tippecanoe/serial.cpp

677 lines
18 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <string>
#include <vector>
#include <sqlite3.h>
#include <set>
#include <map>
#include <algorithm>
#include <limits.h>
#include "protozero/varint.hpp"
#include "geometry.hpp"
#include "mbtiles.hpp"
#include "tile.hpp"
#include "serial.hpp"
#include "options.hpp"
#include "main.hpp"
#include "pool.hpp"
#include "projection.hpp"
#include "evaluator.hpp"
#include "milo/dtoa_milo.h"
size_t fwrite_check(const void *ptr, size_t size, size_t nitems, FILE *stream, const char *fname) {
size_t w = fwrite(ptr, size, nitems, stream);
if (w != nitems) {
fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno));
exit(EXIT_FAILURE);
}
return w;
}
void serialize_int(FILE *out, int n, long long *fpos, const char *fname) {
serialize_long_long(out, n, fpos, fname);
}
void serialize_long_long(FILE *out, long long n, long long *fpos, const char *fname) {
unsigned long long zigzag = protozero::encode_zigzag64(n);
serialize_ulong_long(out, zigzag, fpos, fname);
}
void serialize_ulong_long(FILE *out, unsigned long long zigzag, long long *fpos, const char *fname) {
while (1) {
unsigned char b = zigzag & 0x7F;
if ((zigzag >> 7) != 0) {
b |= 0x80;
if (putc(b, out) == EOF) {
fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno));
exit(EXIT_FAILURE);
}
*fpos += 1;
zigzag >>= 7;
} else {
if (putc(b, out) == EOF) {
fprintf(stderr, "%s: Write to temporary file failed: %s\n", fname, strerror(errno));
exit(EXIT_FAILURE);
}
*fpos += 1;
break;
}
}
}
void serialize_byte(FILE *out, signed char n, long long *fpos, const char *fname) {
fwrite_check(&n, sizeof(signed char), 1, out, fname);
*fpos += sizeof(signed char);
}
void serialize_uint(FILE *out, unsigned n, long long *fpos, const char *fname) {
fwrite_check(&n, sizeof(unsigned), 1, out, fname);
*fpos += sizeof(unsigned);
}
void deserialize_int(char **f, int *n) {
long long ll;
deserialize_long_long(f, &ll);
*n = ll;
}
void deserialize_long_long(char **f, long long *n) {
unsigned long long zigzag = 0;
deserialize_ulong_long(f, &zigzag);
*n = protozero::decode_zigzag64(zigzag);
}
void deserialize_ulong_long(char **f, unsigned long long *zigzag) {
*zigzag = 0;
int shift = 0;
while (1) {
if ((**f & 0x80) == 0) {
*zigzag |= ((unsigned long long) **f) << shift;
*f += 1;
shift += 7;
break;
} else {
*zigzag |= ((unsigned long long) (**f & 0x7F)) << shift;
*f += 1;
shift += 7;
}
}
}
void deserialize_uint(char **f, unsigned *n) {
memcpy(n, *f, sizeof(unsigned));
*f += sizeof(unsigned);
}
void deserialize_byte(char **f, signed char *n) {
memcpy(n, *f, sizeof(signed char));
*f += sizeof(signed char);
}
int deserialize_long_long_io(FILE *f, long long *n, long long *geompos) {
unsigned long long zigzag = 0;
int ret = deserialize_ulong_long_io(f, &zigzag, geompos);
*n = protozero::decode_zigzag64(zigzag);
return ret;
}
int deserialize_ulong_long_io(FILE *f, unsigned long long *zigzag, long long *geompos) {
*zigzag = 0;
int shift = 0;
while (1) {
int c = getc(f);
if (c == EOF) {
return 0;
}
(*geompos)++;
if ((c & 0x80) == 0) {
*zigzag |= ((unsigned long long) c) << shift;
shift += 7;
break;
} else {
*zigzag |= ((unsigned long long) (c & 0x7F)) << shift;
shift += 7;
}
}
return 1;
}
int deserialize_int_io(FILE *f, int *n, long long *geompos) {
long long ll = 0;
int ret = deserialize_long_long_io(f, &ll, geompos);
*n = ll;
return ret;
}
int deserialize_uint_io(FILE *f, unsigned *n, long long *geompos) {
if (fread(n, sizeof(unsigned), 1, f) != 1) {
return 0;
}
*geompos += sizeof(unsigned);
return 1;
}
int deserialize_byte_io(FILE *f, signed char *n, long long *geompos) {
int c = getc(f);
if (c == EOF) {
return 0;
}
*n = c;
(*geompos)++;
return 1;
}
static void write_geometry(drawvec const &dv, long long *fpos, FILE *out, const char *fname, long long wx, long long wy) {
for (size_t i = 0; i < dv.size(); i++) {
if (dv[i].op == VT_MOVETO || dv[i].op == VT_LINETO) {
serialize_byte(out, dv[i].op, fpos, fname);
serialize_long_long(out, dv[i].x - wx, fpos, fname);
serialize_long_long(out, dv[i].y - wy, fpos, fname);
wx = dv[i].x;
wy = dv[i].y;
} else {
serialize_byte(out, dv[i].op, fpos, fname);
}
}
}
void serialize_feature(FILE *geomfile, serial_feature *sf, long long *geompos, const char *fname, long long wx, long long wy, bool include_minzoom) {
serialize_byte(geomfile, sf->t, geompos, fname);
long long layer = 0;
layer |= sf->layer << 6;
layer |= (sf->seq != 0) << 5;
layer |= (sf->index != 0) << 4;
layer |= (sf->extent != 0) << 3;
layer |= sf->has_id << 2;
layer |= sf->has_tippecanoe_minzoom << 1;
layer |= sf->has_tippecanoe_maxzoom << 0;
serialize_long_long(geomfile, layer, geompos, fname);
if (sf->seq != 0) {
serialize_long_long(geomfile, sf->seq, geompos, fname);
}
if (sf->has_tippecanoe_minzoom) {
serialize_int(geomfile, sf->tippecanoe_minzoom, geompos, fname);
}
if (sf->has_tippecanoe_maxzoom) {
serialize_int(geomfile, sf->tippecanoe_maxzoom, geompos, fname);
}
if (sf->has_id) {
serialize_ulong_long(geomfile, sf->id, geompos, fname);
}
serialize_int(geomfile, sf->segment, geompos, fname);
write_geometry(sf->geometry, geompos, geomfile, fname, wx, wy);
serialize_byte(geomfile, VT_END, geompos, fname);
if (sf->index != 0) {
serialize_ulong_long(geomfile, sf->index, geompos, fname);
}
if (sf->extent != 0) {
serialize_long_long(geomfile, sf->extent, geompos, fname);
}
serialize_int(geomfile, sf->m, geompos, fname);
if (sf->m != 0) {
serialize_long_long(geomfile, sf->metapos, geompos, fname);
}
if (sf->metapos < 0 && sf->m != sf->keys.size()) {
fprintf(stderr, "Internal error: feature said to have %lld attributes but only %lld found\n", (long long) sf->m, (long long) sf->keys.size());
exit(EXIT_FAILURE);
}
for (size_t i = 0; i < sf->keys.size(); i++) {
serialize_long_long(geomfile, sf->keys[i], geompos, fname);
serialize_long_long(geomfile, sf->values[i], geompos, fname);
}
if (include_minzoom) {
serialize_byte(geomfile, sf->feature_minzoom, geompos, fname);
}
}
serial_feature deserialize_feature(FILE *geoms, long long *geompos_in, char *metabase, long long *meta_off, unsigned z, unsigned tx, unsigned ty, unsigned *initial_x, unsigned *initial_y) {
serial_feature sf;
deserialize_byte_io(geoms, &sf.t, geompos_in);
if (sf.t < 0) {
return sf;
}
deserialize_long_long_io(geoms, &sf.layer, geompos_in);
sf.seq = 0;
if (sf.layer & (1 << 5)) {
deserialize_long_long_io(geoms, &sf.seq, geompos_in);
}
sf.tippecanoe_minzoom = -1;
sf.tippecanoe_maxzoom = -1;
sf.id = 0;
sf.has_id = false;
if (sf.layer & (1 << 1)) {
deserialize_int_io(geoms, &sf.tippecanoe_minzoom, geompos_in);
}
if (sf.layer & (1 << 0)) {
deserialize_int_io(geoms, &sf.tippecanoe_maxzoom, geompos_in);
}
if (sf.layer & (1 << 2)) {
sf.has_id = true;
deserialize_ulong_long_io(geoms, &sf.id, geompos_in);
}
deserialize_int_io(geoms, &sf.segment, geompos_in);
sf.index = 0;
sf.extent = 0;
sf.geometry = decode_geometry(geoms, geompos_in, z, tx, ty, sf.bbox, initial_x[sf.segment], initial_y[sf.segment]);
if (sf.layer & (1 << 4)) {
deserialize_ulong_long_io(geoms, &sf.index, geompos_in);
}
if (sf.layer & (1 << 3)) {
deserialize_long_long_io(geoms, &sf.extent, geompos_in);
}
sf.layer >>= 6;
sf.metapos = 0;
{
int m;
deserialize_int_io(geoms, &m, geompos_in);
sf.m = m;
}
if (sf.m != 0) {
deserialize_long_long_io(geoms, &sf.metapos, geompos_in);
}
if (sf.metapos >= 0) {
char *meta = metabase + sf.metapos + meta_off[sf.segment];
for (size_t i = 0; i < sf.m; i++) {
long long k, v;
deserialize_long_long(&meta, &k);
deserialize_long_long(&meta, &v);
sf.keys.push_back(k);
sf.values.push_back(v);
}
} else {
for (size_t i = 0; i < sf.m; i++) {
long long k, v;
deserialize_long_long_io(geoms, &k, geompos_in);
deserialize_long_long_io(geoms, &v, geompos_in);
sf.keys.push_back(k);
sf.values.push_back(v);
}
}
deserialize_byte_io(geoms, &sf.feature_minzoom, geompos_in);
return sf;
}
static long long scale_geometry(struct serialization_state *sst, long long *bbox, drawvec &geom) {
long long offset = 0;
long long prev = 0;
bool has_prev = false;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO || geom[i].op == VT_LINETO) {
long long x = geom[i].x;
long long y = geom[i].y;
if (additional[A_DETECT_WRAPAROUND]) {
x += offset;
if (has_prev) {
if (x - prev > (1LL << 31)) {
offset -= 1LL << 32;
x -= 1LL << 32;
} else if (prev - x > (1LL << 31)) {
offset += 1LL << 32;
x += 1LL << 32;
}
}
has_prev = true;
prev = x;
}
if (x < bbox[0]) {
bbox[0] = x;
}
if (y < bbox[1]) {
bbox[1] = y;
}
if (x > bbox[2]) {
bbox[2] = x;
}
if (y > bbox[3]) {
bbox[3] = y;
}
if (!*(sst->initialized)) {
if (x < 0 || x >= (1LL << 32) || y < 0 || y >= (1LL < 32)) {
*(sst->initial_x) = 1LL << 31;
*(sst->initial_y) = 1LL << 31;
} else {
*(sst->initial_x) = (x >> geometry_scale) << geometry_scale;
*(sst->initial_y) = (y >> geometry_scale) << geometry_scale;
}
*(sst->initialized) = 1;
}
geom[i].x = x >> geometry_scale;
geom[i].y = y >> geometry_scale;
}
}
return geom.size();
}
int serialize_feature(struct serialization_state *sst, serial_feature &sf) {
struct reader *r = &(sst->readers[sst->segment]);
sf.bbox[0] = LLONG_MAX;
sf.bbox[1] = LLONG_MAX;
sf.bbox[2] = LLONG_MIN;
sf.bbox[3] = LLONG_MIN;
scale_geometry(sst, sf.bbox, sf.geometry);
// This has to happen after scaling so that the wraparound detection has happened first.
// Otherwise the inner/outer calculation will be confused by bad geometries.
if (sf.t == VT_POLYGON) {
sf.geometry = fix_polygon(sf.geometry);
}
if (sst->want_dist) {
std::vector<unsigned long long> locs;
for (size_t i = 0; i < sf.geometry.size(); i++) {
if (sf.geometry[i].op == VT_MOVETO || sf.geometry[i].op == VT_LINETO) {
locs.push_back(encode(sf.geometry[i].x << geometry_scale, sf.geometry[i].y << geometry_scale));
}
}
std::sort(locs.begin(), locs.end());
size_t n = 0;
double sum = 0;
for (size_t i = 1; i < locs.size(); i++) {
if (locs[i - 1] != locs[i]) {
sum += log(locs[i] - locs[i - 1]);
n++;
}
}
if (n > 0) {
double avg = exp(sum / n);
// Convert approximately from tile units to feet
double dist_ft = sqrt(avg) / 33;
*(sst->dist_sum) += log(dist_ft) * n;
*(sst->dist_count) += n;
}
locs.clear();
}
bool inline_meta = true;
// Don't inline metadata for features that will span several tiles at maxzoom
if (sf.geometry.size() > 0 && (sf.bbox[2] < sf.bbox[0] || sf.bbox[3] < sf.bbox[1])) {
fprintf(stderr, "Internal error: impossible feature bounding box %llx,%llx,%llx,%llx\n", sf.bbox[0], sf.bbox[1], sf.bbox[2], sf.bbox[3]);
}
if (sf.bbox[0] == LLONG_MAX) {
// No bounding box (empty geometry)
// Shouldn't happen, but avoid arithmetic overflow below
} else if (sf.bbox[2] - sf.bbox[0] > (2LL << (32 - sst->maxzoom)) || sf.bbox[3] - sf.bbox[1] > (2LL << (32 - sst->maxzoom))) {
inline_meta = false;
if (prevent[P_CLIPPING]) {
static volatile long long warned = 0;
long long extent = ((sf.bbox[2] - sf.bbox[0]) / ((1LL << (32 - sst->maxzoom)) + 1)) * ((sf.bbox[3] - sf.bbox[1]) / ((1LL << (32 - sst->maxzoom)) + 1));
if (extent > warned) {
fprintf(stderr, "Warning: %s:%d: Large unclipped (-pc) feature may be duplicated across %lld tiles\n", sst->fname, sst->line, extent);
warned = extent;
if (extent > 10000) {
fprintf(stderr, "Exiting because this can't be right.\n");
exit(EXIT_FAILURE);
}
}
}
}
double extent = 0;
if (additional[A_DROP_SMALLEST_AS_NEEDED] || additional[A_COALESCE_SMALLEST_AS_NEEDED]) {
if (sf.t == VT_POLYGON) {
for (size_t i = 0; i < sf.geometry.size(); i++) {
if (sf.geometry[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < sf.geometry.size(); j++) {
if (sf.geometry[j].op != VT_LINETO) {
break;
}
}
extent += get_area(sf.geometry, i, j);
i = j - 1;
}
}
} else if (sf.t == VT_LINE) {
for (size_t i = 1; i < sf.geometry.size(); i++) {
if (sf.geometry[i].op == VT_LINETO) {
double xd = sf.geometry[i].x - sf.geometry[i - 1].x;
double yd = sf.geometry[i].y - sf.geometry[i - 1].y;
extent += sqrt(xd * xd + yd * yd);
}
}
}
}
sf.extent = (long long) extent;
if (!prevent[P_INPUT_ORDER]) {
sf.seq = 0;
}
long long bbox_index;
// Calculate the center even if off the edge of the plane,
// and then mask to bring it back into the addressable area
long long midx = (sf.bbox[0] / 2 + sf.bbox[2] / 2) & ((1LL << 32) - 1);
long long midy = (sf.bbox[1] / 2 + sf.bbox[3] / 2) & ((1LL << 32) - 1);
bbox_index = encode(midx, midy);
if (additional[A_DROP_DENSEST_AS_NEEDED] || additional[A_CALCULATE_FEATURE_DENSITY] || additional[A_INCREASE_GAMMA_AS_NEEDED] || sst->uses_gamma) {
sf.index = bbox_index;
} else {
sf.index = 0;
}
if (sst->layermap->count(sf.layername) == 0) {
sst->layermap->insert(std::pair<std::string, layermap_entry>(sf.layername, layermap_entry(sst->layermap->size())));
}
auto ai = sst->layermap->find(sf.layername);
if (ai != sst->layermap->end()) {
sf.layer = ai->second.id;
if (!sst->filters) {
if (sf.t == VT_POINT) {
ai->second.points++;
} else if (sf.t == VT_LINE) {
ai->second.lines++;
} else if (sf.t == VT_POLYGON) {
ai->second.polygons++;
}
}
} else {
fprintf(stderr, "Internal error: can't find layer name %s\n", sf.layername.c_str());
exit(EXIT_FAILURE);
}
for (ssize_t i = sf.full_keys.size() - 1; i >= 0; i--) {
if (sst->exclude_all) {
if (sst->include->count(sf.full_keys[i]) == 0) {
sf.full_keys.erase(sf.full_keys.begin() + i);
sf.full_values.erase(sf.full_values.begin() + i);
sf.m--;
continue;
}
} else if (sst->exclude->count(sf.full_keys[i]) != 0) {
sf.full_keys.erase(sf.full_keys.begin() + i);
sf.full_values.erase(sf.full_values.begin() + i);
sf.m--;
continue;
}
coerce_value(sf.full_keys[i], sf.full_values[i].type, sf.full_values[i].s, sst->attribute_types);
}
if (sst->filter != NULL) {
std::map<std::string, mvt_value> attributes;
for (size_t i = 0; i < sf.full_keys.size(); i++) {
std::string key = sf.full_keys[i];
mvt_value val = stringified_to_mvt_value(sf.full_values[i].type, sf.full_values[i].s.c_str());
attributes.insert(std::pair<std::string, mvt_value>(key, val));
}
if (sf.has_id) {
mvt_value v;
v.type = mvt_uint;
v.numeric_value.uint_value = sf.id;
attributes.insert(std::pair<std::string, mvt_value>("$id", v));
}
mvt_value v;
v.type = mvt_string;
if (sf.t == mvt_point) {
v.string_value = "Point";
} else if (sf.t == mvt_linestring) {
v.string_value = "LineString";
} else if (sf.t == mvt_polygon) {
v.string_value = "Polygon";
}
attributes.insert(std::pair<std::string, mvt_value>("$type", v));
if (!evaluate(attributes, sf.layername, sst->filter)) {
return 0;
}
}
for (ssize_t i = sf.full_keys.size() - 1; i >= 0; i--) {
if (sf.full_values[i].type == mvt_null) {
sf.full_keys.erase(sf.full_keys.begin() + i);
sf.full_values.erase(sf.full_values.begin() + i);
sf.m--;
}
}
if (!sst->filters) {
for (size_t i = 0; i < sf.full_keys.size(); i++) {
type_and_string attrib;
attrib.type = sf.full_values[i].type;
attrib.string = sf.full_values[i].s;
auto fk = sst->layermap->find(sf.layername);
add_to_file_keys(fk->second.file_keys, sf.full_keys[i], attrib);
}
}
if (inline_meta) {
sf.metapos = -1;
for (size_t i = 0; i < sf.full_keys.size(); i++) {
sf.keys.push_back(addpool(r->poolfile, r->treefile, sf.full_keys[i].c_str(), mvt_string));
sf.values.push_back(addpool(r->poolfile, r->treefile, sf.full_values[i].s.c_str(), sf.full_values[i].type));
}
} else {
sf.metapos = r->metapos;
for (size_t i = 0; i < sf.full_keys.size(); i++) {
serialize_long_long(r->metafile, addpool(r->poolfile, r->treefile, sf.full_keys[i].c_str(), mvt_string), &r->metapos, sst->fname);
serialize_long_long(r->metafile, addpool(r->poolfile, r->treefile, sf.full_values[i].s.c_str(), sf.full_values[i].type), &r->metapos, sst->fname);
}
}
long long geomstart = r->geompos;
serialize_feature(r->geomfile, &sf, &r->geompos, sst->fname, *(sst->initial_x) >> geometry_scale, *(sst->initial_y) >> geometry_scale, false);
struct index index;
index.start = geomstart;
index.end = r->geompos;
index.segment = sst->segment;
index.seq = *(sst->layer_seq);
index.t = sf.t;
index.index = bbox_index;
fwrite_check(&index, sizeof(struct index), 1, r->indexfile, sst->fname);
r->indexpos += sizeof(struct index);
for (size_t i = 0; i < 2; i++) {
if (sf.bbox[i] < r->file_bbox[i]) {
r->file_bbox[i] = sf.bbox[i];
}
}
for (size_t i = 2; i < 4; i++) {
if (sf.bbox[i] > r->file_bbox[i]) {
r->file_bbox[i] = sf.bbox[i];
}
}
if (*(sst->progress_seq) % 10000 == 0) {
checkdisk(sst->readers, CPUS);
if (!quiet) {
fprintf(stderr, "Read %.2f million features\r", *sst->progress_seq / 1000000.0);
}
}
(*(sst->progress_seq))++;
(*(sst->layer_seq))++;
return 1;
}
void coerce_value(std::string const &key, int &vt, std::string &val, std::map<std::string, int> const *attribute_types) {
auto a = (*attribute_types).find(key);
if (a != attribute_types->end()) {
if (a->second == mvt_string) {
vt = mvt_string;
} else if (a->second == mvt_float) {
vt = mvt_double;
val = milo::dtoa_milo(atof(val.c_str()));
} else if (a->second == mvt_int) {
vt = mvt_double;
if (val.size() == 0) {
val = "0";
}
for (size_t ii = 0; ii < val.size(); ii++) {
char c = val[ii];
if (c < '0' || c > '9') {
val = std::to_string(round(atof(val.c_str())));
break;
}
}
} else if (a->second == mvt_bool) {
if (val == "false" || val == "0" || val == "null" || val.size() == 0 || (vt == mvt_double && atof(val.c_str()) == 0)) {
vt = mvt_bool;
val = "false";
} else {
vt = mvt_bool;
val = "true";
}
} else {
fprintf(stderr, "Can't happen: attribute type %d\n", a->second);
exit(EXIT_FAILURE);
}
}
}