tippecanoe/mbtiles.cpp

571 lines
15 KiB
C++

// for vasprintf() on Linux
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sqlite3.h>
#include <vector>
#include <string>
#include <set>
#include <map>
#include "mvt.hpp"
#include "mbtiles.hpp"
sqlite3 *mbtiles_open(char *dbname, char **argv, int forcetable) {
sqlite3 *outdb;
if (sqlite3_open(dbname, &outdb) != SQLITE_OK) {
fprintf(stderr, "%s: %s: %s\n", argv[0], dbname, sqlite3_errmsg(outdb));
exit(EXIT_FAILURE);
}
char *err = NULL;
if (sqlite3_exec(outdb, "PRAGMA synchronous=0", NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "%s: async: %s\n", argv[0], err);
exit(EXIT_FAILURE);
}
if (sqlite3_exec(outdb, "PRAGMA locking_mode=EXCLUSIVE", NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "%s: async: %s\n", argv[0], err);
exit(EXIT_FAILURE);
}
if (sqlite3_exec(outdb, "PRAGMA journal_mode=DELETE", NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "%s: async: %s\n", argv[0], err);
exit(EXIT_FAILURE);
}
if (sqlite3_exec(outdb, "CREATE TABLE metadata (name text, value text);", NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "%s: create metadata table: %s\n", argv[0], err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
if (sqlite3_exec(outdb, "CREATE TABLE tiles (zoom_level integer, tile_column integer, tile_row integer, tile_data blob);", NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "%s: create tiles table: %s\n", argv[0], err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
if (sqlite3_exec(outdb, "create unique index name on metadata (name);", NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "%s: index metadata: %s\n", argv[0], err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
if (sqlite3_exec(outdb, "create unique index tile_index on tiles (zoom_level, tile_column, tile_row);", NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "%s: index tiles: %s\n", argv[0], err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
return outdb;
}
void mbtiles_write_tile(sqlite3 *outdb, int z, int tx, int ty, const char *data, int size) {
sqlite3_stmt *stmt;
const char *query = "insert into tiles (zoom_level, tile_column, tile_row, tile_data) values (?, ?, ?, ?)";
if (sqlite3_prepare_v2(outdb, query, -1, &stmt, NULL) != SQLITE_OK) {
fprintf(stderr, "sqlite3 insert prep failed\n");
exit(EXIT_FAILURE);
}
sqlite3_bind_int(stmt, 1, z);
sqlite3_bind_int(stmt, 2, tx);
sqlite3_bind_int(stmt, 3, (1 << z) - 1 - ty);
sqlite3_bind_blob(stmt, 4, data, size, NULL);
if (sqlite3_step(stmt) != SQLITE_DONE) {
fprintf(stderr, "sqlite3 insert failed: %s\n", sqlite3_errmsg(outdb));
}
if (sqlite3_finalize(stmt) != SQLITE_OK) {
fprintf(stderr, "sqlite3 finalize failed: %s\n", sqlite3_errmsg(outdb));
}
}
static void quote(std::string *buf, const char *s) {
char tmp[strlen(s) * 8 + 1];
char *out = tmp;
for (; *s != '\0'; s++) {
unsigned char ch = (unsigned char) *s;
if (ch == '\\' || ch == '\"') {
*out++ = '\\';
*out++ = ch;
} else if (ch < ' ') {
sprintf(out, "\\u%04x", ch);
out = out + strlen(out);
} else {
*out++ = ch;
}
}
*out = '\0';
buf->append(tmp, strlen(tmp));
}
void aprintf(std::string *buf, const char *format, ...) {
va_list ap;
char *tmp;
va_start(ap, format);
if (vasprintf(&tmp, format, ap) < 0) {
fprintf(stderr, "memory allocation failure\n");
exit(EXIT_FAILURE);
}
va_end(ap);
buf->append(tmp, strlen(tmp));
free(tmp);
}
bool type_and_string::operator<(const type_and_string &o) const {
if (string < o.string) {
return true;
}
if (string == o.string && type < o.type) {
return true;
}
return false;
}
std::string tilestats(std::map<std::string, layermap_entry> const &layermap) {
std::string out = "{\n";
out.append("\t\"layerCount\": ");
out.append(std::to_string(layermap.size()));
out.append(",\n");
out.append("\t\"layers\": [\n");
bool first = true;
for (auto layer : layermap) {
if (!first) {
out.append(",\n");
}
first = false;
out.append("\t\t{\n");
out.append("\t\t\t\"layer\": \"");
quote(&out, layer.first.c_str());
out.append("\",\n");
out.append("\t\t\t\"count\": ");
out.append(std::to_string(layer.second.points + layer.second.lines + layer.second.polygons));
out.append(",\n");
std::string geomtype = "Polygon";
if (layer.second.points >= layer.second.lines && layer.second.points >= layer.second.polygons) {
geomtype = "Point";
} else if (layer.second.lines >= layer.second.polygons && layer.second.lines >= layer.second.points) {
geomtype = "LineString";
}
out.append("\t\t\t\"geometry\": \"");
quote(&out, geomtype.c_str());
out.append("\",\n");
size_t attrib_count = layer.second.file_keys.size();
if (attrib_count > 1000) {
attrib_count = 1000;
}
out.append("\t\t\t\"attributeCount\": ");
out.append(std::to_string(attrib_count));
out.append(",\n");
out.append("\t\t\t\"attributes\": [\n");
size_t attrs = 0;
for (auto attribute : layer.second.file_keys) {
if (attrs == 100) {
break;
}
if (attrs != 0) {
out.append(",\n");
}
attrs++;
out.append("\t\t\t\t{\n");
out.append("\t\t\t\t\t\"attribute\": \"");
quote(&out, attribute.first.c_str());
out.append("\",\n");
size_t val_count = attribute.second.sample_values.size();
if (val_count > 1000) {
val_count = 1000;
}
out.append("\t\t\t\t\t\"count\": ");
out.append(std::to_string(val_count));
out.append(",\n");
int type = 0;
for (auto s : attribute.second.sample_values) {
type |= (1 << s.type);
}
std::string type_str;
// No "null" because null attributes are dropped
if (type == (1 << mvt_double)) {
type_str = "number";
} else if (type == (1 << mvt_bool)) {
type_str = "boolean";
} else if (type == (1 << mvt_string)) {
type_str = "string";
} else {
type_str = "mixed";
}
out.append("\t\t\t\t\t\"type\": \"");
quote(&out, type_str.c_str());
out.append("\",\n");
out.append("\t\t\t\t\t\"values\": [\n");
size_t vals = 0;
for (auto value : attribute.second.sample_values) {
if (vals == 100) {
break;
}
if (vals != 0) {
out.append(",\n");
}
vals++;
if (value.type == mvt_double || value.type == mvt_bool) {
out.append("\t\t\t\t\t\t");
out.append(value.string);
} else {
out.append("\t\t\t\t\t\t\"");
quote(&out, value.string.c_str());
out.append("\"");
}
}
out.append("\n");
out.append("\t\t\t\t\t]");
if ((type & (1 << mvt_double)) != 0) {
out.append(",\n");
out.append("\t\t\t\t\t\"min\": ");
out.append(std::to_string(attribute.second.min));
out.append(",\n");
out.append("\t\t\t\t\t\"max\": ");
out.append(std::to_string(attribute.second.max));
}
out.append("\n");
out.append("\t\t\t\t}");
}
out.append("\n\t\t\t]\n");
out.append("\t\t}");
}
out.append("\n");
out.append("\t]\n");
out.append("}");
std::string out2;
for (size_t i = 0; i < out.size(); i++) {
if (out[i] != '\t' && out[i] != '\n') {
out2.push_back(out[i]);
}
}
return out2;
}
void mbtiles_write_metadata(sqlite3 *outdb, const char *outdir, const char *fname, int minzoom, int maxzoom, double minlat, double minlon, double maxlat, double maxlon, double midlat, double midlon, int forcetable, const char *attribution, std::map<std::string, layermap_entry> const &layermap, bool vector, const char *description) {
char *sql, *err;
sqlite3 *db = outdb;
if (outdb == NULL) {
if (sqlite3_open("", &db) != SQLITE_OK) {
fprintf(stderr, "Temporary db: %s\n", sqlite3_errmsg(db));
exit(EXIT_FAILURE);
}
if (sqlite3_exec(db, "CREATE TABLE metadata (name text, value text);", NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "Create metadata table: %s\n", err);
exit(EXIT_FAILURE);
}
}
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('name', %Q);", fname);
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set name in metadata: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('description', %Q);", description != NULL ? description : fname);
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set description in metadata: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('version', %d);", 2);
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set version : %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('minzoom', %d);", minzoom);
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set minzoom: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('maxzoom', %d);", maxzoom);
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set maxzoom: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('center', '%f,%f,%d');", midlon, midlat, maxzoom);
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set center: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('bounds', '%f,%f,%f,%f');", minlon, minlat, maxlon, maxlat);
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set bounds: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('type', %Q);", "overlay");
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set type: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
if (attribution != NULL) {
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('attribution', %Q);", attribution);
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set type: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
}
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('format', %Q);", vector ? "pbf" : "png");
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set format: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
if (vector) {
std::string buf("{");
aprintf(&buf, "\"vector_layers\": [ ");
std::vector<std::string> lnames;
for (auto ai = layermap.begin(); ai != layermap.end(); ++ai) {
lnames.push_back(ai->first);
}
for (size_t i = 0; i < lnames.size(); i++) {
if (i != 0) {
aprintf(&buf, ", ");
}
auto fk = layermap.find(lnames[i]);
aprintf(&buf, "{ \"id\": \"");
quote(&buf, lnames[i].c_str());
aprintf(&buf, "\", \"description\": \"\", \"minzoom\": %d, \"maxzoom\": %d, \"fields\": {", fk->second.minzoom, fk->second.maxzoom);
bool first = true;
for (auto j = fk->second.file_keys.begin(); j != fk->second.file_keys.end(); ++j) {
if (first) {
first = false;
} else {
aprintf(&buf, ", ");
}
aprintf(&buf, "\"");
quote(&buf, j->first.c_str());
int type = 0;
for (auto s : j->second.sample_values) {
type |= (1 << s.type);
}
if (type == (1 << mvt_double)) {
aprintf(&buf, "\": \"Number\"");
} else if (type == (1 << mvt_bool)) {
aprintf(&buf, "\": \"Boolean\"");
} else if (type == (1 << mvt_string)) {
aprintf(&buf, "\": \"String\"");
} else {
aprintf(&buf, "\": \"Composite\""); // XXX tilestats: composite?
}
}
aprintf(&buf, "} }");
}
aprintf(&buf, " ] }");
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('json', %Q);", buf.c_str());
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set json: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
sql = sqlite3_mprintf("INSERT INTO metadata (name, value) VALUES ('tilestats', %Q);", tilestats(layermap).c_str());
if (sqlite3_exec(db, sql, NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "set tilestats: %s\n", err);
if (!forcetable) {
exit(EXIT_FAILURE);
}
}
sqlite3_free(sql);
}
if (outdir != NULL) {
std::string metadata = std::string(outdir) + "/metadata.json";
FILE *fp = fopen(metadata.c_str(), "w");
if (fp == NULL) {
perror(metadata.c_str());
exit(EXIT_FAILURE);
}
fprintf(fp, "{\n");
sqlite3_stmt *stmt;
bool first = true;
if (sqlite3_prepare_v2(db, "SELECT name, value from metadata;", -1, &stmt, NULL) == SQLITE_OK) {
while (sqlite3_step(stmt) == SQLITE_ROW) {
std::string key, value;
quote(&key, (const char *) sqlite3_column_text(stmt, 0));
quote(&value, (const char *) sqlite3_column_text(stmt, 1));
if (!first) {
fprintf(fp, ",\n");
}
fprintf(fp, " \"%s\": \"%s\"", key.c_str(), value.c_str());
first = false;
}
sqlite3_finalize(stmt);
}
fprintf(fp, "\n}\n");
fclose(fp);
}
if (outdb == NULL) {
if (sqlite3_close(db) != SQLITE_OK) {
fprintf(stderr, "Could not close temp database: %s\n", sqlite3_errmsg(db));
exit(EXIT_FAILURE);
}
}
}
void mbtiles_close(sqlite3 *outdb, char **argv) {
char *err;
if (sqlite3_exec(outdb, "ANALYZE;", NULL, NULL, &err) != SQLITE_OK) {
fprintf(stderr, "%s: ANALYZE failed: %s\n", argv[0], err);
exit(EXIT_FAILURE);
}
if (sqlite3_close(outdb) != SQLITE_OK) {
fprintf(stderr, "%s: could not close database: %s\n", argv[0], sqlite3_errmsg(outdb));
exit(EXIT_FAILURE);
}
}
std::map<std::string, layermap_entry> merge_layermaps(std::vector<std::map<std::string, layermap_entry> > const &maps) {
std::map<std::string, layermap_entry> out;
for (size_t i = 0; i < maps.size(); i++) {
for (auto map = maps[i].begin(); map != maps[i].end(); ++map) {
if (out.count(map->first) == 0) {
out.insert(std::pair<std::string, layermap_entry>(map->first, layermap_entry(out.size())));
auto out_entry = out.find(map->first);
out_entry->second.minzoom = map->second.minzoom;
out_entry->second.maxzoom = map->second.maxzoom;
}
auto out_entry = out.find(map->first);
if (out_entry == out.end()) {
fprintf(stderr, "Internal error merging layers\n");
exit(EXIT_FAILURE);
}
for (auto fk = map->second.file_keys.begin(); fk != map->second.file_keys.end(); ++fk) {
auto fk2 = out_entry->second.file_keys.find(fk->first);
if (fk2 == out_entry->second.file_keys.end()) {
out_entry->second.file_keys.insert(*fk);
} else {
for (auto s : fk->second.sample_values) {
fk2->second.sample_values.insert(s);
}
fk2->second.type |= fk->second.type;
if (fk->second.min < fk2->second.min) {
fk2->second.min = fk->second.min;
}
if (fk->second.max > fk2->second.max) {
fk2->second.max = fk->second.max;
}
}
}
if (map->second.minzoom < out_entry->second.minzoom) {
out_entry->second.minzoom = map->second.minzoom;
}
if (map->second.maxzoom > out_entry->second.maxzoom) {
out_entry->second.maxzoom = map->second.maxzoom;
}
out_entry->second.points += map->second.points;
out_entry->second.lines += map->second.lines;
out_entry->second.polygons += map->second.polygons;
}
}
return out;
}