mirror of
https://github.com/mapbox/tippecanoe.git
synced 2025-01-21 03:55:00 +00:00
588 lines
14 KiB
C++
588 lines
14 KiB
C++
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <sqlite3.h>
|
|
#include <getopt.h>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <map>
|
|
#include <set>
|
|
#include <zlib.h>
|
|
#include <math.h>
|
|
#include <fcntl.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/mman.h>
|
|
#include <protozero/pbf_reader.hpp>
|
|
#include "mvt.hpp"
|
|
#include "projection.hpp"
|
|
#include "geometry.hpp"
|
|
|
|
int minzoom = 0;
|
|
int maxzoom = 32;
|
|
bool force = false;
|
|
|
|
void printq(const char *s) {
|
|
putchar('"');
|
|
for (; *s; s++) {
|
|
if (*s == '\\' || *s == '"') {
|
|
printf("\\%c", *s);
|
|
} else if (*s >= 0 && *s < ' ') {
|
|
printf("\\u%04x", *s);
|
|
} else {
|
|
putchar(*s);
|
|
}
|
|
}
|
|
putchar('"');
|
|
}
|
|
|
|
struct lonlat {
|
|
int op;
|
|
double lon;
|
|
double lat;
|
|
int x;
|
|
int y;
|
|
|
|
lonlat(int nop, double nlon, double nlat, int nx, int ny) {
|
|
this->op = nop;
|
|
this->lon = nlon;
|
|
this->lat = nlat;
|
|
this->x = nx;
|
|
this->y = ny;
|
|
}
|
|
};
|
|
|
|
void handle(std::string message, int z, unsigned x, unsigned y, int describe, std::set<std::string> const &to_decode) {
|
|
int within = 0;
|
|
mvt_tile tile;
|
|
bool was_compressed;
|
|
|
|
try {
|
|
if (!tile.decode(message, was_compressed)) {
|
|
fprintf(stderr, "Couldn't parse tile %d/%u/%u\n", z, x, y);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
} catch (protozero::unknown_pbf_wire_type_exception e) {
|
|
fprintf(stderr, "PBF decoding error in tile %d/%u/%u\n", z, x, y);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf("{ \"type\": \"FeatureCollection\"");
|
|
|
|
if (describe) {
|
|
printf(", \"properties\": { \"zoom\": %d, \"x\": %d, \"y\": %d", z, x, y);
|
|
if (!was_compressed) {
|
|
printf(", \"compressed\": false");
|
|
}
|
|
|
|
printf(" }");
|
|
|
|
if (projection != projections) {
|
|
printf(", \"crs\": { \"type\": \"name\", \"properties\": { \"name\": ");
|
|
printq(projection->alias);
|
|
printf(" } }");
|
|
}
|
|
}
|
|
|
|
printf(", \"features\": [\n");
|
|
|
|
bool first_layer = true;
|
|
for (size_t l = 0; l < tile.layers.size(); l++) {
|
|
mvt_layer &layer = tile.layers[l];
|
|
int extent = layer.extent;
|
|
|
|
if (to_decode.size() != 0 && !to_decode.count(layer.name)) {
|
|
continue;
|
|
}
|
|
|
|
if (describe) {
|
|
if (!first_layer) {
|
|
printf(",\n");
|
|
}
|
|
|
|
printf("{ \"type\": \"FeatureCollection\"");
|
|
printf(", \"properties\": { \"layer\": ");
|
|
printq(layer.name.c_str());
|
|
printf(", \"version\": %d, \"extent\": %d", layer.version, layer.extent);
|
|
printf(" }");
|
|
printf(", \"features\": [\n");
|
|
|
|
first_layer = false;
|
|
within = 0;
|
|
}
|
|
|
|
for (size_t f = 0; f < layer.features.size(); f++) {
|
|
mvt_feature &feat = layer.features[f];
|
|
|
|
if (within) {
|
|
printf(",\n");
|
|
}
|
|
within = 1;
|
|
|
|
printf("{ \"type\": \"Feature\"");
|
|
|
|
if (feat.has_id) {
|
|
printf(", \"id\": %llu", feat.id);
|
|
}
|
|
|
|
printf(", \"properties\": { ");
|
|
|
|
for (size_t t = 0; t + 1 < feat.tags.size(); t += 2) {
|
|
if (t != 0) {
|
|
printf(", ");
|
|
}
|
|
|
|
if (feat.tags[t] >= layer.keys.size()) {
|
|
fprintf(stderr, "Error: out of bounds feature key\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (feat.tags[t + 1] >= layer.values.size()) {
|
|
fprintf(stderr, "Error: out of bounds feature value\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
const char *key = layer.keys[feat.tags[t]].c_str();
|
|
mvt_value const &val = layer.values[feat.tags[t + 1]];
|
|
|
|
if (val.type == mvt_string) {
|
|
printq(key);
|
|
printf(": ");
|
|
printq(val.string_value.c_str());
|
|
} else if (val.type == mvt_int) {
|
|
printq(key);
|
|
printf(": %lld", (long long) val.numeric_value.int_value);
|
|
} else if (val.type == mvt_double) {
|
|
printq(key);
|
|
double v = val.numeric_value.double_value;
|
|
if (v == (long long) v) {
|
|
printf(": %lld", (long long) v);
|
|
} else {
|
|
printf(": %g", v);
|
|
}
|
|
} else if (val.type == mvt_float) {
|
|
printq(key);
|
|
double v = val.numeric_value.float_value;
|
|
if (v == (long long) v) {
|
|
printf(": %lld", (long long) v);
|
|
} else {
|
|
printf(": %g", v);
|
|
}
|
|
} else if (val.type == mvt_sint) {
|
|
printq(key);
|
|
printf(": %lld", (long long) val.numeric_value.sint_value);
|
|
} else if (val.type == mvt_uint) {
|
|
printq(key);
|
|
printf(": %lld", (long long) val.numeric_value.uint_value);
|
|
} else if (val.type == mvt_bool) {
|
|
printq(key);
|
|
printf(": %s", val.numeric_value.bool_value ? "true" : "false");
|
|
}
|
|
}
|
|
|
|
printf(" }, \"geometry\": { ");
|
|
|
|
std::vector<lonlat> ops;
|
|
|
|
for (size_t g = 0; g < feat.geometry.size(); g++) {
|
|
int op = feat.geometry[g].op;
|
|
long long px = feat.geometry[g].x;
|
|
long long py = feat.geometry[g].y;
|
|
|
|
if (op == VT_MOVETO || op == VT_LINETO) {
|
|
long long scale = 1LL << (32 - z);
|
|
long long wx = scale * x + (scale / extent) * px;
|
|
long long wy = scale * y + (scale / extent) * py;
|
|
|
|
double lat, lon;
|
|
projection->unproject(wx, wy, 32, &lon, &lat);
|
|
|
|
ops.push_back(lonlat(op, lon, lat, px, py));
|
|
} else {
|
|
ops.push_back(lonlat(op, 0, 0, 0, 0));
|
|
}
|
|
}
|
|
|
|
if (feat.type == VT_POINT) {
|
|
if (ops.size() == 1) {
|
|
printf("\"type\": \"Point\", \"coordinates\": [ %f, %f ]", ops[0].lon, ops[0].lat);
|
|
} else {
|
|
printf("\"type\": \"MultiPoint\", \"coordinates\": [ ");
|
|
for (size_t i = 0; i < ops.size(); i++) {
|
|
if (i != 0) {
|
|
printf(", ");
|
|
}
|
|
printf("[ %f, %f ]", ops[i].lon, ops[i].lat);
|
|
}
|
|
printf(" ]");
|
|
}
|
|
} else if (feat.type == VT_LINE) {
|
|
int movetos = 0;
|
|
for (size_t i = 0; i < ops.size(); i++) {
|
|
if (ops[i].op == VT_MOVETO) {
|
|
movetos++;
|
|
}
|
|
}
|
|
|
|
if (movetos < 2) {
|
|
printf("\"type\": \"LineString\", \"coordinates\": [ ");
|
|
for (size_t i = 0; i < ops.size(); i++) {
|
|
if (i != 0) {
|
|
printf(", ");
|
|
}
|
|
printf("[ %f, %f ]", ops[i].lon, ops[i].lat);
|
|
}
|
|
printf(" ]");
|
|
} else {
|
|
printf("\"type\": \"MultiLineString\", \"coordinates\": [ [ ");
|
|
int state = 0;
|
|
for (size_t i = 0; i < ops.size(); i++) {
|
|
if (ops[i].op == VT_MOVETO) {
|
|
if (state == 0) {
|
|
printf("[ %f, %f ]", ops[i].lon, ops[i].lat);
|
|
state = 1;
|
|
} else {
|
|
printf(" ], [ ");
|
|
printf("[ %f, %f ]", ops[i].lon, ops[i].lat);
|
|
state = 1;
|
|
}
|
|
} else {
|
|
printf(", [ %f, %f ]", ops[i].lon, ops[i].lat);
|
|
}
|
|
}
|
|
printf(" ] ]");
|
|
}
|
|
} else if (feat.type == VT_POLYGON) {
|
|
std::vector<std::vector<lonlat> > rings;
|
|
std::vector<double> areas;
|
|
|
|
for (size_t i = 0; i < ops.size(); i++) {
|
|
if (ops[i].op == VT_MOVETO) {
|
|
rings.push_back(std::vector<lonlat>());
|
|
areas.push_back(0);
|
|
}
|
|
|
|
int n = rings.size() - 1;
|
|
if (n >= 0) {
|
|
if (ops[i].op == VT_CLOSEPATH) {
|
|
rings[n].push_back(rings[n][0]);
|
|
} else {
|
|
rings[n].push_back(ops[i]);
|
|
}
|
|
}
|
|
|
|
if (i + 1 >= ops.size() || ops[i + 1].op == VT_MOVETO) {
|
|
if (ops[i].op != VT_CLOSEPATH) {
|
|
static bool warned = false;
|
|
|
|
if (!warned) {
|
|
fprintf(stderr, "Ring does not end with closepath (ends with %d)\n", ops[i].op);
|
|
if (!force) {
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
warned = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int outer = 0;
|
|
|
|
for (size_t i = 0; i < rings.size(); i++) {
|
|
long double area = 0;
|
|
for (size_t k = 0; k < rings[i].size(); k++) {
|
|
if (rings[i][k].op != VT_CLOSEPATH) {
|
|
area += rings[i][k].x * rings[i][(k + 1) % rings[i].size()].y;
|
|
area -= rings[i][k].y * rings[i][(k + 1) % rings[i].size()].x;
|
|
}
|
|
}
|
|
|
|
areas[i] = area;
|
|
if (areas[i] >= 0 || i == 0) {
|
|
outer++;
|
|
}
|
|
|
|
// printf("area %f\n", area / .00000274 / .00000274);
|
|
}
|
|
|
|
if (outer > 1) {
|
|
printf("\"type\": \"MultiPolygon\", \"coordinates\": [ [ [ ");
|
|
} else {
|
|
printf("\"type\": \"Polygon\", \"coordinates\": [ [ ");
|
|
}
|
|
|
|
int state = 0;
|
|
for (size_t i = 0; i < rings.size(); i++) {
|
|
if (i == 0 && areas[i] < 0) {
|
|
static bool warned = false;
|
|
|
|
if (!warned) {
|
|
fprintf(stderr, "Polygon begins with an inner ring\n");
|
|
if (!force) {
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
warned = true;
|
|
}
|
|
}
|
|
|
|
if (areas[i] >= 0) {
|
|
if (state != 0) {
|
|
// new multipolygon
|
|
printf(" ] ], [ [ ");
|
|
}
|
|
state = 1;
|
|
}
|
|
|
|
if (state == 2) {
|
|
// new ring in the same polygon
|
|
printf(" ], [ ");
|
|
}
|
|
|
|
for (size_t j = 0; j < rings[i].size(); j++) {
|
|
if (rings[i][j].op != VT_CLOSEPATH) {
|
|
if (j != 0) {
|
|
printf(", ");
|
|
}
|
|
|
|
printf("[ %f, %f ]", rings[i][j].lon, rings[i][j].lat);
|
|
} else {
|
|
if (j != 0) {
|
|
printf(", ");
|
|
}
|
|
|
|
printf("[ %f, %f ]", rings[i][0].lon, rings[i][0].lat);
|
|
}
|
|
}
|
|
|
|
state = 2;
|
|
}
|
|
|
|
if (outer > 1) {
|
|
printf(" ] ] ]");
|
|
} else {
|
|
printf(" ] ]");
|
|
}
|
|
}
|
|
|
|
printf(" } }\n");
|
|
}
|
|
|
|
if (describe) {
|
|
printf("] }\n");
|
|
}
|
|
}
|
|
|
|
printf("] }\n");
|
|
}
|
|
|
|
void decode(char *fname, int z, unsigned x, unsigned y, std::set<std::string> const &to_decode) {
|
|
sqlite3 *db;
|
|
int oz = z;
|
|
unsigned ox = x, oy = y;
|
|
|
|
int fd = open(fname, O_RDONLY);
|
|
if (fd >= 0) {
|
|
struct stat st;
|
|
if (fstat(fd, &st) == 0) {
|
|
if (st.st_size < 50 * 1024 * 1024) {
|
|
char *map = (char *) mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
|
|
if (map != NULL && map != MAP_FAILED) {
|
|
if (strcmp(map, "SQLite format 3") != 0) {
|
|
if (z >= 0) {
|
|
std::string s = std::string(map, st.st_size);
|
|
handle(s, z, x, y, 1, to_decode);
|
|
munmap(map, st.st_size);
|
|
return;
|
|
} else {
|
|
fprintf(stderr, "Must specify zoom/x/y to decode a single pbf file\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
munmap(map, st.st_size);
|
|
}
|
|
} else {
|
|
perror("fstat");
|
|
}
|
|
close(fd);
|
|
} else {
|
|
perror(fname);
|
|
}
|
|
|
|
if (sqlite3_open(fname, &db) != SQLITE_OK) {
|
|
fprintf(stderr, "%s: %s\n", fname, sqlite3_errmsg(db));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (z < 0) {
|
|
printf("{ \"type\": \"FeatureCollection\", \"properties\": {\n");
|
|
|
|
const char *sql2 = "SELECT name, value from metadata order by name;";
|
|
sqlite3_stmt *stmt2;
|
|
if (sqlite3_prepare_v2(db, sql2, -1, &stmt2, NULL) != SQLITE_OK) {
|
|
fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
int within = 0;
|
|
while (sqlite3_step(stmt2) == SQLITE_ROW) {
|
|
if (within) {
|
|
printf(",\n");
|
|
}
|
|
within = 1;
|
|
|
|
const unsigned char *name = sqlite3_column_text(stmt2, 0);
|
|
const unsigned char *value = sqlite3_column_text(stmt2, 1);
|
|
|
|
printq((char *) name);
|
|
printf(": ");
|
|
printq((char *) value);
|
|
}
|
|
|
|
sqlite3_finalize(stmt2);
|
|
|
|
const char *sql = "SELECT tile_data, zoom_level, tile_column, tile_row from tiles where zoom_level between ? and ? order by zoom_level, tile_column, tile_row;";
|
|
sqlite3_stmt *stmt;
|
|
if (sqlite3_prepare_v2(db, sql, -1, &stmt, NULL) != SQLITE_OK) {
|
|
fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
sqlite3_bind_int(stmt, 1, minzoom);
|
|
sqlite3_bind_int(stmt, 2, maxzoom);
|
|
|
|
printf("\n}, \"features\": [\n");
|
|
|
|
within = 0;
|
|
while (sqlite3_step(stmt) == SQLITE_ROW) {
|
|
if (within) {
|
|
printf(",\n");
|
|
}
|
|
within = 1;
|
|
|
|
int len = sqlite3_column_bytes(stmt, 0);
|
|
int tz = sqlite3_column_int(stmt, 1);
|
|
int tx = sqlite3_column_int(stmt, 2);
|
|
int ty = sqlite3_column_int(stmt, 3);
|
|
ty = (1LL << tz) - 1 - ty;
|
|
const char *s = (const char *) sqlite3_column_blob(stmt, 0);
|
|
|
|
handle(std::string(s, len), tz, tx, ty, 1, to_decode);
|
|
}
|
|
|
|
printf("] }\n");
|
|
|
|
sqlite3_finalize(stmt);
|
|
} else {
|
|
int handled = 0;
|
|
while (z >= 0 && !handled) {
|
|
const char *sql = "SELECT tile_data from tiles where zoom_level = ? and tile_column = ? and tile_row = ?;";
|
|
sqlite3_stmt *stmt;
|
|
if (sqlite3_prepare_v2(db, sql, -1, &stmt, NULL) != SQLITE_OK) {
|
|
fprintf(stderr, "%s: select failed: %s\n", fname, sqlite3_errmsg(db));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
sqlite3_bind_int(stmt, 1, z);
|
|
sqlite3_bind_int(stmt, 2, x);
|
|
sqlite3_bind_int(stmt, 3, (1LL << z) - 1 - y);
|
|
|
|
while (sqlite3_step(stmt) == SQLITE_ROW) {
|
|
int len = sqlite3_column_bytes(stmt, 0);
|
|
const char *s = (const char *) sqlite3_column_blob(stmt, 0);
|
|
|
|
if (z != oz) {
|
|
fprintf(stderr, "%s: Warning: using tile %d/%u/%u instead of %d/%u/%u\n", fname, z, x, y, oz, ox, oy);
|
|
}
|
|
|
|
handle(std::string(s, len), z, x, y, 0, to_decode);
|
|
handled = 1;
|
|
}
|
|
|
|
sqlite3_finalize(stmt);
|
|
|
|
z--;
|
|
x /= 2;
|
|
y /= 2;
|
|
}
|
|
}
|
|
|
|
if (sqlite3_close(db) != SQLITE_OK) {
|
|
fprintf(stderr, "%s: could not close database: %s\n", fname, sqlite3_errmsg(db));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
void usage(char **argv) {
|
|
fprintf(stderr, "Usage: %s [-t projection] [-Z minzoom] [-z maxzoom] [-l layer ...] file.mbtiles [zoom x y]\n", argv[0]);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
extern int optind;
|
|
extern char *optarg;
|
|
int i;
|
|
std::set<std::string> to_decode;
|
|
|
|
struct option long_options[] = {
|
|
{"projection", required_argument, 0, 's'},
|
|
{"maximum-zoom", required_argument, 0, 'z'},
|
|
{"minimum-zoom", required_argument, 0, 'Z'},
|
|
{"layer", required_argument, 0, 'l'},
|
|
{"force", no_argument, 0, 'f'},
|
|
{0, 0, 0, 0},
|
|
};
|
|
|
|
std::string getopt_str;
|
|
for (size_t lo = 0; long_options[lo].name != NULL; lo++) {
|
|
if (long_options[lo].val > ' ') {
|
|
getopt_str.push_back(long_options[lo].val);
|
|
|
|
if (long_options[lo].has_arg == required_argument) {
|
|
getopt_str.push_back(':');
|
|
}
|
|
}
|
|
}
|
|
|
|
while ((i = getopt_long(argc, argv, getopt_str.c_str(), long_options, NULL)) != -1) {
|
|
switch (i) {
|
|
case 0:
|
|
break;
|
|
|
|
case 's':
|
|
set_projection_or_exit(optarg);
|
|
break;
|
|
|
|
case 'z':
|
|
maxzoom = atoi(optarg);
|
|
break;
|
|
|
|
case 'Z':
|
|
minzoom = atoi(optarg);
|
|
break;
|
|
|
|
case 'l':
|
|
to_decode.insert(optarg);
|
|
break;
|
|
|
|
case 'f':
|
|
force = true;
|
|
break;
|
|
|
|
default:
|
|
usage(argv);
|
|
}
|
|
}
|
|
|
|
if (argc == optind + 4) {
|
|
decode(argv[optind], atoi(argv[optind + 1]), atoi(argv[optind + 2]), atoi(argv[optind + 3]), to_decode);
|
|
} else if (argc == optind + 1) {
|
|
decode(argv[optind], -1, -1, -1, to_decode);
|
|
} else {
|
|
usage(argv);
|
|
}
|
|
|
|
return 0;
|
|
}
|