tippecanoe/main.cpp
2017-07-17 11:58:37 -07:00

2552 lines
70 KiB
C++

#ifdef MTRACE
#include <mcheck.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <string.h>
#include <fcntl.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <sqlite3.h>
#include <stdarg.h>
#include <sys/resource.h>
#include <pthread.h>
#include <getopt.h>
#include <algorithm>
#include <vector>
#include <string>
#include <set>
#include <map>
#include <cmath>
#ifdef __APPLE__
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/param.h>
#include <sys/mount.h>
#else
#include <sys/statfs.h>
#endif
#include "jsonpull/jsonpull.h"
#include "mbtiles.hpp"
#include "tile.hpp"
#include "pool.hpp"
#include "projection.hpp"
#include "version.hpp"
#include "memfile.hpp"
#include "main.hpp"
#include "geojson.hpp"
#include "geometry.hpp"
#include "serial.hpp"
#include "options.hpp"
#include "mvt.hpp"
static int low_detail = 12;
static int full_detail = -1;
static int min_detail = 7;
int quiet = 0;
int geometry_scale = 0;
double simplification = 1;
size_t max_tile_size = 500000;
int prevent[256];
int additional[256];
struct source {
std::string layer;
std::string file;
};
size_t CPUS;
size_t TEMP_FILES;
long long MAX_FILES;
static long long diskfree;
struct reader {
int metafd;
int poolfd;
int treefd;
int geomfd;
int indexfd;
FILE *metafile;
struct memfile *poolfile;
struct memfile *treefile;
FILE *geomfile;
FILE *indexfile;
long long metapos;
long long geompos;
long long indexpos;
long long file_bbox[4];
struct stat geomst;
struct stat metast;
char *geom_map;
};
void checkdisk(struct reader *r, int nreader) {
long long used = 0;
int i;
for (i = 0; i < nreader; i++) {
// Meta, pool, and tree are used once.
// Geometry and index will be duplicated during sorting and tiling.
used += r[i].metapos + 2 * r[i].geompos + 2 * r[i].indexpos + r[i].poolfile->len + r[i].treefile->len;
}
static int warned = 0;
if (used > diskfree * .9 && !warned) {
fprintf(stderr, "You will probably run out of disk space.\n%lld bytes used or committed, of %lld originally available\n", used, diskfree);
warned = 1;
}
};
void init_cpus() {
const char *TIPPECANOE_MAX_THREADS = getenv("TIPPECANOE_MAX_THREADS");
if (TIPPECANOE_MAX_THREADS != NULL) {
CPUS = atoi(TIPPECANOE_MAX_THREADS);
} else {
CPUS = sysconf(_SC_NPROCESSORS_ONLN);
}
if (CPUS < 1) {
CPUS = 1;
}
// Guard against short struct index.segment
if (CPUS > 32767) {
CPUS = 32767;
}
// Round down to a power of 2
CPUS = 1 << (int) (log(CPUS) / log(2));
struct rlimit rl;
if (getrlimit(RLIMIT_NOFILE, &rl) != 0) {
perror("getrlimit");
exit(EXIT_FAILURE);
} else {
MAX_FILES = rl.rlim_cur;
}
// Don't really want too many temporary files, because the file system
// will start to bog down eventually
if (MAX_FILES > 2000) {
MAX_FILES = 2000;
}
// MacOS can run out of system file descriptors
// even if we stay under the rlimit, so try to
// find out the real limit.
long long fds[MAX_FILES];
long long i;
for (i = 0; i < MAX_FILES; i++) {
fds[i] = open("/dev/null", O_RDONLY);
if (fds[i] < 0) {
break;
}
}
long long j;
for (j = 0; j < i; j++) {
if (close(fds[j]) < 0) {
perror("close");
exit(EXIT_FAILURE);
}
}
// Scale down because we really don't want to run the system out of files
MAX_FILES = i * 3 / 4;
if (MAX_FILES < 32) {
fprintf(stderr, "Can't open a useful number of files: %lld\n", MAX_FILES);
exit(EXIT_FAILURE);
}
TEMP_FILES = (MAX_FILES - 10) / 2;
if (TEMP_FILES > CPUS * 4) {
TEMP_FILES = CPUS * 4;
}
}
int indexcmp(const void *v1, const void *v2) {
const struct index *i1 = (const struct index *) v1;
const struct index *i2 = (const struct index *) v2;
if (i1->index < i2->index) {
return -1;
} else if (i1->index > i2->index) {
return 1;
}
if (i1->seq < i2->seq) {
return -1;
} else if (i1->seq > i2->seq) {
return 1;
}
return 0;
}
struct mergelist {
long long start;
long long end;
struct mergelist *next;
};
static void insert(struct mergelist *m, struct mergelist **head, unsigned char *map) {
while (*head != NULL && indexcmp(map + m->start, map + (*head)->start) > 0) {
head = &((*head)->next);
}
m->next = *head;
*head = m;
}
struct drop_state {
double gap;
unsigned long long previndex;
double interval;
double scale;
double seq;
long long included;
unsigned x;
unsigned y;
};
int calc_feature_minzoom(struct index *ix, struct drop_state *ds, int maxzoom, int basezoom, double droprate, double gamma) {
int feature_minzoom = 0;
unsigned xx, yy;
decode(ix->index, &xx, &yy);
if (gamma >= 0 && (ix->t == VT_POINT ||
(additional[A_LINE_DROP] && ix->t == VT_LINE) ||
(additional[A_POLYGON_DROP] && ix->t == VT_POLYGON))) {
for (ssize_t i = maxzoom; i >= 0; i--) {
// XXX This resets the feature counter at the start of each tile,
// which makes the feature count come out close to what it is if
// feature dropping happens during tiling. It means that the low
// zooms are heavier than they legitimately should be though.
{
unsigned xxx = 0, yyy = 0;
if (i != 0) {
xxx = xx >> (32 - i);
yyy = yy >> (32 - i);
}
if (ds[i].x != xxx || ds[i].y != yyy) {
ds[i].seq = 0;
ds[i].gap = 0;
ds[i].previndex = 0;
}
ds[i].x = xxx;
ds[i].y = yyy;
}
ds[i].seq++;
}
for (ssize_t i = maxzoom; i >= 0; i--) {
if (ds[i].seq >= 0) {
ds[i].seq -= ds[i].interval;
ds[i].included++;
} else {
feature_minzoom = i + 1;
break;
}
}
// XXX manage_gap
}
return feature_minzoom;
}
static void merge(struct mergelist *merges, size_t nmerges, unsigned char *map, FILE *indexfile, int bytes, long long nrec, char *geom_map, FILE *geom_out, long long *geompos, long long *progress, long long *progress_max, long long *progress_reported, int maxzoom, int basezoom, double droprate, double gamma, struct drop_state *ds) {
struct mergelist *head = NULL;
for (size_t i = 0; i < nmerges; i++) {
if (merges[i].start < merges[i].end) {
insert(&(merges[i]), &head, map);
}
}
while (head != NULL) {
struct index ix = *((struct index *) (map + head->start));
long long pos = *geompos;
fwrite_check(geom_map + ix.start, 1, ix.end - ix.start, geom_out, "merge geometry");
*geompos += ix.end - ix.start;
int feature_minzoom = calc_feature_minzoom(&ix, ds, maxzoom, basezoom, droprate, gamma);
serialize_byte(geom_out, feature_minzoom, geompos, "merge geometry");
// Count this as an 75%-accomplishment, since we already 25%-counted it
*progress += (ix.end - ix.start) * 3 / 4;
if (!quiet && 100 * *progress / *progress_max != *progress_reported) {
fprintf(stderr, "Reordering geometry: %lld%% \r", 100 * *progress / *progress_max);
*progress_reported = 100 * *progress / *progress_max;
}
ix.start = pos;
ix.end = *geompos;
fwrite_check(&ix, bytes, 1, indexfile, "merge temporary");
head->start += bytes;
struct mergelist *m = head;
head = m->next;
m->next = NULL;
if (m->start < m->end) {
insert(m, &head, map);
}
}
}
struct sort_arg {
int task;
int cpus;
long long indexpos;
struct mergelist *merges;
int indexfd;
size_t nmerges;
long long unit;
int bytes;
};
void *run_sort(void *v) {
struct sort_arg *a = (struct sort_arg *) v;
long long start;
for (start = a->task * a->unit; start < a->indexpos; start += a->unit * a->cpus) {
long long end = start + a->unit;
if (end > a->indexpos) {
end = a->indexpos;
}
a->merges[start / a->unit].start = start;
a->merges[start / a->unit].end = end;
a->merges[start / a->unit].next = NULL;
// MAP_PRIVATE to avoid disk writes if it fits in memory
void *map = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_PRIVATE, a->indexfd, start);
if (map == MAP_FAILED) {
perror("mmap in run_sort");
exit(EXIT_FAILURE);
}
madvise(map, end - start, MADV_RANDOM);
madvise(map, end - start, MADV_WILLNEED);
qsort(map, (end - start) / a->bytes, a->bytes, indexcmp);
// Sorting and then copying avoids disk access to
// write out intermediate stages of the sort.
void *map2 = mmap(NULL, end - start, PROT_READ | PROT_WRITE, MAP_SHARED, a->indexfd, start);
if (map2 == MAP_FAILED) {
perror("mmap (write)");
exit(EXIT_FAILURE);
}
madvise(map2, end - start, MADV_SEQUENTIAL);
memcpy(map2, map, end - start);
// No madvise, since caller will want the sorted data
munmap(map, end - start);
munmap(map2, end - start);
}
return NULL;
}
void do_read_parallel(char *map, long long len, long long initial_offset, const char *reading, struct reader *reader, volatile long long *progress_seq, std::set<std::string> *exclude, std::set<std::string> *include, int exclude_all, char *fname, int basezoom, int source, int nlayers, std::vector<std::map<std::string, layermap_entry> > *layermaps, double droprate, int *initialized, unsigned *initial_x, unsigned *initial_y, int maxzoom, std::string layername, bool uses_gamma, std::map<std::string, int> const *attribute_types, int separator, double *dist_sum, size_t *dist_count, bool want_dist) {
long long segs[CPUS + 1];
segs[0] = 0;
segs[CPUS] = len;
for (size_t i = 1; i < CPUS; i++) {
segs[i] = len * i / CPUS;
while (segs[i] < len && map[segs[i]] != separator) {
segs[i]++;
}
}
double dist_sums[CPUS];
size_t dist_counts[CPUS];
volatile long long layer_seq[CPUS];
for (size_t i = 0; i < CPUS; i++) {
// To preserve feature ordering, unique id for each segment
// begins with that segment's offset into the input
layer_seq[i] = segs[i] + initial_offset;
dist_sums[i] = dist_counts[i] = 0;
}
struct parse_json_args pja[CPUS];
pthread_t pthreads[CPUS];
std::vector<std::set<type_and_string> > file_subkeys;
for (size_t i = 0; i < CPUS; i++) {
file_subkeys.push_back(std::set<type_and_string>());
}
for (size_t i = 0; i < CPUS; i++) {
pja[i].jp = json_begin_map(map + segs[i], segs[i + 1] - segs[i]);
pja[i].reading = reading;
pja[i].layer_seq = &layer_seq[i];
pja[i].progress_seq = progress_seq;
pja[i].metapos = &reader[i].metapos;
pja[i].geompos = &reader[i].geompos;
pja[i].indexpos = &reader[i].indexpos;
pja[i].exclude = exclude;
pja[i].include = include;
pja[i].exclude_all = exclude_all;
pja[i].metafile = reader[i].metafile;
pja[i].geomfile = reader[i].geomfile;
pja[i].indexfile = reader[i].indexfile;
pja[i].poolfile = reader[i].poolfile;
pja[i].treefile = reader[i].treefile;
pja[i].fname = fname;
pja[i].basezoom = basezoom;
pja[i].layer = source;
pja[i].droprate = droprate;
pja[i].file_bbox = reader[i].file_bbox;
pja[i].segment = i;
pja[i].initialized = &initialized[i];
pja[i].initial_x = &initial_x[i];
pja[i].initial_y = &initial_y[i];
pja[i].readers = reader;
pja[i].maxzoom = maxzoom;
pja[i].layermap = &(*layermaps)[i];
pja[i].layername = &layername;
pja[i].uses_gamma = uses_gamma;
pja[i].attribute_types = attribute_types;
pja[i].dist_sum = &(dist_sums[i]);
pja[i].dist_count = &(dist_counts[i]);
pja[i].want_dist = want_dist;
if (pthread_create(&pthreads[i], NULL, run_parse_json, &pja[i]) != 0) {
perror("pthread_create");
exit(EXIT_FAILURE);
}
}
for (size_t i = 0; i < CPUS; i++) {
void *retval;
if (pthread_join(pthreads[i], &retval) != 0) {
perror("pthread_join 370");
}
*dist_sum += dist_sums[i];
*dist_count += dist_counts[i];
json_end_map(pja[i].jp);
}
}
struct read_parallel_arg {
int fd;
FILE *fp;
long long offset;
long long len;
volatile int *is_parsing;
int separator;
const char *reading;
struct reader *reader;
volatile long long *progress_seq;
std::set<std::string> *exclude;
std::set<std::string> *include;
int exclude_all;
char *fname;
int maxzoom;
int basezoom;
int source;
int nlayers;
std::vector<std::map<std::string, layermap_entry> > *layermaps;
double droprate;
int *initialized;
unsigned *initial_x;
unsigned *initial_y;
std::string layername;
bool uses_gamma;
std::map<std::string, int> const *attribute_types;
double *dist_sum;
size_t *dist_count;
bool want_dist;
};
void *run_read_parallel(void *v) {
struct read_parallel_arg *rpa = (struct read_parallel_arg *) v;
struct stat st;
if (fstat(rpa->fd, &st) != 0) {
perror("stat read temp");
}
if (rpa->len != st.st_size) {
fprintf(stderr, "wrong number of bytes in temporary: %lld vs %lld\n", rpa->len, (long long) st.st_size);
}
rpa->len = st.st_size;
char *map = (char *) mmap(NULL, rpa->len, PROT_READ, MAP_PRIVATE, rpa->fd, 0);
if (map == NULL || map == MAP_FAILED) {
perror("map intermediate input");
exit(EXIT_FAILURE);
}
madvise(map, rpa->len, MADV_RANDOM); // sequential, but from several pointers at once
do_read_parallel(map, rpa->len, rpa->offset, rpa->reading, rpa->reader, rpa->progress_seq, rpa->exclude, rpa->include, rpa->exclude_all, rpa->fname, rpa->basezoom, rpa->source, rpa->nlayers, rpa->layermaps, rpa->droprate, rpa->initialized, rpa->initial_x, rpa->initial_y, rpa->maxzoom, rpa->layername, rpa->uses_gamma, rpa->attribute_types, rpa->separator, rpa->dist_sum, rpa->dist_count, rpa->want_dist);
madvise(map, rpa->len, MADV_DONTNEED);
if (munmap(map, rpa->len) != 0) {
perror("munmap source file");
}
if (fclose(rpa->fp) != 0) {
perror("close source file");
exit(EXIT_FAILURE);
}
*(rpa->is_parsing) = 0;
delete rpa;
return NULL;
}
void start_parsing(int fd, FILE *fp, long long offset, long long len, volatile int *is_parsing, pthread_t *parallel_parser, bool &parser_created, const char *reading, struct reader *reader, volatile long long *progress_seq, std::set<std::string> *exclude, std::set<std::string> *include, int exclude_all, char *fname, int basezoom, int source, int nlayers, std::vector<std::map<std::string, layermap_entry> > &layermaps, double droprate, int *initialized, unsigned *initial_x, unsigned *initial_y, int maxzoom, std::string layername, bool uses_gamma, std::map<std::string, int> const *attribute_types, int separator, double *dist_sum, size_t *dist_count, bool want_dist) {
// This has to kick off an intermediate thread to start the parser threads,
// so the main thread can get back to reading the next input stage while
// the intermediate thread waits for the completion of the parser threads.
*is_parsing = 1;
struct read_parallel_arg *rpa = new struct read_parallel_arg;
if (rpa == NULL) {
perror("Out of memory");
exit(EXIT_FAILURE);
}
rpa->fd = fd;
rpa->fp = fp;
rpa->offset = offset;
rpa->len = len;
rpa->is_parsing = is_parsing;
rpa->separator = separator;
rpa->reading = reading;
rpa->reader = reader;
rpa->progress_seq = progress_seq;
rpa->exclude = exclude;
rpa->include = include;
rpa->exclude_all = exclude_all;
rpa->fname = fname;
rpa->basezoom = basezoom;
rpa->source = source;
rpa->nlayers = nlayers;
rpa->layermaps = &layermaps;
rpa->droprate = droprate;
rpa->initialized = initialized;
rpa->initial_x = initial_x;
rpa->initial_y = initial_y;
rpa->maxzoom = maxzoom;
rpa->layername = layername;
rpa->uses_gamma = uses_gamma;
rpa->attribute_types = attribute_types;
rpa->dist_sum = dist_sum;
rpa->dist_count = dist_count;
rpa->want_dist = want_dist;
if (pthread_create(parallel_parser, NULL, run_read_parallel, rpa) != 0) {
perror("pthread_create");
exit(EXIT_FAILURE);
}
parser_created = true;
}
void radix1(int *geomfds_in, int *indexfds_in, int inputs, int prefix, int splits, long long mem, const char *tmpdir, long long *availfiles, FILE *geomfile, FILE *indexfile, long long *geompos_out, long long *progress, long long *progress_max, long long *progress_reported, int maxzoom, int basezoom, double droprate, double gamma, struct drop_state *ds) {
// Arranged as bits to facilitate subdividing again if a subdivided file is still huge
int splitbits = log(splits) / log(2);
splits = 1 << splitbits;
FILE *geomfiles[splits];
FILE *indexfiles[splits];
int geomfds[splits];
int indexfds[splits];
long long sub_geompos[splits];
int i;
for (i = 0; i < splits; i++) {
sub_geompos[i] = 0;
char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1];
sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX");
char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1];
sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX");
geomfds[i] = mkstemp(geomname);
if (geomfds[i] < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
indexfds[i] = mkstemp(indexname);
if (indexfds[i] < 0) {
perror(indexname);
exit(EXIT_FAILURE);
}
geomfiles[i] = fopen(geomname, "wb");
if (geomfiles[i] == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
indexfiles[i] = fopen(indexname, "wb");
if (indexfiles[i] == NULL) {
perror(indexname);
exit(EXIT_FAILURE);
}
*availfiles -= 4;
unlink(geomname);
unlink(indexname);
}
for (i = 0; i < inputs; i++) {
struct stat geomst, indexst;
if (fstat(geomfds_in[i], &geomst) < 0) {
perror("stat geom");
exit(EXIT_FAILURE);
}
if (fstat(indexfds_in[i], &indexst) < 0) {
perror("stat index");
exit(EXIT_FAILURE);
}
if (indexst.st_size != 0) {
struct index *indexmap = (struct index *) mmap(NULL, indexst.st_size, PROT_READ, MAP_PRIVATE, indexfds_in[i], 0);
if (indexmap == MAP_FAILED) {
fprintf(stderr, "fd %lld, len %lld\n", (long long) indexfds_in[i], (long long) indexst.st_size);
perror("map index");
exit(EXIT_FAILURE);
}
madvise(indexmap, indexst.st_size, MADV_SEQUENTIAL);
madvise(indexmap, indexst.st_size, MADV_WILLNEED);
char *geommap = (char *) mmap(NULL, geomst.st_size, PROT_READ, MAP_PRIVATE, geomfds_in[i], 0);
if (geommap == MAP_FAILED) {
perror("map geom");
exit(EXIT_FAILURE);
}
madvise(geommap, geomst.st_size, MADV_SEQUENTIAL);
madvise(geommap, geomst.st_size, MADV_WILLNEED);
for (size_t a = 0; a < indexst.st_size / sizeof(struct index); a++) {
struct index ix = indexmap[a];
unsigned long long which = (ix.index << prefix) >> (64 - splitbits);
long long pos = sub_geompos[which];
fwrite_check(geommap + ix.start, ix.end - ix.start, 1, geomfiles[which], "geom");
sub_geompos[which] += ix.end - ix.start;
// Count this as a 25%-accomplishment, since we will copy again
*progress += (ix.end - ix.start) / 4;
if (!quiet && 100 * *progress / *progress_max != *progress_reported) {
fprintf(stderr, "Reordering geometry: %lld%% \r", 100 * *progress / *progress_max);
*progress_reported = 100 * *progress / *progress_max;
}
ix.start = pos;
ix.end = sub_geompos[which];
fwrite_check(&ix, sizeof(struct index), 1, indexfiles[which], "index");
}
madvise(indexmap, indexst.st_size, MADV_DONTNEED);
if (munmap(indexmap, indexst.st_size) < 0) {
perror("unmap index");
exit(EXIT_FAILURE);
}
madvise(geommap, geomst.st_size, MADV_DONTNEED);
if (munmap(geommap, geomst.st_size) < 0) {
perror("unmap geom");
exit(EXIT_FAILURE);
}
}
if (close(geomfds_in[i]) < 0) {
perror("close geom");
exit(EXIT_FAILURE);
}
if (close(indexfds_in[i]) < 0) {
perror("close index");
exit(EXIT_FAILURE);
}
*availfiles += 2;
}
for (i = 0; i < splits; i++) {
if (fclose(geomfiles[i]) != 0) {
perror("fclose geom");
exit(EXIT_FAILURE);
}
if (fclose(indexfiles[i]) != 0) {
perror("fclose index");
exit(EXIT_FAILURE);
}
*availfiles += 2;
}
for (i = 0; i < splits; i++) {
int already_closed = 0;
struct stat geomst, indexst;
if (fstat(geomfds[i], &geomst) < 0) {
perror("stat geom");
exit(EXIT_FAILURE);
}
if (fstat(indexfds[i], &indexst) < 0) {
perror("stat index");
exit(EXIT_FAILURE);
}
if (indexst.st_size > 0) {
if (indexst.st_size + geomst.st_size < mem) {
long long indexpos = indexst.st_size;
int bytes = sizeof(struct index);
int page = sysconf(_SC_PAGESIZE);
// Don't try to sort more than 2GB at once,
// which used to crash Macs and may still
long long max_unit = 2LL * 1024 * 1024 * 1024;
long long unit = ((indexpos / CPUS + bytes - 1) / bytes) * bytes;
if (unit > max_unit) {
unit = max_unit;
}
unit = ((unit + page - 1) / page) * page;
if (unit < page) {
unit = page;
}
size_t nmerges = (indexpos + unit - 1) / unit;
struct mergelist merges[nmerges];
for (size_t a = 0; a < nmerges; a++) {
merges[a].start = merges[a].end = 0;
}
pthread_t pthreads[CPUS];
struct sort_arg args[CPUS];
for (size_t a = 0; a < CPUS; a++) {
args[a].task = a;
args[a].cpus = CPUS;
args[a].indexpos = indexpos;
args[a].merges = merges;
args[a].indexfd = indexfds[i];
args[a].nmerges = nmerges;
args[a].unit = unit;
args[a].bytes = bytes;
if (pthread_create(&pthreads[a], NULL, run_sort, &args[a]) != 0) {
perror("pthread_create");
exit(EXIT_FAILURE);
}
}
for (size_t a = 0; a < CPUS; a++) {
void *retval;
if (pthread_join(pthreads[a], &retval) != 0) {
perror("pthread_join 679");
}
}
struct indexmap *indexmap = (struct indexmap *) mmap(NULL, indexst.st_size, PROT_READ, MAP_PRIVATE, indexfds[i], 0);
if (indexmap == MAP_FAILED) {
fprintf(stderr, "fd %lld, len %lld\n", (long long) indexfds[i], (long long) indexst.st_size);
perror("map index");
exit(EXIT_FAILURE);
}
madvise(indexmap, indexst.st_size, MADV_RANDOM); // sequential, but from several pointers at once
madvise(indexmap, indexst.st_size, MADV_WILLNEED);
char *geommap = (char *) mmap(NULL, geomst.st_size, PROT_READ, MAP_PRIVATE, geomfds[i], 0);
if (geommap == MAP_FAILED) {
perror("map geom");
exit(EXIT_FAILURE);
}
madvise(geommap, geomst.st_size, MADV_RANDOM);
madvise(geommap, geomst.st_size, MADV_WILLNEED);
merge(merges, nmerges, (unsigned char *) indexmap, indexfile, bytes, indexpos / bytes, geommap, geomfile, geompos_out, progress, progress_max, progress_reported, maxzoom, basezoom, droprate, gamma, ds);
madvise(indexmap, indexst.st_size, MADV_DONTNEED);
if (munmap(indexmap, indexst.st_size) < 0) {
perror("unmap index");
exit(EXIT_FAILURE);
}
madvise(geommap, geomst.st_size, MADV_DONTNEED);
if (munmap(geommap, geomst.st_size) < 0) {
perror("unmap geom");
exit(EXIT_FAILURE);
}
} else if (indexst.st_size == sizeof(struct index) || prefix + splitbits >= 64) {
struct index *indexmap = (struct index *) mmap(NULL, indexst.st_size, PROT_READ, MAP_PRIVATE, indexfds[i], 0);
if (indexmap == MAP_FAILED) {
fprintf(stderr, "fd %lld, len %lld\n", (long long) indexfds[i], (long long) indexst.st_size);
perror("map index");
exit(EXIT_FAILURE);
}
madvise(indexmap, indexst.st_size, MADV_SEQUENTIAL);
madvise(indexmap, indexst.st_size, MADV_WILLNEED);
char *geommap = (char *) mmap(NULL, geomst.st_size, PROT_READ, MAP_PRIVATE, geomfds[i], 0);
if (geommap == MAP_FAILED) {
perror("map geom");
exit(EXIT_FAILURE);
}
madvise(geommap, geomst.st_size, MADV_RANDOM);
madvise(geommap, geomst.st_size, MADV_WILLNEED);
for (size_t a = 0; a < indexst.st_size / sizeof(struct index); a++) {
struct index ix = indexmap[a];
long long pos = *geompos_out;
fwrite_check(geommap + ix.start, ix.end - ix.start, 1, geomfile, "geom");
*geompos_out += ix.end - ix.start;
int feature_minzoom = calc_feature_minzoom(&ix, ds, maxzoom, basezoom, droprate, gamma);
serialize_byte(geomfile, feature_minzoom, geompos_out, "merge geometry");
// Count this as an 75%-accomplishment, since we already 25%-counted it
*progress += (ix.end - ix.start) * 3 / 4;
if (!quiet && 100 * *progress / *progress_max != *progress_reported) {
fprintf(stderr, "Reordering geometry: %lld%% \r", 100 * *progress / *progress_max);
*progress_reported = 100 * *progress / *progress_max;
}
ix.start = pos;
ix.end = *geompos_out;
fwrite_check(&ix, sizeof(struct index), 1, indexfile, "index");
}
madvise(indexmap, indexst.st_size, MADV_DONTNEED);
if (munmap(indexmap, indexst.st_size) < 0) {
perror("unmap index");
exit(EXIT_FAILURE);
}
madvise(geommap, geomst.st_size, MADV_DONTNEED);
if (munmap(geommap, geomst.st_size) < 0) {
perror("unmap geom");
exit(EXIT_FAILURE);
}
} else {
// We already reported the progress from splitting this radix out
// but we need to split it again, which will be credited with more
// progress. So increase the total amount of progress to report by
// the additional progress that will happpen, which may move the
// counter backward but will be an honest estimate of the work remaining.
*progress_max += geomst.st_size / 4;
radix1(&geomfds[i], &indexfds[i], 1, prefix + splitbits, *availfiles / 4, mem, tmpdir, availfiles, geomfile, indexfile, geompos_out, progress, progress_max, progress_reported, maxzoom, basezoom, droprate, gamma, ds);
already_closed = 1;
}
}
if (!already_closed) {
if (close(geomfds[i]) < 0) {
perror("close geom");
exit(EXIT_FAILURE);
}
if (close(indexfds[i]) < 0) {
perror("close index");
exit(EXIT_FAILURE);
}
*availfiles += 2;
}
}
}
void prep_drop_states(struct drop_state *ds, int maxzoom, int basezoom, double droprate) {
// Needs to be signed for interval calculation
for (ssize_t i = 0; i <= maxzoom; i++) {
ds[i].gap = 0;
ds[i].previndex = 0;
ds[i].interval = 0;
if (i < basezoom) {
ds[i].interval = std::exp(std::log(droprate) * (basezoom - i));
}
ds[i].scale = (double) (1LL << (64 - 2 * (i + 8)));
ds[i].seq = 0;
ds[i].included = 0;
ds[i].x = 0;
ds[i].y = 0;
}
}
void radix(struct reader *reader, int nreaders, FILE *geomfile, int geomfd, FILE *indexfile, int indexfd, const char *tmpdir, long long *geompos, int maxzoom, int basezoom, double droprate, double gamma) {
// Run through the index and geometry for each reader,
// splitting the contents out by index into as many
// sub-files as we can write to simultaneously.
// Then sort each of those by index, recursively if it is
// too big to fit in memory.
// Then concatenate each of the sub-outputs into a final output.
long long mem;
#ifdef __APPLE__
int64_t hw_memsize;
size_t len = sizeof(int64_t);
if (sysctlbyname("hw.memsize", &hw_memsize, &len, NULL, 0) < 0) {
perror("sysctl hw.memsize");
exit(EXIT_FAILURE);
}
mem = hw_memsize;
#else
long long pagesize = sysconf(_SC_PAGESIZE);
long long pages = sysconf(_SC_PHYS_PAGES);
if (pages < 0 || pagesize < 0) {
perror("sysconf _SC_PAGESIZE or _SC_PHYS_PAGES");
exit(EXIT_FAILURE);
}
mem = (long long) pages * pagesize;
#endif
// Just for code coverage testing. Deeply recursive sorting is very slow
// compared to sorting in memory.
if (additional[A_PREFER_RADIX_SORT]) {
mem = 8192;
}
long long availfiles = MAX_FILES - 2 * nreaders // each reader has a geom and an index
- 4 // pool, meta, mbtiles, mbtiles journal
- 4 // top-level geom and index output, both FILE and fd
- 3; // stdin, stdout, stderr
// 4 because for each we have output and input FILE and fd for geom and index
int splits = availfiles / 4;
// Be somewhat conservative about memory availability because the whole point of this
// is to keep from thrashing by working on chunks that will fit in memory.
mem /= 2;
long long geom_total = 0;
int geomfds[nreaders];
int indexfds[nreaders];
for (int i = 0; i < nreaders; i++) {
geomfds[i] = reader[i].geomfd;
indexfds[i] = reader[i].indexfd;
struct stat geomst;
if (fstat(reader[i].geomfd, &geomst) < 0) {
perror("stat geom");
exit(EXIT_FAILURE);
}
geom_total += geomst.st_size;
}
struct drop_state ds[maxzoom + 1];
prep_drop_states(ds, maxzoom, basezoom, droprate);
long long progress = 0, progress_max = geom_total, progress_reported = -1;
long long availfiles_before = availfiles;
radix1(geomfds, indexfds, nreaders, 0, splits, mem, tmpdir, &availfiles, geomfile, indexfile, geompos, &progress, &progress_max, &progress_reported, maxzoom, basezoom, droprate, gamma, ds);
if (availfiles - 2 * nreaders != availfiles_before) {
fprintf(stderr, "Internal error: miscounted available file descriptors: %lld vs %lld\n", availfiles - 2 * nreaders, availfiles);
exit(EXIT_FAILURE);
}
}
void choose_first_zoom(long long *file_bbox, struct reader *reader, unsigned *iz, unsigned *ix, unsigned *iy, int minzoom, int buffer) {
for (size_t i = 0; i < CPUS; i++) {
if (reader[i].file_bbox[0] < file_bbox[0]) {
file_bbox[0] = reader[i].file_bbox[0];
}
if (reader[i].file_bbox[1] < file_bbox[1]) {
file_bbox[1] = reader[i].file_bbox[1];
}
if (reader[i].file_bbox[2] > file_bbox[2]) {
file_bbox[2] = reader[i].file_bbox[2];
}
if (reader[i].file_bbox[3] > file_bbox[3]) {
file_bbox[3] = reader[i].file_bbox[3];
}
}
// If the bounding box extends off the plane on either side,
// a feature wrapped across the date line, so the width of the
// bounding box is the whole world.
if (file_bbox[0] < 0) {
file_bbox[0] = 0;
file_bbox[2] = (1LL << 32) - 1;
}
if (file_bbox[2] > (1LL << 32) - 1) {
file_bbox[0] = 0;
file_bbox[2] = (1LL << 32) - 1;
}
if (file_bbox[1] < 0) {
file_bbox[1] = 0;
}
if (file_bbox[3] > (1LL << 32) - 1) {
file_bbox[3] = (1LL << 32) - 1;
}
for (ssize_t z = minzoom; z >= 0; z--) {
long long shift = 1LL << (32 - z);
long long left = (file_bbox[0] - buffer * shift / 256) / shift;
long long top = (file_bbox[1] - buffer * shift / 256) / shift;
long long right = (file_bbox[2] + buffer * shift / 256) / shift;
long long bottom = (file_bbox[3] + buffer * shift / 256) / shift;
if (left == right && top == bottom) {
*iz = z;
*ix = left;
*iy = top;
break;
}
}
}
int read_input(std::vector<source> &sources, char *fname, int &maxzoom, int minzoom, int basezoom, double basezoom_marker_width, sqlite3 *outdb, const char *outdir, std::set<std::string> *exclude, std::set<std::string> *include, int exclude_all, double droprate, int buffer, const char *tmpdir, double gamma, int read_parallel, int forcetable, const char *attribution, bool uses_gamma, long long *file_bbox, const char *description, bool guess_maxzoom, std::map<std::string, int> const *attribute_types) {
int ret = EXIT_SUCCESS;
struct reader reader[CPUS];
for (size_t i = 0; i < CPUS; i++) {
struct reader *r = reader + i;
char metaname[strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1];
char poolname[strlen(tmpdir) + strlen("/pool.XXXXXXXX") + 1];
char treename[strlen(tmpdir) + strlen("/tree.XXXXXXXX") + 1];
char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1];
char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1];
sprintf(metaname, "%s%s", tmpdir, "/meta.XXXXXXXX");
sprintf(poolname, "%s%s", tmpdir, "/pool.XXXXXXXX");
sprintf(treename, "%s%s", tmpdir, "/tree.XXXXXXXX");
sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX");
sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX");
r->metafd = mkstemp(metaname);
if (r->metafd < 0) {
perror(metaname);
exit(EXIT_FAILURE);
}
r->poolfd = mkstemp(poolname);
if (r->poolfd < 0) {
perror(poolname);
exit(EXIT_FAILURE);
}
r->treefd = mkstemp(treename);
if (r->treefd < 0) {
perror(treename);
exit(EXIT_FAILURE);
}
r->geomfd = mkstemp(geomname);
if (r->geomfd < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
r->indexfd = mkstemp(indexname);
if (r->indexfd < 0) {
perror(indexname);
exit(EXIT_FAILURE);
}
r->metafile = fopen(metaname, "wb");
if (r->metafile == NULL) {
perror(metaname);
exit(EXIT_FAILURE);
}
r->poolfile = memfile_open(r->poolfd);
if (r->poolfile == NULL) {
perror(poolname);
exit(EXIT_FAILURE);
}
r->treefile = memfile_open(r->treefd);
if (r->treefile == NULL) {
perror(treename);
exit(EXIT_FAILURE);
}
r->geomfile = fopen(geomname, "wb");
if (r->geomfile == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
r->indexfile = fopen(indexname, "wb");
if (r->indexfile == NULL) {
perror(indexname);
exit(EXIT_FAILURE);
}
r->metapos = 0;
r->geompos = 0;
r->indexpos = 0;
unlink(metaname);
unlink(poolname);
unlink(treename);
unlink(geomname);
unlink(indexname);
// To distinguish a null value
{
struct stringpool p;
memfile_write(r->treefile, &p, sizeof(struct stringpool));
}
// Keep metadata file from being completely empty if no attributes
serialize_int(r->metafile, 0, &r->metapos, "meta");
r->file_bbox[0] = r->file_bbox[1] = UINT_MAX;
r->file_bbox[2] = r->file_bbox[3] = 0;
}
struct statfs fsstat;
if (fstatfs(reader[0].geomfd, &fsstat) != 0) {
perror("fstatfs");
exit(EXIT_FAILURE);
}
diskfree = (long long) fsstat.f_bsize * fsstat.f_bavail;
volatile long long progress_seq = 0;
int initialized[CPUS];
unsigned initial_x[CPUS], initial_y[CPUS];
for (size_t i = 0; i < CPUS; i++) {
initialized[i] = initial_x[i] = initial_y[i] = 0;
}
size_t nlayers = sources.size();
for (size_t l = 0; l < nlayers; l++) {
if (sources[l].layer.size() == 0) {
const char *src;
if (sources[l].file.size() == 0) {
src = fname;
} else {
src = sources[l].file.c_str();
}
// Find the last component of the pathname
const char *ocp, *use = src;
for (ocp = src; *ocp; ocp++) {
if (*ocp == '/' && ocp[1] != '\0') {
use = ocp + 1;
}
}
std::string trunc = std::string(use);
// Trim .json or .mbtiles from the name
ssize_t cp;
cp = trunc.find(".json");
if (cp >= 0) {
trunc = trunc.substr(0, cp);
}
cp = trunc.find(".mbtiles");
if (cp >= 0) {
trunc = trunc.substr(0, cp);
}
// Trim out characters that can't be part of selector
std::string out;
for (size_t p = 0; p < trunc.size(); p++) {
if (isalpha(trunc[p]) || isdigit(trunc[p]) || trunc[p] == '_') {
out.append(trunc, p, 1);
}
}
sources[l].layer = out;
if (!quiet) {
fprintf(stderr, "For layer %d, using name \"%s\"\n", (int) l, out.c_str());
}
}
}
std::map<std::string, layermap_entry> layermap;
for (size_t l = 0; l < nlayers; l++) {
layermap.insert(std::pair<std::string, layermap_entry>(sources[l].layer, layermap_entry(l)));
}
std::vector<std::map<std::string, layermap_entry> > layermaps;
for (size_t l = 0; l < CPUS; l++) {
layermaps.push_back(layermap);
}
long overall_offset = 0;
double dist_sum = 0;
size_t dist_count = 0;
size_t nsources = sources.size();
for (size_t source = 0; source < nsources; source++) {
std::string reading;
int fd;
if (sources[source].file.size() == 0) {
reading = "standard input";
fd = 0;
} else {
reading = sources[source].file;
fd = open(sources[source].file.c_str(), O_RDONLY);
if (fd < 0) {
perror(sources[source].file.c_str());
continue;
}
}
auto a = layermap.find(sources[source].layer);
if (a == layermap.end()) {
fprintf(stderr, "Internal error: couldn't find layer %s", sources[source].layer.c_str());
exit(EXIT_FAILURE);
}
size_t layer = a->second.id;
struct stat st;
char *map = NULL;
off_t off = 0;
int read_parallel_this = read_parallel ? '\n' : 0;
if (1) {
if (fstat(fd, &st) == 0) {
off = lseek(fd, 0, SEEK_CUR);
if (off >= 0) {
map = (char *) mmap(NULL, st.st_size - off, PROT_READ, MAP_PRIVATE, fd, off);
// No error if MAP_FAILED because check is below
if (map != MAP_FAILED) {
madvise(map, st.st_size - off, MADV_RANDOM); // sequential, but from several pointers at once
}
}
}
}
if (map != NULL && map != MAP_FAILED && st.st_size - off > 0) {
if (map[0] == 0x1E) {
read_parallel_this = 0x1E;
}
if (!read_parallel_this) {
// Not a GeoJSON text sequence, so unmap and read serially
if (munmap(map, st.st_size - off) != 0) {
perror("munmap source file");
exit(EXIT_FAILURE);
}
map = NULL;
}
}
if (map != NULL && map != MAP_FAILED && read_parallel_this) {
do_read_parallel(map, st.st_size - off, overall_offset, reading.c_str(), reader, &progress_seq, exclude, include, exclude_all, fname, basezoom, layer, nlayers, &layermaps, droprate, initialized, initial_x, initial_y, maxzoom, sources[layer].layer, uses_gamma, attribute_types, read_parallel_this, &dist_sum, &dist_count, guess_maxzoom);
overall_offset += st.st_size - off;
checkdisk(reader, CPUS);
if (munmap(map, st.st_size - off) != 0) {
perror("munmap source file");
exit(EXIT_FAILURE);
}
} else {
FILE *fp = fdopen(fd, "r");
if (fp == NULL) {
perror(sources[layer].file.c_str());
if (close(fd) != 0) {
perror("close source file");
exit(EXIT_FAILURE);
}
continue;
}
int c = getc(fp);
if (c != EOF) {
ungetc(c, fp);
}
if (c == 0x1E) {
read_parallel_this = 0x1E;
}
if (read_parallel_this) {
// Serial reading of chunks that are then parsed in parallel
char readname[strlen(tmpdir) + strlen("/read.XXXXXXXX") + 1];
sprintf(readname, "%s%s", tmpdir, "/read.XXXXXXXX");
int readfd = mkstemp(readname);
if (readfd < 0) {
perror(readname);
exit(EXIT_FAILURE);
}
FILE *readfp = fdopen(readfd, "w");
if (readfp == NULL) {
perror(readname);
exit(EXIT_FAILURE);
}
unlink(readname);
volatile int is_parsing = 0;
long long ahead = 0;
long long initial_offset = overall_offset;
pthread_t parallel_parser;
bool parser_created = false;
#define READ_BUF 2000
#define PARSE_MIN 10000000
#define PARSE_MAX (1LL * 1024 * 1024 * 1024)
char buf[READ_BUF];
int n;
while ((n = fread(buf, sizeof(char), READ_BUF, fp)) > 0) {
fwrite_check(buf, sizeof(char), n, readfp, reading.c_str());
ahead += n;
if (buf[n - 1] == read_parallel_this && ahead > PARSE_MIN) {
// Don't let the streaming reader get too far ahead of the parsers.
// If the buffered input gets huge, even if the parsers are still running,
// wait for the parser thread instead of continuing to stream input.
if (is_parsing == 0 || ahead >= PARSE_MAX) {
if (parser_created) {
if (pthread_join(parallel_parser, NULL) != 0) {
perror("pthread_join 1088");
exit(EXIT_FAILURE);
}
parser_created = false;
}
fflush(readfp);
start_parsing(readfd, readfp, initial_offset, ahead, &is_parsing, &parallel_parser, parser_created, reading.c_str(), reader, &progress_seq, exclude, include, exclude_all, fname, basezoom, layer, nlayers, layermaps, droprate, initialized, initial_x, initial_y, maxzoom, sources[layer].layer, gamma != 0, attribute_types, read_parallel_this, &dist_sum, &dist_count, guess_maxzoom);
initial_offset += ahead;
overall_offset += ahead;
checkdisk(reader, CPUS);
ahead = 0;
sprintf(readname, "%s%s", tmpdir, "/read.XXXXXXXX");
readfd = mkstemp(readname);
if (readfd < 0) {
perror(readname);
exit(EXIT_FAILURE);
}
readfp = fdopen(readfd, "w");
if (readfp == NULL) {
perror(readname);
exit(EXIT_FAILURE);
}
unlink(readname);
}
}
}
if (n < 0) {
perror(reading.c_str());
}
if (parser_created) {
if (pthread_join(parallel_parser, NULL) != 0) {
perror("pthread_join 1122");
exit(EXIT_FAILURE);
}
parser_created = false;
}
fflush(readfp);
if (ahead > 0) {
start_parsing(readfd, readfp, initial_offset, ahead, &is_parsing, &parallel_parser, parser_created, reading.c_str(), reader, &progress_seq, exclude, include, exclude_all, fname, basezoom, layer, nlayers, layermaps, droprate, initialized, initial_x, initial_y, maxzoom, sources[layer].layer, gamma != 0, attribute_types, read_parallel_this, &dist_sum, &dist_count, guess_maxzoom);
if (parser_created) {
if (pthread_join(parallel_parser, NULL) != 0) {
perror("pthread_join 1133");
}
parser_created = false;
}
overall_offset += ahead;
checkdisk(reader, CPUS);
}
} else {
// Plain serial reading
long long layer_seq = overall_offset;
json_pull *jp = json_begin_file(fp);
parse_json(jp, reading.c_str(), &layer_seq, &progress_seq, &reader[0].metapos, &reader[0].geompos, &reader[0].indexpos, exclude, include, exclude_all, reader[0].metafile, reader[0].geomfile, reader[0].indexfile, reader[0].poolfile, reader[0].treefile, fname, basezoom, layer, droprate, reader[0].file_bbox, 0, &initialized[0], &initial_x[0], &initial_y[0], reader, maxzoom, &layermaps[0], sources[layer].layer, uses_gamma, attribute_types, &dist_sum, &dist_count, guess_maxzoom);
json_end(jp);
overall_offset = layer_seq;
checkdisk(reader, CPUS);
}
if (fclose(fp) != 0) {
perror("fclose input");
exit(EXIT_FAILURE);
}
}
}
if (!quiet) {
fprintf(stderr, " \r");
// (stderr, "Read 10000.00 million features\r", *progress_seq / 1000000.0);
}
for (size_t i = 0; i < CPUS; i++) {
if (fclose(reader[i].metafile) != 0) {
perror("fclose meta");
exit(EXIT_FAILURE);
}
if (fclose(reader[i].geomfile) != 0) {
perror("fclose geom");
exit(EXIT_FAILURE);
}
if (fclose(reader[i].indexfile) != 0) {
perror("fclose index");
exit(EXIT_FAILURE);
}
memfile_close(reader[i].treefile);
if (fstat(reader[i].geomfd, &reader[i].geomst) != 0) {
perror("stat geom\n");
exit(EXIT_FAILURE);
}
if (fstat(reader[i].metafd, &reader[i].metast) != 0) {
perror("stat meta\n");
exit(EXIT_FAILURE);
}
}
// Create a combined string pool and a combined metadata file
// but keep track of the offsets into it since we still need
// segment+offset to find the data.
long long pool_off[CPUS];
long long meta_off[CPUS];
char poolname[strlen(tmpdir) + strlen("/pool.XXXXXXXX") + 1];
sprintf(poolname, "%s%s", tmpdir, "/pool.XXXXXXXX");
int poolfd = mkstemp(poolname);
if (poolfd < 0) {
perror(poolname);
exit(EXIT_FAILURE);
}
FILE *poolfile = fopen(poolname, "wb");
if (poolfile == NULL) {
perror(poolname);
exit(EXIT_FAILURE);
}
unlink(poolname);
char metaname[strlen(tmpdir) + strlen("/meta.XXXXXXXX") + 1];
sprintf(metaname, "%s%s", tmpdir, "/meta.XXXXXXXX");
int metafd = mkstemp(metaname);
if (metafd < 0) {
perror(metaname);
exit(EXIT_FAILURE);
}
FILE *metafile = fopen(metaname, "wb");
if (metafile == NULL) {
perror(metaname);
exit(EXIT_FAILURE);
}
unlink(metaname);
long long metapos = 0;
long long poolpos = 0;
for (size_t i = 0; i < CPUS; i++) {
if (reader[i].metapos > 0) {
void *map = mmap(NULL, reader[i].metapos, PROT_READ, MAP_PRIVATE, reader[i].metafd, 0);
if (map == MAP_FAILED) {
perror("mmap unmerged meta");
exit(EXIT_FAILURE);
}
madvise(map, reader[i].metapos, MADV_SEQUENTIAL);
madvise(map, reader[i].metapos, MADV_WILLNEED);
if (fwrite(map, reader[i].metapos, 1, metafile) != 1) {
perror("Reunify meta");
exit(EXIT_FAILURE);
}
madvise(map, reader[i].metapos, MADV_DONTNEED);
if (munmap(map, reader[i].metapos) != 0) {
perror("unmap unmerged meta");
}
}
meta_off[i] = metapos;
metapos += reader[i].metapos;
if (close(reader[i].metafd) != 0) {
perror("close unmerged meta");
}
if (reader[i].poolfile->off > 0) {
if (fwrite(reader[i].poolfile->map, reader[i].poolfile->off, 1, poolfile) != 1) {
perror("Reunify string pool");
exit(EXIT_FAILURE);
}
}
pool_off[i] = poolpos;
poolpos += reader[i].poolfile->off;
memfile_close(reader[i].poolfile);
}
if (fclose(poolfile) != 0) {
perror("fclose pool");
exit(EXIT_FAILURE);
}
if (fclose(metafile) != 0) {
perror("fclose meta");
exit(EXIT_FAILURE);
}
char *meta = (char *) mmap(NULL, metapos, PROT_READ, MAP_PRIVATE, metafd, 0);
if (meta == MAP_FAILED) {
perror("mmap meta");
exit(EXIT_FAILURE);
}
madvise(meta, metapos, MADV_RANDOM);
char *stringpool = NULL;
if (poolpos > 0) { // Will be 0 if -X was specified
stringpool = (char *) mmap(NULL, poolpos, PROT_READ, MAP_PRIVATE, poolfd, 0);
if (stringpool == MAP_FAILED) {
perror("mmap string pool");
exit(EXIT_FAILURE);
}
madvise(stringpool, poolpos, MADV_RANDOM);
}
char indexname[strlen(tmpdir) + strlen("/index.XXXXXXXX") + 1];
sprintf(indexname, "%s%s", tmpdir, "/index.XXXXXXXX");
int indexfd = mkstemp(indexname);
if (indexfd < 0) {
perror(indexname);
exit(EXIT_FAILURE);
}
FILE *indexfile = fopen(indexname, "wb");
if (indexfile == NULL) {
perror(indexname);
exit(EXIT_FAILURE);
}
unlink(indexname);
char geomname[strlen(tmpdir) + strlen("/geom.XXXXXXXX") + 1];
sprintf(geomname, "%s%s", tmpdir, "/geom.XXXXXXXX");
int geomfd = mkstemp(geomname);
if (geomfd < 0) {
perror(geomname);
exit(EXIT_FAILURE);
}
FILE *geomfile = fopen(geomname, "wb");
if (geomfile == NULL) {
perror(geomname);
exit(EXIT_FAILURE);
}
unlink(geomname);
unsigned iz = 0, ix = 0, iy = 0;
choose_first_zoom(file_bbox, reader, &iz, &ix, &iy, minzoom, buffer);
long long geompos = 0;
/* initial tile is 0/0/0 */
serialize_int(geomfile, iz, &geompos, fname);
serialize_uint(geomfile, ix, &geompos, fname);
serialize_uint(geomfile, iy, &geompos, fname);
radix(reader, CPUS, geomfile, geomfd, indexfile, indexfd, tmpdir, &geompos, maxzoom, basezoom, droprate, gamma);
/* end of tile */
serialize_byte(geomfile, -2, &geompos, fname);
if (fclose(geomfile) != 0) {
perror("fclose geom");
exit(EXIT_FAILURE);
}
if (fclose(indexfile) != 0) {
perror("fclose index");
exit(EXIT_FAILURE);
}
struct stat indexst;
if (fstat(indexfd, &indexst) < 0) {
perror("stat index");
exit(EXIT_FAILURE);
}
long long indexpos = indexst.st_size;
progress_seq = indexpos / sizeof(struct index);
if (!quiet) {
fprintf(stderr, "%lld features, %lld bytes of geometry, %lld bytes of separate metadata, %lld bytes of string pool\n", progress_seq, geompos, metapos, poolpos);
}
if (indexpos == 0) {
fprintf(stderr, "Did not read any valid geometries\n");
exit(EXIT_FAILURE);
}
struct index *map = (struct index *) mmap(NULL, indexpos, PROT_READ, MAP_PRIVATE, indexfd, 0);
if (map == MAP_FAILED) {
perror("mmap index for basezoom");
exit(EXIT_FAILURE);
}
madvise(map, indexpos, MADV_SEQUENTIAL);
madvise(map, indexpos, MADV_WILLNEED);
long long indices = indexpos / sizeof(struct index);
bool fix_dropping = false;
if (guess_maxzoom) {
double sum = 0;
size_t count = 0;
long long progress = -1;
long long ip;
for (ip = 1; ip < indices; ip++) {
if (map[ip].index != map[ip - 1].index) {
count++;
sum += log(map[ip].index - map[ip - 1].index);
}
long long nprogress = 100 * ip / indices;
if (nprogress != progress) {
progress = nprogress;
if (!quiet) {
fprintf(stderr, "Maxzoom: %lld%% \r", progress);
}
}
}
if (count == 0 && dist_count == 0) {
fprintf(stderr, "Can't guess maxzoom (-zg) without at least two distinct feature locations\n");
exit(EXIT_FAILURE);
}
if (count > 0) {
// Geometric mean is appropriate because distances between features
// are typically lognormally distributed
double avg = exp(sum / count);
// Convert approximately from tile units to feet
double dist_ft = sqrt(avg) / 33;
// Factor of 8 (3 zooms) beyond minimum required to distinguish features
double want = dist_ft / 8;
maxzoom = ceil(log(360 / (.00000274 * want)) / log(2) - full_detail);
if (maxzoom < 0) {
maxzoom = 0;
}
if (maxzoom > MAX_ZOOM) {
maxzoom = MAX_ZOOM;
}
if (!quiet) {
fprintf(stderr, "Choosing a maxzoom of -z%d for features about %d feet apart\n", maxzoom, (int) ceil(dist_ft));
}
}
if (dist_count != 0) {
double want2 = exp(dist_sum / dist_count) / 8;
int mz = ceil(log(360 / (.00000274 * want2)) / log(2) - full_detail);
if (mz < 0) {
mz = 0;
}
if (mz > MAX_ZOOM) {
mz = MAX_ZOOM;
}
if (mz > maxzoom || count <= 0) {
if (!quiet) {
fprintf(stderr, "Choosing a maxzoom of -z%d for resolution of about %d feet within features\n", mz, (int) exp(dist_sum / dist_count));
}
maxzoom = mz;
}
}
if (maxzoom < minzoom) {
fprintf(stderr, "Can't use %d for maxzoom because minzoom is %d\n", maxzoom, minzoom);
maxzoom = minzoom;
}
fix_dropping = true;
if (basezoom == -1) {
basezoom = maxzoom;
}
}
if (basezoom < 0 || droprate < 0) {
struct tile {
unsigned x;
unsigned y;
long long count;
long long fullcount;
double gap;
unsigned long long previndex;
} tile[MAX_ZOOM + 1], max[MAX_ZOOM + 1];
{
int z;
for (z = 0; z <= MAX_ZOOM; z++) {
tile[z].x = tile[z].y = tile[z].count = tile[z].fullcount = tile[z].gap = tile[z].previndex = 0;
max[z].x = max[z].y = max[z].count = max[z].fullcount = 0;
}
}
long long progress = -1;
long long ip;
for (ip = 0; ip < indices; ip++) {
unsigned xx, yy;
decode(map[ip].index, &xx, &yy);
long long nprogress = 100 * ip / indices;
if (nprogress != progress) {
progress = nprogress;
if (!quiet) {
fprintf(stderr, "Base zoom/drop rate: %lld%% \r", progress);
}
}
int z;
for (z = 0; z <= MAX_ZOOM; z++) {
unsigned xxx = 0, yyy = 0;
if (z != 0) {
xxx = xx >> (32 - z);
yyy = yy >> (32 - z);
}
double scale = (double) (1LL << (64 - 2 * (z + 8)));
if (tile[z].x != xxx || tile[z].y != yyy) {
if (tile[z].count > max[z].count) {
max[z] = tile[z];
}
tile[z].x = xxx;
tile[z].y = yyy;
tile[z].count = 0;
tile[z].fullcount = 0;
tile[z].gap = 0;
tile[z].previndex = 0;
}
tile[z].fullcount++;
if (manage_gap(map[ip].index, &tile[z].previndex, scale, gamma, &tile[z].gap)) {
continue;
}
tile[z].count++;
}
}
int z;
for (z = MAX_ZOOM; z >= 0; z--) {
if (tile[z].count > max[z].count) {
max[z] = tile[z];
}
}
int max_features = 50000 / (basezoom_marker_width * basezoom_marker_width);
int obasezoom = basezoom;
if (basezoom < 0) {
basezoom = MAX_ZOOM;
for (z = MAX_ZOOM; z >= 0; z--) {
if (max[z].count < max_features) {
basezoom = z;
}
// printf("%d/%u/%u %lld\n", z, max[z].x, max[z].y, max[z].count);
}
fprintf(stderr, "Choosing a base zoom of -B%d to keep %lld features in tile %d/%u/%u.\n", basezoom, max[basezoom].count, basezoom, max[basezoom].x, max[basezoom].y);
}
if (obasezoom < 0 && basezoom > maxzoom) {
fprintf(stderr, "Couldn't find a suitable base zoom. Working from the other direction.\n");
if (gamma == 0) {
fprintf(stderr, "You might want to try -g1 to limit near-duplicates.\n");
}
if (droprate < 0) {
if (maxzoom == 0) {
droprate = 2.5;
} else {
droprate = exp(log((long double) max[0].count / max[maxzoom].count) / (maxzoom));
fprintf(stderr, "Choosing a drop rate of -r%f to get from %lld to %lld in %d zooms\n", droprate, max[maxzoom].count, max[0].count, maxzoom);
}
}
basezoom = 0;
for (z = 0; z <= maxzoom; z++) {
double zoomdiff = log((long double) max[z].count / max_features) / log(droprate);
if (zoomdiff + z > basezoom) {
basezoom = ceil(zoomdiff + z);
}
}
fprintf(stderr, "Choosing a base zoom of -B%d to keep %f features in tile %d/%u/%u.\n", basezoom, max[maxzoom].count * exp(log(droprate) * (maxzoom - basezoom)), maxzoom, max[maxzoom].x, max[maxzoom].y);
} else if (droprate < 0) {
droprate = 1;
for (z = basezoom - 1; z >= 0; z--) {
double interval = exp(log(droprate) * (basezoom - z));
if (max[z].count / interval >= max_features) {
interval = (long double) max[z].count / max_features;
droprate = exp(log(interval) / (basezoom - z));
interval = exp(log(droprate) * (basezoom - z));
fprintf(stderr, "Choosing a drop rate of -r%f to keep %f features in tile %d/%u/%u.\n", droprate, max[z].count / interval, z, max[z].x, max[z].y);
}
}
}
if (gamma > 0) {
int effective = 0;
for (z = 0; z < maxzoom; z++) {
if (max[z].count < max[z].fullcount) {
effective = z + 1;
}
}
if (effective == 0) {
fprintf(stderr, "With gamma, effective base zoom is 0, so no effective drop rate\n");
} else {
double interval_0 = exp(log(droprate) * (basezoom - 0));
double interval_eff = exp(log(droprate) * (basezoom - effective));
if (effective > basezoom) {
interval_eff = 1;
}
double scaled_0 = max[0].count / interval_0;
double scaled_eff = max[effective].count / interval_eff;
double rate_at_0 = scaled_0 / max[0].fullcount;
double rate_at_eff = scaled_eff / max[effective].fullcount;
double eff_drop = exp(log(rate_at_eff / rate_at_0) / (effective - 0));
fprintf(stderr, "With gamma, effective base zoom of %d, effective drop rate of %f\n", effective, eff_drop);
}
}
fix_dropping = true;
}
if (fix_dropping) {
// Fix up the minzooms for features, now that we really know the base zoom
// and drop rate.
struct stat geomst;
if (fstat(geomfd, &geomst) != 0) {
perror("stat sorted geom\n");
exit(EXIT_FAILURE);
}
char *geom = (char *) mmap(NULL, geomst.st_size, PROT_READ | PROT_WRITE, MAP_SHARED, geomfd, 0);
if (geom == MAP_FAILED) {
perror("mmap geom for fixup");
exit(EXIT_FAILURE);
}
madvise(geom, indexpos, MADV_SEQUENTIAL);
madvise(geom, indexpos, MADV_WILLNEED);
struct drop_state ds[maxzoom + 1];
prep_drop_states(ds, maxzoom, basezoom, droprate);
for (long long ip = 0; ip < indices; ip++) {
if (ip > 0 && map[ip].start != map[ip - 1].end) {
fprintf(stderr, "Mismatched index at %lld: %lld vs %lld\n", ip, map[ip].start, map[ip].end);
}
int feature_minzoom = calc_feature_minzoom(&map[ip], ds, maxzoom, basezoom, droprate, gamma);
geom[map[ip].end - 1] = feature_minzoom;
}
munmap(geom, geomst.st_size);
}
madvise(map, indexpos, MADV_DONTNEED);
munmap(map, indexpos);
if (close(indexfd) != 0) {
perror("close sorted index");
}
/* Traverse and split the geometries for each zoom level */
struct stat geomst;
if (fstat(geomfd, &geomst) != 0) {
perror("stat sorted geom\n");
exit(EXIT_FAILURE);
}
int fd[TEMP_FILES];
off_t size[TEMP_FILES];
fd[0] = geomfd;
size[0] = geomst.st_size;
for (size_t j = 1; j < TEMP_FILES; j++) {
fd[j] = -1;
size[j] = 0;
}
unsigned midx = 0, midy = 0;
int written = traverse_zooms(fd, size, meta, stringpool, &midx, &midy, maxzoom, minzoom, basezoom, outdb, outdir, droprate, buffer, fname, tmpdir, gamma, full_detail, low_detail, min_detail, meta_off, pool_off, initial_x, initial_y, simplification, layermaps);
if (maxzoom != written) {
fprintf(stderr, "\n\n\n*** NOTE TILES ONLY COMPLETE THROUGH ZOOM %d ***\n\n\n", written);
maxzoom = written;
ret = EXIT_FAILURE;
}
madvise(meta, metapos, MADV_DONTNEED);
if (munmap(meta, metapos) != 0) {
perror("munmap meta");
}
if (close(metafd) < 0) {
perror("close meta");
}
if (poolpos > 0) {
madvise((void *) stringpool, poolpos, MADV_DONTNEED);
if (munmap(stringpool, poolpos) != 0) {
perror("munmap stringpool");
}
}
if (close(poolfd) < 0) {
perror("close pool");
}
double minlat = 0, minlon = 0, maxlat = 0, maxlon = 0, midlat = 0, midlon = 0;
tile2lonlat(midx, midy, maxzoom, &minlon, &maxlat);
tile2lonlat(midx + 1, midy + 1, maxzoom, &maxlon, &minlat);
midlat = (maxlat + minlat) / 2;
midlon = (maxlon + minlon) / 2;
tile2lonlat(file_bbox[0], file_bbox[1], 32, &minlon, &maxlat);
tile2lonlat(file_bbox[2], file_bbox[3], 32, &maxlon, &minlat);
if (midlat < minlat) {
midlat = minlat;
}
if (midlat > maxlat) {
midlat = maxlat;
}
if (midlon < minlon) {
midlon = minlon;
}
if (midlon > maxlon) {
midlon = maxlon;
}
std::map<std::string, layermap_entry> merged_lm = merge_layermaps(layermaps);
if (additional[A_CALCULATE_FEATURE_DENSITY]) {
for (auto ai = merged_lm.begin(); ai != merged_lm.end(); ++ai) {
type_and_string tas;
tas.type = mvt_double;
tas.string = "tippecanoe_feature_density";
ai->second.file_keys.insert(std::pair<type_and_string, type_and_string_stats>(tas, type_and_string_stats()));
}
}
for (auto ai = merged_lm.begin(); ai != merged_lm.end(); ++ai) {
ai->second.minzoom = minzoom;
ai->second.maxzoom = maxzoom;
}
mbtiles_write_metadata(outdb, outdir, fname, minzoom, maxzoom, minlat, minlon, maxlat, maxlon, midlat, midlon, forcetable, attribution, merged_lm, true, description);
return ret;
}
static bool has_name(struct option *long_options, int *pl) {
for (size_t lo = 0; long_options[lo].name != NULL; lo++) {
if (long_options[lo].flag == pl) {
return true;
}
}
return false;
}
void set_attribute_type(std::map<std::string, int> &attribute_types, const char *arg) {
const char *s = strchr(arg, ':');
if (s == NULL) {
fprintf(stderr, "-T%s option must be in the form -Tname:type\n", arg);
exit(EXIT_FAILURE);
}
std::string name = std::string(arg, s - arg);
std::string type = std::string(s + 1);
int t = -1;
if (type == "int") {
t = mvt_int;
} else if (type == "float") {
t = mvt_float;
} else if (type == "string") {
t = mvt_string;
} else if (type == "bool") {
t = mvt_bool;
} else {
fprintf(stderr, "Attribute type (%s) must be int, float, string, or bool\n", type.c_str());
exit(EXIT_FAILURE);
}
attribute_types.insert(std::pair<std::string, int>(name, t));
}
int main(int argc, char **argv) {
#ifdef MTRACE
mtrace();
#endif
init_cpus();
extern int optind;
extern char *optarg;
int i;
char *name = NULL;
char *description = NULL;
char *layername = NULL;
char *out_mbtiles = NULL;
char *out_directory = NULL;
sqlite3 *outdb = NULL;
int maxzoom = 14;
int minzoom = 0;
int basezoom = -1;
double basezoom_marker_width = 1;
int force = 0;
int forcetable = 0;
double droprate = 2.5;
double gamma = 0;
int buffer = 5;
const char *tmpdir = "/tmp";
const char *attribution = NULL;
std::vector<source> sources;
bool guess_maxzoom = false;
std::set<std::string> exclude, include;
std::map<std::string, int> attribute_types;
int exclude_all = 0;
int read_parallel = 0;
int files_open_at_start;
for (i = 0; i < 256; i++) {
prevent[i] = 0;
additional[i] = 0;
}
static struct option long_options_orig[] = {
{"Output tileset", 0, 0, 0},
{"output", required_argument, 0, 'o'},
{"output-to-directory", required_argument, 0, 'e'},
{"force", no_argument, 0, 'f'},
{"allow-existing", no_argument, 0, 'F'},
{"Tileset description and attribution", 0, 0, 0},
{"name", required_argument, 0, 'n'},
{"attribution", required_argument, 0, 'A'},
{"description", required_argument, 0, 'N'},
{"Input files and layer names", 0, 0, 0},
{"layer", required_argument, 0, 'l'},
{"named-layer", required_argument, 0, 'L'},
{"Parallel processing of input", 0, 0, 0},
{"read-parallel", no_argument, 0, 'P'},
{"Projection of input", 0, 0, 0},
{"projection", required_argument, 0, 's'},
{"Zoom levels", 0, 0, 0},
{"maximum-zoom", required_argument, 0, 'z'},
{"minimum-zoom", required_argument, 0, 'Z'},
{"extend-zooms-if-still-dropping", no_argument, &additional[A_EXTEND_ZOOMS], 1},
{"Tile resolution", 0, 0, 0},
{"full-detail", required_argument, 0, 'd'},
{"low-detail", required_argument, 0, 'D'},
{"minimum-detail", required_argument, 0, 'm'},
{"Filtering feature attributes", 0, 0, 0},
{"exclude", required_argument, 0, 'x'},
{"include", required_argument, 0, 'y'},
{"exclude-all", no_argument, 0, 'X'},
{"attribute-type", required_argument, 0, 'T'},
{"Dropping a fixed fraction of features by zoom level", 0, 0, 0},
{"drop-rate", required_argument, 0, 'r'},
{"base-zoom", required_argument, 0, 'B'},
{"drop-lines", no_argument, &additional[A_LINE_DROP], 1},
{"drop-polygons", no_argument, &additional[A_POLYGON_DROP], 1},
{"Dropping a fraction of features to keep under tile size limits", 0, 0, 0},
{"drop-densest-as-needed", no_argument, &additional[A_DROP_DENSEST_AS_NEEDED], 1},
{"drop-fraction-as-needed", no_argument, &additional[A_DROP_FRACTION_AS_NEEDED], 1},
{"drop-smallest-as-needed", no_argument, &additional[A_DROP_SMALLEST_AS_NEEDED], 1},
{"force-feature-limit", no_argument, &prevent[P_DYNAMIC_DROP], 1},
{"Dropping tightly overlapping features", 0, 0, 0},
{"gamma", required_argument, 0, 'g'},
{"increase-gamma-as-needed", no_argument, &additional[A_INCREASE_GAMMA_AS_NEEDED], 1},
{"Line and polygon simplification", 0, 0, 0},
{"simplification", required_argument, 0, 'S'},
{"no-line-simplification", no_argument, &prevent[P_SIMPLIFY], 1},
{"simplify-only-low-zooms", no_argument, &prevent[P_SIMPLIFY_LOW], 1},
{"no-tiny-polygon-reduction", no_argument, &prevent[P_TINY_POLYGON_REDUCTION], 1},
{"Attempts to improve shared polygon boundaries", 0, 0, 0},
{"detect-shared-borders", no_argument, &additional[A_DETECT_SHARED_BORDERS], 1},
{"grid-low-zooms", no_argument, &additional[A_GRID_LOW_ZOOMS], 1},
{"Controlling clipping to tile boundaries", 0, 0, 0},
{"buffer", required_argument, 0, 'b'},
{"no-clipping", no_argument, &prevent[P_CLIPPING], 1},
{"no-duplication", no_argument, &prevent[P_DUPLICATION], 1},
{"Reordering features within each tile", 0, 0, 0},
{"preserve-input-order", no_argument, &prevent[P_INPUT_ORDER], 1},
{"reorder", no_argument, &additional[A_REORDER], 1},
{"coalesce", no_argument, &additional[A_COALESCE], 1},
{"reverse", no_argument, &additional[A_REVERSE], 1},
{"Adding calculated attributes", 0, 0, 0},
{"calculate-feature-density", no_argument, &additional[A_CALCULATE_FEATURE_DENSITY], 1},
{"Trying to correct bad source geometry", 0, 0, 0},
{"detect-longitude-wraparound", no_argument, &additional[A_DETECT_WRAPAROUND], 1},
{"Setting or disabling tile size limits", 0, 0, 0},
{"maximum-tile-bytes", required_argument, 0, 'M'},
{"no-feature-limit", no_argument, &prevent[P_FEATURE_LIMIT], 1},
{"no-tile-size-limit", no_argument, &prevent[P_KILOBYTE_LIMIT], 1},
{"no-tile-compression", no_argument, &prevent[P_TILE_COMPRESSION], 1},
{"Temporary storage", 0, 0, 0},
{"temporary-directory", required_argument, 0, 't'},
{"Progress indicator", 0, 0, 0},
{"quiet", no_argument, 0, 'q'},
{"version", no_argument, 0, 'v'},
{"", 0, 0, 0},
{"prevent", required_argument, 0, 'p'},
{"additional", required_argument, 0, 'a'},
{"check-polygons", no_argument, &additional[A_DEBUG_POLYGON], 1},
{"no-polygon-splitting", no_argument, &prevent[P_POLYGON_SPLIT], 1},
{"prefer-radix-sort", no_argument, &additional[A_PREFER_RADIX_SORT], 1},
{0, 0, 0, 0},
};
static struct option long_options[sizeof(long_options_orig) / sizeof(long_options_orig[0])];
static char getopt_str[sizeof(long_options_orig) / sizeof(long_options_orig[0]) * 2 + 1];
{
size_t out = 0;
size_t cout = 0;
for (size_t lo = 0; long_options_orig[lo].name != NULL; lo++) {
if (long_options_orig[lo].val != 0) {
long_options[out++] = long_options_orig[lo];
if (long_options_orig[lo].val > ' ') {
getopt_str[cout++] = long_options_orig[lo].val;
if (long_options_orig[lo].has_arg == required_argument) {
getopt_str[cout++] = ':';
}
}
}
}
long_options[out] = {0, 0, 0, 0};
getopt_str[cout] = '\0';
for (size_t lo = 0; long_options[lo].name != NULL; lo++) {
if (long_options[lo].flag != NULL) {
if (*long_options[lo].flag != 0) {
fprintf(stderr, "Internal error: reused %s\n", long_options[lo].name);
exit(EXIT_FAILURE);
}
*long_options[lo].flag = 1;
}
}
for (size_t lo = 0; long_options[lo].name != NULL; lo++) {
if (long_options[lo].flag != NULL) {
*long_options[lo].flag = 0;
}
}
}
while ((i = getopt_long(argc, argv, getopt_str, long_options, NULL)) != -1) {
switch (i) {
case 0:
break;
case 'n':
name = optarg;
break;
case 'N':
description = optarg;
break;
case 'l':
layername = optarg;
break;
case 'A':
attribution = optarg;
break;
case 'L': {
char *cp = strchr(optarg, ':');
if (cp == NULL || cp == optarg) {
fprintf(stderr, "%s: -L requires layername:file\n", argv[0]);
exit(EXIT_FAILURE);
}
struct source src;
src.layer = std::string(optarg).substr(0, cp - optarg);
src.file = std::string(cp + 1);
sources.push_back(src);
} break;
case 'z':
if (strcmp(optarg, "g") == 0) {
maxzoom = MAX_ZOOM;
guess_maxzoom = true;
} else {
maxzoom = atoi(optarg);
}
break;
case 'Z':
minzoom = atoi(optarg);
break;
case 'B':
if (strcmp(optarg, "g") == 0) {
basezoom = -2;
} else if (optarg[0] == 'g' || optarg[0] == 'f') {
basezoom = -2;
if (optarg[0] == 'g') {
basezoom_marker_width = atof(optarg + 1);
} else {
basezoom_marker_width = sqrt(50000 / atof(optarg + 1));
}
if (basezoom_marker_width == 0 || atof(optarg + 1) == 0) {
fprintf(stderr, "%s: Must specify value >0 with -B%c\n", argv[0], optarg[0]);
exit(EXIT_FAILURE);
}
} else {
basezoom = atoi(optarg);
if (basezoom == 0 && strcmp(optarg, "0") != 0) {
fprintf(stderr, "%s: Couldn't understand -B%s\n", argv[0], optarg);
exit(EXIT_FAILURE);
}
}
break;
case 'd':
full_detail = atoi(optarg);
break;
case 'D':
low_detail = atoi(optarg);
break;
case 'm':
min_detail = atoi(optarg);
break;
case 'o':
out_mbtiles = optarg;
break;
case 'e':
out_directory = optarg;
break;
case 'x':
exclude.insert(std::string(optarg));
break;
case 'y':
exclude_all = 1;
include.insert(std::string(optarg));
break;
case 'X':
exclude_all = 1;
break;
case 'r':
if (strcmp(optarg, "g") == 0) {
droprate = -2;
} else if (optarg[0] == 'g' || optarg[0] == 'f') {
droprate = -2;
if (optarg[0] == 'g') {
basezoom_marker_width = atof(optarg + 1);
} else {
basezoom_marker_width = sqrt(50000 / atof(optarg + 1));
}
if (basezoom_marker_width == 0 || atof(optarg + 1) == 0) {
fprintf(stderr, "%s: Must specify value >0 with -r%c\n", argv[0], optarg[0]);
exit(EXIT_FAILURE);
}
} else {
droprate = atof(optarg);
}
break;
case 'b':
buffer = atoi(optarg);
break;
case 'f':
force = 1;
break;
case 'F':
forcetable = 1;
break;
case 't':
tmpdir = optarg;
if (tmpdir[0] != '/') {
fprintf(stderr, "Warning: temp directory %s doesn't begin with /\n", tmpdir);
}
break;
case 'g':
gamma = atof(optarg);
break;
case 'q':
quiet = 1;
break;
case 'p': {
char *cp;
for (cp = optarg; *cp != '\0'; cp++) {
if (has_name(long_options, &prevent[*cp & 0xFF])) {
prevent[*cp & 0xFF] = 1;
} else {
fprintf(stderr, "%s: Unknown option -p%c\n", argv[0], *cp);
exit(EXIT_FAILURE);
}
}
} break;
case 'a': {
char *cp;
for (cp = optarg; *cp != '\0'; cp++) {
if (has_name(long_options, &additional[*cp & 0xFF])) {
additional[*cp & 0xFF] = 1;
} else {
fprintf(stderr, "%s: Unknown option -a%c\n", argv[0], *cp);
exit(EXIT_FAILURE);
}
}
} break;
case 'v':
fprintf(stderr, VERSION);
exit(EXIT_FAILURE);
case 'P':
read_parallel = 1;
break;
case 's':
set_projection_or_exit(optarg);
break;
case 'S':
simplification = atof(optarg);
if (simplification <= 0) {
fprintf(stderr, "%s: --simplification must be > 0\n", argv[0]);
exit(EXIT_FAILURE);
}
break;
case 'M':
max_tile_size = atoll(optarg);
break;
case 'T':
set_attribute_type(attribute_types, optarg);
break;
default: {
int width = 7 + strlen(argv[0]);
fprintf(stderr, "Unknown option -%c\n", i);
fprintf(stderr, "Usage: %s [options] [file.json ...]", argv[0]);
for (size_t lo = 0; long_options_orig[lo].name != NULL && strlen(long_options_orig[lo].name) > 0; lo++) {
if (long_options_orig[lo].val == 0) {
fprintf(stderr, "\n %s\n ", long_options_orig[lo].name);
width = 8;
continue;
}
if (width + strlen(long_options_orig[lo].name) + 9 >= 80) {
fprintf(stderr, "\n ");
width = 8;
}
width += strlen(long_options_orig[lo].name) + 9;
if (strcmp(long_options_orig[lo].name, "output") == 0) {
fprintf(stderr, " --%s=output.mbtiles", long_options_orig[lo].name);
width += 9;
} else if (long_options_orig[lo].has_arg) {
fprintf(stderr, " [--%s=...]", long_options_orig[lo].name);
} else {
fprintf(stderr, " [--%s]", long_options_orig[lo].name);
}
}
if (width + 16 >= 80) {
fprintf(stderr, "\n ");
width = 8;
}
fprintf(stderr, "\n");
exit(EXIT_FAILURE);
}
}
}
files_open_at_start = open("/dev/null", O_RDONLY);
close(files_open_at_start);
if (full_detail <= 0) {
full_detail = 12;
}
if (full_detail < min_detail || low_detail < min_detail) {
fprintf(stderr, "%s: Full detail and low detail must be at least minimum detail\n", argv[0]);
exit(EXIT_FAILURE);
}
// Need two checks: one for geometry representation, the other for
// index traversal when guessing base zoom and drop rate
if (!guess_maxzoom) {
if (maxzoom > 32 - full_detail) {
maxzoom = 32 - full_detail;
fprintf(stderr, "Highest supported zoom with detail %d is %d\n", full_detail, maxzoom);
}
}
if (maxzoom > MAX_ZOOM) {
maxzoom = MAX_ZOOM;
fprintf(stderr, "Highest supported zoom is %d\n", maxzoom);
}
if (minzoom > maxzoom) {
fprintf(stderr, "minimum zoom -Z cannot be greater than maxzoom -z\n");
exit(EXIT_FAILURE);
}
if (basezoom == -1) {
if (!guess_maxzoom) {
basezoom = maxzoom;
}
}
geometry_scale = 32 - (full_detail + maxzoom);
if (geometry_scale < 0) {
geometry_scale = 0;
if (!guess_maxzoom) {
fprintf(stderr, "Full detail + maxzoom > 32, so you are asking for more detail than is available.\n");
}
}
if ((basezoom < 0 || droprate < 0) && (gamma < 0)) {
// Can't use randomized (as opposed to evenly distributed) dot dropping
// if rate and base aren't known during feature reading.
gamma = 0;
fprintf(stderr, "Forcing -g0 since -B or -r is not known\n");
}
if (out_mbtiles == NULL && out_directory == NULL) {
fprintf(stderr, "%s: must specify -o out.mbtiles or -e directory\n", argv[0]);
exit(EXIT_FAILURE);
}
if (out_mbtiles != NULL && out_directory != NULL) {
fprintf(stderr, "%s: Options -o and -e cannot be used together\n", argv[0]);
exit(EXIT_FAILURE);
}
if (out_mbtiles != NULL) {
if (force) {
unlink(out_mbtiles);
}
outdb = mbtiles_open(out_mbtiles, argv, forcetable);
}
int ret = EXIT_SUCCESS;
for (i = optind; i < argc; i++) {
struct source src;
src.layer = "";
src.file = std::string(argv[i]);
sources.push_back(src);
}
if (sources.size() == 0) {
struct source src;
src.layer = "";
src.file = ""; // standard input
sources.push_back(src);
}
if (layername != NULL) {
for (size_t a = 0; a < sources.size(); a++) {
sources[a].layer = layername;
}
}
long long file_bbox[4] = {UINT_MAX, UINT_MAX, 0, 0};
ret = read_input(sources, name ? name : out_mbtiles ? out_mbtiles : out_directory, maxzoom, minzoom, basezoom, basezoom_marker_width, outdb, out_directory, &exclude, &include, exclude_all, droprate, buffer, tmpdir, gamma, read_parallel, forcetable, attribution, gamma != 0, file_bbox, description, guess_maxzoom, &attribute_types);
if (outdb != NULL) {
mbtiles_close(outdb, argv);
}
#ifdef MTRACE
muntrace();
#endif
i = open("/dev/null", O_RDONLY);
// i < files_open_at_start is not an error, because reading from a pipe closes stdin
if (i > files_open_at_start) {
fprintf(stderr, "Internal error: did not close all files: %d\n", i);
exit(EXIT_FAILURE);
}
return ret;
}