}
if (t >= GEOM_TYPES) {
fprintf(stderr, "%s:%d: Can't handle geometry type %s\n", reading, jp->line, geometry_type->string);
json_free(j);
continue;
}
{
unsigned bbox[] = { UINT_MAX, UINT_MAX, 0, 0 };
int nprop = 0;
if (properties->type == JSON_HASH) {
nprop = properties->length;
}
long long metastart = metapos;
char *metakey[nprop];
char *metaval[nprop];
int metatype[nprop];
int m = 0;
int i;
for (i = 0; i < nprop; i++) {
if (properties->keys[i]->type == JSON_STRING) {
if (exclude_all) {
if (!is_pooled(include, properties->keys[i]->string, VT_STRING)) {
continue;
}
} else if (is_pooled(exclude, properties->keys[i]->string, VT_STRING)) {
continue;
}
metakey[m] = properties->keys[i]->string;
if (properties->values[i] != NULL && properties->values[i]->type == JSON_STRING) {
metatype[m] = VT_STRING;
metaval[m] = properties->values[i]->string;
m++;
} else if (properties->values[i] != NULL && properties->values[i]->type == JSON_NUMBER) {
metatype[m] = VT_NUMBER;
metaval[m] = properties->values[i]->string;
m++;
} else if (properties->values[i] != NULL && (properties->values[i]->type == JSON_TRUE || properties->values[i]->type == JSON_FALSE)) {
metatype[m] = VT_BOOLEAN;
metaval[m] = properties->values[i]->string;
m++;
} else if (properties->values[i] != NULL && (properties->values[i]->type == JSON_NULL)) {
;
} else {
fprintf(stderr, "%s:%d: Unsupported property type for %s\n", reading, jp->line, properties->keys[i]->string);
json_free(j);
continue;
}
}
}
serialize_int(metafile, m, &metapos, fname);
for (i = 0; i < m; i++) {
serialize_int(metafile, metatype[i], &metapos, fname);
serialize_string(metafile, metakey[i], &metapos, fname);
serialize_string(metafile, metaval[i], &metapos, fname);
}
long long geomstart = geompos;
serialize_byte(geomfile, mb_geometry[t], &geompos, fname);
serialize_byte(geomfile, n, &geompos, fname);
serialize_long_long(geomfile, metastart, &geompos, fname);
parse_geometry(t, coordinates, bbox, &geompos, geomfile, VT_MOVETO, fname, jp);
serialize_byte(geomfile, VT_END, &geompos, fname);
/*
* Note that minzoom for lines is the dimension
* of the geometry in world coordinates, but
* for points is the lowest zoom level (in tiles,
* not in pixels) at which it should be drawn.
*
* So a line that is too small for, say, z8
* will have minzoom of 18 (if tile detail is 10),
* not 8.
*/
int minzoom = 0;
if (mb_geometry[t] == VT_LINE) {
for (minzoom = 0; minzoom < 31; minzoom++) {
unsigned mask = 1 << (32 - (minzoom + 1));
if (((bbox[0] & mask) != (bbox[2] & mask)) ||
((bbox[1] & mask) != (bbox[3] & mask))) {
break;
}
}
} else if (mb_geometry[t] == VT_POINT) {
double r = ((double) rand()) / RAND_MAX;
if (r == 0) {
r = .00000001;
}
minzoom = maxzoom - floor(log(r) / - log(droprate));
}
serialize_byte(geomfile, minzoom, &geompos, fname);
struct index index;
index.start = geomstart;
index.end = geompos;
index.index = encode(bbox[0] / 2 + bbox[2] / 2, bbox[1] / 2 + bbox[3] / 2);
fwrite_check(&index, sizeof(struct index), 1, indexfile, fname);
indexpos += sizeof(struct index);
for (i = 0; i < 2; i++) {
if (bbox[i] < file_bbox[i]) {
file_bbox[i] = bbox[i];
}
}
for (i = 2; i < 4; i++) {
if (bbox[i] > file_bbox[i]) {
file_bbox[i] = bbox[i];
}
}
if (seq % 10000 == 0) {
fprintf(stderr, "Read %.2f million features\r", seq / 1000000.0);
}
seq++;
}
json_free(j);
/* XXX check for any non-features in the outer object */
}
json_end(jp);
fclose(fp);
}
fclose(metafile);
fclose(geomfile);
fclose(indexfile);
struct stat geomst;
struct stat metast;
if (fstat(geomfd, &geomst) != 0) {
perror("stat geom\n");
exit(EXIT_FAILURE);
}
if (fstat(metafd, &metast) != 0) {
perror("stat meta\n");
exit(EXIT_FAILURE);
}
if (geomst.st_size == 0 || metast.st_size == 0) {
fprintf(stderr, "did not read any valid geometries\n");
exit(EXIT_FAILURE);
}
char *meta = (char *) mmap(NULL, metast.st_size, PROT_READ, MAP_PRIVATE, metafd, 0);
if (meta == MAP_FAILED) {
perror("mmap meta");
exit(EXIT_FAILURE);
}
struct pool file_keys1[nlayers];
struct pool *file_keys[nlayers];
int i;
for (i = 0; i < nlayers; i++) {
pool_init(&file_keys1[i], 0);
file_keys[i] = &file_keys1[i];
}
char *layernames[nlayers];
for (i = 0; i < nlayers; i++) {
if (argc <= 1 && layername != NULL) {
layernames[i] = strdup(layername);
} else {
char *src = argv[i];
if (argc < 1) {
src = fname;
}
char *trunc = layernames[i] = malloc(strlen(src) + 1);
const char *ocp, *use = src;
for (ocp = src; *ocp; ocp++) {
if (*ocp == '/' && ocp[1] != '\0') {
use = ocp + 1;
}
}
strcpy(trunc, use);
char *cp = strstr(trunc, ".json");
if (cp != NULL) {
*cp = '\0';
}
cp = strstr(trunc, ".mbtiles");
if (cp != NULL) {
*cp = '\0';
}
layername = trunc;
char *out = trunc;
for (cp = trunc; *cp; cp++) {
if (isalpha(*cp) || isdigit(*cp) || *cp == '_') {
*out++ = *cp;
}
}
*out = '\0';
printf("using layer %d name %s\n", i, trunc);
}
}
/* Sort the index by geometry */
{
int bytes = sizeof(struct index);
fprintf(stderr, "Sorting %lld features\n", (long long) indexpos / bytes);
int page = sysconf(_SC_PAGESIZE);
long long unit = (50 * 1024 * 1024 / bytes) * bytes;
while (unit % page != 0) {
unit += bytes;
}
int nmerges = (indexpos + unit - 1) / unit;
struct merge merges[nmerges];
long long start;
for (start = 0; start < indexpos; start += unit) {
long long end = start + unit;
if (end > indexpos) {
end = indexpos;
}
if (nmerges != 1) {
fprintf(stderr, "Sorting part %lld of %d\r", start / unit + 1, nmerges);
}
merges[start / unit].start = start;
merges[start / unit].end = end;
merges[start / unit].next = NULL;
void *map = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_PRIVATE, indexfd, start);
if (map == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
qsort(map, (end - start) / bytes, bytes, indexcmp);
// Sorting and then copying avoids the need to
// write out intermediate stages of the sort.
void *map2 = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_SHARED, indexfd, start);
if (map2 == MAP_FAILED) {
perror("mmap (write)");
exit(EXIT_FAILURE);
}
memcpy(map2, map, end - start);
munmap(map, end - start);
munmap(map2, end - start);
}
if (nmerges != 1) {
fprintf(stderr, "\n");
}
void *map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0);
if (map == MAP_FAILED) {
perror("mmap");
exit(EXIT_FAILURE);
}
FILE *f = fopen(indexname, "w");
if (f == NULL) {
perror(indexname);
exit(EXIT_FAILURE);
}
merge(merges, nmerges, (unsigned char *) map, f, bytes, indexpos / bytes);
munmap(map, indexpos);
fclose(f);
close(indexfd);
}
/* Copy geometries to a new file in index order */
indexfd = open(indexname, O_RDONLY);
if (indexfd < 0) {
perror("reopen sorted index");
exit(EXIT_FAILURE);
}
struct index *index_map = mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0);
if (index_map == MAP_FAILED) {
perror("mmap index");
exit(EXIT_FAILURE);
}
unlink(indexname);
char *geom_map = mmap(NULL, geomst.st_size, PROT_READ, MAP_PRIVATE, geomfd, 0);
if (geom_map == MAP_FAILED) {
perror("mmap unsorted geometry");
exit(EXIT_FAILURE);
}
if (close(geomfd) != 0) {
perror("close unsorted geometry");
}
sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX");
geomfd = mkstemp(geomname);
if (geomfd < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
geomfile = fopen(geomname, "wb");
if (geomfile == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
{
geompos = 0;
/* initial tile is 0/0/0 */
serialize_int(geomfile, 0, &geompos, fname);
serialize_uint(geomfile, 0, &geompos, fname);
serialize_uint(geomfile, 0, &geompos, fname);
long long i;
long long sum = 0;
long long progress = 0;
for (i = 0; i < indexpos / sizeof(struct index); i++) {
fwrite_check(geom_map + index_map[i].start, sizeof(char), index_map[i].end - index_map[i].start, geomfile, fname);
sum += index_map[i].end - index_map[i].start;
long long p = 1000 * i / (indexpos / sizeof(struct index));
if (p != progress) {
fprintf(stderr, "Reordering geometry: %3.1f%%\r", p / 10.0);
progress = p;
}
}
/* end of tile */
serialize_byte(geomfile, -2, &geompos, fname);
fclose(geomfile);
}
if (munmap(index_map, indexpos) != 0) {
perror("unmap sorted index");
}
if (munmap(geom_map, geomst.st_size) != 0) {
perror("unmap unsorted geometry");
}
if (close(indexfd) != 0) {
perror("close sorted index");
}
/* Traverse and split the geometries for each zoom level */
geomfd = open(geomname, O_RDONLY);
if (geomfd < 0) {
perror("reopen sorted geometry");
exit(EXIT_FAILURE);
}
unlink(geomname);
if (fstat(geomfd, &geomst) != 0) {
perror("stat sorted geom\n");
exit(EXIT_FAILURE);
}
int fd[4];
off_t size[4];
fd[0] = geomfd;
size[0] = geomst.st_size;
int j;
for (j = 1; j < 4; j++) {
fd[j] = -1;
size[j] = 0;
}
fprintf(stderr, "%lld features, %lld bytes of geometry, %lld bytes of metadata\n", seq, (long long) geomst.st_size, (long long) metast.st_size);
int written = traverse_zooms(fd, size, meta, file_bbox, file_keys, &midx, &midy, layernames, maxzoom, minzoom, outdb, droprate, buffer, fname, tmpdir, gamma, nlayers);
if (maxzoom != written) {
fprintf(stderr, "\n\n\n*** NOTE TILES ONLY COMPLETE THROUGH ZOOM %d ***\n\n\n", written);
maxzoom = written;
ret = EXIT_FAILURE;
}
if (munmap(meta, metast.st_size) != 0) {
perror("munmap meta");
}
if (close(metafd) < 0) {
perror("close meta");
}
double minlat = 0, minlon = 0, maxlat = 0, maxlon = 0, midlat = 0, midlon = 0;
tile2latlon(midx, midy, maxzoom, &maxlat, &minlon);
tile2latlon(midx + 1, midy + 1, maxzoom, &minlat, &maxlon);
midlat = (maxlat + minlat) / 2;
midlon = (maxlon + minlon) / 2;
tile2latlon(file_bbox[0], file_bbox[1], 32, &maxlat, &minlon);
tile2latlon(file_bbox[2], file_bbox[3], 32, &minlat, &maxlon);
if (midlat < minlat) {
midlat = minlat;
}
if (midlat > maxlat) {
midlat = maxlat;
}
if (midlon < minlon) {
midlon = minlon;
}
if (midlon > maxlon) {
midlon = maxlon;
}
mbtiles_write_metadata(outdb, fname, layernames, minzoom, maxzoom, minlat, minlon, maxlat, maxlon, midlat, midlon, file_keys, nlayers); // XXX layers
for (i = 0; i < nlayers; i++) {
pool_free_strings(&file_keys1[i]);
free(layernames[i]);
}
return ret;
}
int main(int argc, char **argv) {
extern int optind;
extern char *optarg;
int i;
char *name = NULL;
char *layer = NULL;
char *outdir = NULL;
int maxzoom = 14;
int minzoom = 0;
int force = 0;
double droprate = 2.5;
double gamma = 0;
int buffer = 5;
const char *tmpdir = "/tmp";
struct pool exclude, include;
pool_init(&exclude, 0);
pool_init(&include, 0);
int exclude_all = 0;
while ((i = getopt(argc, argv, "l:n:z:Z:d:D:o:x:y:r:b:fXt:g:")) != -1) {
switch (i) {
case 'n':
name = optarg;
break;
case 'l':
layer = optarg;
break;
case 'z':
maxzoom = atoi(optarg);
break;
case 'Z':
minzoom = atoi(optarg);
break;
case 'd':
full_detail = atoi(optarg);
break;
case 'D':
low_detail = atoi(optarg);
break;
case 'o':
outdir = optarg;
break;
case 'x':
pool(&exclude, optarg, VT_STRING);
break;
case 'y':
exclude_all = 1;
pool(&include, optarg, VT_STRING);
break;
case 'X':
exclude_all = 1;
break;
case 'r':
droprate = atof(optarg);
break;
case 'b':
buffer = atoi(optarg);
break;
case 'f':
force = 1;
break;
case 't':
tmpdir = optarg;
break;
case 'g':
gamma = atof(optarg);
break;
default:
fprintf(stderr, "Usage: %s -o out.mbtiles [-n name] [-l layername] [-z maxzoom] [-Z minzoom] [-d detail] [-D lower-detail] [-x excluded-field ...] [-y included-field ...] [-X] [-r droprate] [-b buffer] [-t tmpdir] [file.json]\n", argv[0]);
exit(EXIT_FAILURE);
}
}
if (full_detail <= 0) {
// ~0.5m accuracy at whatever zoom
// 12 bits (4096 units) at z14
full_detail = 26 - maxzoom;
}
if (outdir == NULL) {
fprintf(stderr, "%s: must specify -o out.mbtiles\n", argv[0]);
exit(EXIT_FAILURE);
}
if (force) {
unlink(outdir);
}
sqlite3 *outdb = mbtiles_open(outdir, argv);
int ret = EXIT_SUCCESS;
ret = read_json(argc - optind, argv + optind, name ? name : outdir, layer, maxzoom, minzoom, outdb, &exclude, &include, exclude_all, droprate, buffer, tmpdir, gamma);
mbtiles_close(outdb, argv);
return ret;
}