mirror of
https://github.com/mapbox/tippecanoe.git
synced 2025-01-22 12:28:03 +00:00
1004 lines
23 KiB
C++
1004 lines
23 KiB
C++
#include <iostream>
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <stack>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <zlib.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <math.h>
|
|
#include <sqlite3.h>
|
|
#include "vector_tile.pb.h"
|
|
|
|
extern "C" {
|
|
#include "tile.h"
|
|
#include "pool.h"
|
|
#include "clip.h"
|
|
#include "mbtiles.h"
|
|
}
|
|
|
|
#define CMD_BITS 3
|
|
#define MIN_DETAIL 7
|
|
|
|
// https://github.com/mapbox/mapnik-vector-tile/blob/master/src/vector_tile_compression.hpp
|
|
static inline int compress(std::string const& input, std::string& output) {
|
|
z_stream deflate_s;
|
|
deflate_s.zalloc = Z_NULL;
|
|
deflate_s.zfree = Z_NULL;
|
|
deflate_s.opaque = Z_NULL;
|
|
deflate_s.avail_in = 0;
|
|
deflate_s.next_in = Z_NULL;
|
|
deflateInit(&deflate_s, Z_DEFAULT_COMPRESSION);
|
|
deflate_s.next_in = (Bytef *)input.data();
|
|
deflate_s.avail_in = input.size();
|
|
size_t length = 0;
|
|
do {
|
|
size_t increase = input.size() / 2 + 1024;
|
|
output.resize(length + increase);
|
|
deflate_s.avail_out = increase;
|
|
deflate_s.next_out = (Bytef *)(output.data() + length);
|
|
int ret = deflate(&deflate_s, Z_FINISH);
|
|
if (ret != Z_STREAM_END && ret != Z_OK && ret != Z_BUF_ERROR) {
|
|
return -1;
|
|
}
|
|
length += (increase - deflate_s.avail_out);
|
|
} while (deflate_s.avail_out == 0);
|
|
deflateEnd(&deflate_s);
|
|
output.resize(length);
|
|
return 0;
|
|
}
|
|
|
|
struct draw {
|
|
int op;
|
|
long long x;
|
|
long long y;
|
|
int necessary;
|
|
|
|
draw(int op, long long x, long long y) {
|
|
this->op = op;
|
|
this->x = x;
|
|
this->y = y;
|
|
}
|
|
|
|
draw() { }
|
|
};
|
|
|
|
typedef std::vector<draw> drawvec;
|
|
|
|
drawvec decode_feature(char **meta, int z, unsigned tx, unsigned ty, int detail) {
|
|
drawvec out;
|
|
|
|
while (1) {
|
|
draw d;
|
|
|
|
deserialize_int(meta, &d.op);
|
|
if (d.op == VT_END) {
|
|
break;
|
|
}
|
|
|
|
if (d.op == VT_MOVETO || d.op == VT_LINETO) {
|
|
int wx, wy;
|
|
deserialize_int(meta, &wx);
|
|
deserialize_int(meta, &wy);
|
|
|
|
long long wwx = (unsigned) wx;
|
|
long long wwy = (unsigned) wy;
|
|
|
|
if (z != 0) {
|
|
wwx -= tx << (32 - z);
|
|
wwy -= ty << (32 - z);
|
|
}
|
|
|
|
d.x = wwx;
|
|
d.y = wwy;
|
|
}
|
|
|
|
out.push_back(d);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
int to_feature(drawvec &geom, mapnik::vector::tile_feature *feature) {
|
|
int px = 0, py = 0;
|
|
int cmd_idx = -1;
|
|
int cmd = -1;
|
|
int length = 0;
|
|
int drew = 0;
|
|
int i;
|
|
|
|
int n = geom.size();
|
|
for (i = 0; i < n; i++) {
|
|
int op = geom[i].op;
|
|
|
|
if (op != cmd) {
|
|
if (cmd_idx >= 0) {
|
|
if (feature != NULL) {
|
|
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
|
|
}
|
|
}
|
|
|
|
cmd = op;
|
|
length = 0;
|
|
|
|
if (feature != NULL) {
|
|
cmd_idx = feature->geometry_size();
|
|
feature->add_geometry(0);
|
|
}
|
|
}
|
|
|
|
if (op == VT_MOVETO || op == VT_LINETO) {
|
|
long long wwx = geom[i].x;
|
|
long long wwy = geom[i].y;
|
|
|
|
int dx = wwx - px;
|
|
int dy = wwy - py;
|
|
|
|
if (feature != NULL) {
|
|
feature->add_geometry((dx << 1) ^ (dx >> 31));
|
|
feature->add_geometry((dy << 1) ^ (dy >> 31));
|
|
}
|
|
|
|
px = wwx;
|
|
py = wwy;
|
|
length++;
|
|
|
|
if (op == VT_LINETO && (dx != 0 || dy != 0)) {
|
|
drew = 1;
|
|
}
|
|
} else if (op == VT_CLOSEPATH) {
|
|
length++;
|
|
} else {
|
|
fprintf(stderr, "\nInternal error: corrupted geometry\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
if (cmd_idx >= 0) {
|
|
if (feature != NULL) {
|
|
feature->set_geometry(cmd_idx, (length << CMD_BITS) | (cmd & ((1 << CMD_BITS) - 1)));
|
|
}
|
|
}
|
|
|
|
return drew;
|
|
}
|
|
|
|
drawvec remove_noop(drawvec geom, int type) {
|
|
// first pass: remove empty linetos
|
|
|
|
long long x = 0, y = 0;
|
|
drawvec out;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < geom.size(); i++) {
|
|
if (geom[i].op == VT_LINETO && geom[i].x == x && geom[i].y == y) {
|
|
continue;
|
|
}
|
|
|
|
if (geom[i].op == VT_CLOSEPATH) {
|
|
out.push_back(geom[i]);
|
|
} else { /* moveto or lineto */
|
|
out.push_back(geom[i]);
|
|
x = geom[i].x;
|
|
y = geom[i].y;
|
|
}
|
|
}
|
|
|
|
// second pass: remove unused movetos
|
|
|
|
geom = out;
|
|
out.resize(0);
|
|
|
|
for (i = 0; i < geom.size(); i++) {
|
|
if (geom[i].op == VT_MOVETO) {
|
|
if (i + 1 >= geom.size()) {
|
|
continue;
|
|
}
|
|
|
|
if (geom[i + 1].op == VT_MOVETO) {
|
|
continue;
|
|
}
|
|
|
|
if (geom[i + 1].op == VT_CLOSEPATH) {
|
|
i++; // also remove unused closepath
|
|
continue;
|
|
}
|
|
}
|
|
|
|
out.push_back(geom[i]);
|
|
}
|
|
|
|
// second pass: remove empty movetos
|
|
|
|
if (type == VT_LINE) {
|
|
geom = out;
|
|
out.resize(0);
|
|
|
|
for (i = 0; i < geom.size(); i++) {
|
|
if (geom[i].op == VT_MOVETO) {
|
|
if (i > 0 && geom[i - 1].op == VT_LINETO && geom[i - 1].x == geom[i].x && geom[i - 1].y == geom[i].y) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
out.push_back(geom[i]);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
drawvec shrink_lines(drawvec &geom, int z, int detail, int basezoom, long long *here, double droprate) {
|
|
long long res = 200LL << (32 - 8 - z);
|
|
long long portion = res / exp(log(sqrt(droprate)) * (basezoom - z));
|
|
|
|
unsigned i;
|
|
drawvec out;
|
|
|
|
for (i = 0; i < geom.size(); i++) {
|
|
if (i > 0 && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO) && geom[i].op == VT_LINETO) {
|
|
double dx = (geom[i].x - geom[i - 1].x);
|
|
double dy = (geom[i].y - geom[i - 1].y);
|
|
long long d = sqrt(dx * dx + dy * dy);
|
|
|
|
long long n;
|
|
long long next = LONG_LONG_MAX;
|
|
for (n = *here; n < *here + d; n = next) {
|
|
int within;
|
|
|
|
if (n % res < portion) {
|
|
next = (n / res) * res + portion;
|
|
within = 1;
|
|
} else {
|
|
next = (n / res + 1) * res;
|
|
within = 0;
|
|
}
|
|
|
|
if (next > *here + d) {
|
|
next = *here + d;
|
|
}
|
|
|
|
//printf("drawing from %lld to %lld in %lld\n", n - *here, next - *here, d);
|
|
|
|
double f1 = (n - *here) / (double) d;
|
|
double f2 = (next - *here) / (double) d;
|
|
|
|
if (within) {
|
|
out.push_back(draw(VT_MOVETO, geom[i - 1].x + f1 * (geom[i].x - geom[i - 1].x), geom[i - 1].y + f1 * (geom[i].y - geom[i - 1].y)));
|
|
out.push_back(draw(VT_LINETO, geom[i - 1].x + f2 * (geom[i].x - geom[i - 1].x), geom[i - 1].y + f2 * (geom[i].y - geom[i - 1].y)));
|
|
} else {
|
|
out.push_back(draw(VT_MOVETO, geom[i - 1].x + f2 * (geom[i].x - geom[i - 1].x), geom[i - 1].y + f2 * (geom[i].y - geom[i - 1].y)));
|
|
}
|
|
}
|
|
|
|
*here += d;
|
|
} else {
|
|
out.push_back(geom[i]);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
void to_tile_scale(drawvec &geom, int z, int detail) {
|
|
unsigned i;
|
|
|
|
for (i = 0; i < geom.size(); i++) {
|
|
geom[i].x >>= (32 - detail - z);
|
|
geom[i].y >>= (32 - detail - z);
|
|
}
|
|
}
|
|
|
|
double square_distance_from_line(long long point_x, long long point_y, long long segA_x, long long segA_y, long long segB_x, long long segB_y) {
|
|
double p2x = segB_x - segA_x;
|
|
double p2y = segB_y - segA_y;
|
|
double something = p2x * p2x + p2y * p2y;
|
|
double u = 0 == something ? 0 : ((point_x - segA_x) * p2x + (point_y - segA_y) * p2y) / something;
|
|
|
|
if (u > 1) {
|
|
u = 1;
|
|
} else if (u < 0) {
|
|
u = 0;
|
|
}
|
|
|
|
double x = segA_x + u * p2x;
|
|
double y = segA_y + u * p2y;
|
|
|
|
double dx = x - point_x;
|
|
double dy = y - point_y;
|
|
|
|
return dx * dx + dy * dy;
|
|
}
|
|
|
|
// https://github.com/Project-OSRM/osrm-backend/blob/733d1384a40f/Algorithms/DouglasePeucker.cpp
|
|
void douglas_peucker(drawvec &geom, int start, int n, double e) {
|
|
e = e * e;
|
|
std::stack<int> recursion_stack;
|
|
|
|
{
|
|
int left_border = 0;
|
|
int right_border = 1;
|
|
// Sweep linerarily over array and identify those ranges that need to be checked
|
|
do {
|
|
if (geom[start + right_border].necessary) {
|
|
recursion_stack.push(left_border);
|
|
recursion_stack.push(right_border);
|
|
left_border = right_border;
|
|
}
|
|
++right_border;
|
|
} while (right_border < n);
|
|
}
|
|
|
|
while (!recursion_stack.empty()) {
|
|
// pop next element
|
|
int second = recursion_stack.top();
|
|
recursion_stack.pop();
|
|
int first = recursion_stack.top();
|
|
recursion_stack.pop();
|
|
|
|
double max_distance = -1;
|
|
int farthest_element_index = second;
|
|
|
|
// find index idx of element with max_distance
|
|
int i;
|
|
for (i = first + 1; i < second; i++) {
|
|
double temp_dist = square_distance_from_line(geom[start + i].x, geom[start + i].y,
|
|
geom[start + first].x, geom[start + first].y,
|
|
geom[start + second].x, geom[start + second].y);
|
|
|
|
double distance = fabs(temp_dist);
|
|
|
|
if (distance > e && distance > max_distance) {
|
|
farthest_element_index = i;
|
|
max_distance = distance;
|
|
}
|
|
}
|
|
|
|
if (max_distance > e) {
|
|
// mark idx as necessary
|
|
geom[start + farthest_element_index].necessary = 1;
|
|
|
|
if (1 < farthest_element_index - first) {
|
|
recursion_stack.push(first);
|
|
recursion_stack.push(farthest_element_index);
|
|
}
|
|
if (1 < second - farthest_element_index) {
|
|
recursion_stack.push(farthest_element_index);
|
|
recursion_stack.push(second);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool inside(draw d, int edge, int area) {
|
|
int clip_buffer = area / 64;
|
|
|
|
switch (edge) {
|
|
case 0: // top
|
|
return d.y > -clip_buffer;
|
|
|
|
case 1: // right
|
|
return d.x < area + clip_buffer;
|
|
|
|
case 2: // bottom
|
|
return d.y < area + clip_buffer;
|
|
|
|
case 3: // left
|
|
return d.x > -clip_buffer;
|
|
}
|
|
|
|
fprintf(stderr, "internal error inside\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect
|
|
static draw get_line_intersection(draw p0, draw p1, draw p2, draw p3) {
|
|
double s1_x = p1.x - p0.x;
|
|
double s1_y = p1.y - p0.y;
|
|
double s2_x = p3.x - p2.x;
|
|
double s2_y = p3.y - p2.y;
|
|
|
|
double s, t;
|
|
s = (-s1_y * (p0.x - p2.x) + s1_x * (p0.y - p2.y)) / (-s2_x * s1_y + s1_x * s2_y);
|
|
t = ( s2_x * (p0.y - p2.y) - s2_y * (p0.x - p2.x)) / (-s2_x * s1_y + s1_x * s2_y);
|
|
|
|
return draw(VT_LINETO, p0.x + (t * s1_x), p0.y + (t * s1_y));
|
|
}
|
|
|
|
static draw intersect(draw a, draw b, int edge, int area) {
|
|
int clip_buffer = area / 64;
|
|
|
|
switch (edge) {
|
|
case 0: // top
|
|
return get_line_intersection(a, b, draw(VT_MOVETO, -clip_buffer, -clip_buffer), draw(VT_MOVETO, area + clip_buffer, -clip_buffer));
|
|
break;
|
|
|
|
case 1: // right
|
|
return get_line_intersection(a, b, draw(VT_MOVETO, area + clip_buffer, -clip_buffer), draw(VT_MOVETO, area + clip_buffer, area + clip_buffer));
|
|
break;
|
|
|
|
case 2: // bottom
|
|
return get_line_intersection(a, b, draw(VT_MOVETO, area + clip_buffer, area + clip_buffer), draw(VT_MOVETO, -clip_buffer, area + clip_buffer));
|
|
break;
|
|
|
|
case 3: // left
|
|
return get_line_intersection(a, b, draw(VT_MOVETO, -clip_buffer, area + clip_buffer), draw(VT_MOVETO, -clip_buffer, -clip_buffer));
|
|
break;
|
|
}
|
|
|
|
fprintf(stderr, "internal error intersecting\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
// http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm
|
|
static drawvec clip_poly1(drawvec &geom, int z, int detail) {
|
|
drawvec out = geom;
|
|
|
|
unsigned area = 0xFFFFFFFF;
|
|
if (z != 0) {
|
|
area = 1 << (32 - z);
|
|
}
|
|
|
|
for (int edge = 0; edge < 4; edge++) {
|
|
if (out.size() > 0) {
|
|
drawvec in = out;
|
|
out.resize(0);
|
|
|
|
draw S = in[in.size() - 1];
|
|
|
|
for (unsigned e = 0; e < in.size(); e++) {
|
|
draw E = in[e];
|
|
|
|
if (inside(E, edge, area)) {
|
|
if (!inside(S, edge, area)) {
|
|
out.push_back(intersect(S, E, edge, area));
|
|
}
|
|
out.push_back(E);
|
|
} else if (inside(S, edge, area)) {
|
|
out.push_back(intersect(S, E, edge, area));
|
|
}
|
|
|
|
S = E;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (out.size() > 0) {
|
|
out[0].op = VT_MOVETO;
|
|
for (unsigned i = 1; i < out.size(); i++) {
|
|
out[i].op = VT_LINETO;
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
drawvec clip_poly(drawvec &geom, int z, int detail) {
|
|
drawvec out;
|
|
|
|
for (unsigned i = 0; i < geom.size(); i++) {
|
|
if (geom[i].op == VT_MOVETO) {
|
|
unsigned j;
|
|
for (j = i + 1; j < geom.size(); j++) {
|
|
if (geom[j].op == VT_CLOSEPATH) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
drawvec tmp;
|
|
for (unsigned k = i; k < j; k++) {
|
|
tmp.push_back(geom[k]);
|
|
}
|
|
tmp = clip_poly1(tmp, z, detail);
|
|
for (unsigned k = 0; k < tmp.size(); k++) {
|
|
out.push_back(tmp[k]);
|
|
}
|
|
|
|
out.push_back(draw(VT_CLOSEPATH, 0, 0));
|
|
i = j;
|
|
} else {
|
|
out.push_back(geom[i]);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
drawvec reduce_tiny_poly(drawvec &geom, int z, int detail, bool *reduced, double *accum_area) {
|
|
drawvec out;
|
|
long long pixel = (1 << (32 - detail - z)) * 3;
|
|
|
|
*reduced = true;
|
|
|
|
for (unsigned i = 0; i < geom.size(); i++) {
|
|
if (geom[i].op == VT_MOVETO) {
|
|
unsigned j;
|
|
for (j = i + 1; j < geom.size(); j++) {
|
|
if (geom[j].op == VT_CLOSEPATH) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (j + 1 < geom.size() && geom[j + 1].op == VT_CLOSEPATH) {
|
|
fprintf(stderr, "double closepath\n");
|
|
}
|
|
|
|
double area = 0;
|
|
for (unsigned k = i; k < j; k++) {
|
|
area += geom[k].x * geom[i + ((k - i + 1) % (j - i))].y;
|
|
area -= geom[k].y * geom[i + ((k - i + 1) % (j - i))].x;
|
|
}
|
|
area = fabs(area / 2);
|
|
|
|
if (area <= pixel * pixel) {
|
|
//printf("area is only %f vs %lld so using square\n", area, pixel * pixel);
|
|
|
|
*accum_area += area;
|
|
if (*accum_area > pixel * pixel) {
|
|
// XXX use centroid;
|
|
|
|
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
|
|
out.push_back(draw(VT_LINETO, geom[i].x + pixel, geom[i].y));
|
|
out.push_back(draw(VT_LINETO, geom[i].x + pixel, geom[i].y + pixel));
|
|
out.push_back(draw(VT_LINETO, geom[i].x, geom[i].y + pixel));
|
|
out.push_back(draw(VT_CLOSEPATH, geom[i].x, geom[i].y));
|
|
|
|
*accum_area -= pixel * pixel;
|
|
}
|
|
} else {
|
|
//printf("area is %f so keeping instead of %lld\n", area, pixel * pixel);
|
|
|
|
for (unsigned k = i; k <= j && k < geom.size(); k++) {
|
|
out.push_back(geom[k]);
|
|
}
|
|
|
|
*reduced = false;
|
|
}
|
|
|
|
i = j;
|
|
} else {
|
|
fprintf(stderr, "how did we get here with %d?\n", geom[i].op);
|
|
out.push_back(geom[i]);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
drawvec clip_lines(drawvec &geom, int z, int detail) {
|
|
drawvec out;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < geom.size(); i++) {
|
|
if (i > 0 && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO) && geom[i].op == VT_LINETO) {
|
|
double x1 = geom[i - 1].x;
|
|
double y1 = geom[i - 1].y;
|
|
|
|
double x2 = geom[i - 0].x;
|
|
double y2 = geom[i - 0].y;
|
|
|
|
unsigned area = 0xFFFFFFFF;
|
|
if (z != 0) {
|
|
area = 1 << (32 - z);
|
|
}
|
|
|
|
int c = clip(&x1, &y1, &x2, &y2, 0, 0, area, area);
|
|
|
|
if (c > 1) { // clipped
|
|
out.push_back(draw(VT_MOVETO, x1, y1));
|
|
out.push_back(draw(VT_LINETO, x2, y2));
|
|
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
|
|
} else if (c == 1) { // unchanged
|
|
out.push_back(geom[i]);
|
|
} else { // clipped away entirely
|
|
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
|
|
}
|
|
} else {
|
|
out.push_back(geom[i]);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
drawvec simplify_lines(drawvec &geom, int z, int detail) {
|
|
int res = 1 << (32 - detail - z);
|
|
|
|
unsigned i;
|
|
for (i = 0; i < geom.size(); i++) {
|
|
if (geom[i].op == VT_MOVETO) {
|
|
geom[i].necessary = 1;
|
|
} else if (geom[i].op == VT_LINETO) {
|
|
geom[i].necessary = 0;
|
|
} else {
|
|
geom[i].necessary = 1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < geom.size(); i++) {
|
|
if (geom[i].op == VT_MOVETO) {
|
|
unsigned j;
|
|
for (j = i + 1; j < geom.size(); j++) {
|
|
if (geom[j].op == VT_CLOSEPATH || geom[j].op == VT_MOVETO) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
geom[i].necessary = 1;
|
|
geom[j - 1].necessary = 1;
|
|
|
|
douglas_peucker(geom, i, j - i, res);
|
|
i = j - 1;
|
|
}
|
|
}
|
|
|
|
drawvec out;
|
|
for (i = 0; i < geom.size(); i++) {
|
|
if (geom[i].necessary) {
|
|
out.push_back(geom[i]);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2);
|
|
|
|
struct coalesce {
|
|
int type;
|
|
drawvec geom;
|
|
std::vector<int> meta;
|
|
unsigned long long index;
|
|
char *metasrc;
|
|
|
|
bool operator< (const coalesce &o) const {
|
|
int cmp = coalindexcmp(this, &o);
|
|
if (cmp < 0) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
};
|
|
|
|
int coalcmp(const void *v1, const void *v2) {
|
|
const struct coalesce *c1 = (const struct coalesce *) v1;
|
|
const struct coalesce *c2 = (const struct coalesce *) v2;
|
|
|
|
int cmp = c1->type - c2->type;
|
|
if (cmp != 0) {
|
|
return cmp;
|
|
}
|
|
|
|
unsigned i;
|
|
for (i = 0; i < c1->meta.size() && i < c2->meta.size(); i++) {
|
|
cmp = c1->meta[i] - c2->meta[i];
|
|
|
|
if (cmp != 0) {
|
|
return cmp;
|
|
}
|
|
}
|
|
|
|
if (c1->meta.size() < c2->meta.size()) {
|
|
return -1;
|
|
} else if (c1->meta.size() > c2->meta.size()) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) {
|
|
int cmp = coalcmp((const void *) c1, (const void *) c2);
|
|
|
|
if (cmp == 0) {
|
|
if (c1->index < c2->index) {
|
|
return -1;
|
|
} else if (c1->index > c2->index) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return cmp;
|
|
}
|
|
|
|
void decode_meta(char **meta, struct pool *keys, struct pool *values, struct pool *file_keys, std::vector<int> *intmeta, char *only) {
|
|
int m;
|
|
deserialize_int(meta, &m);
|
|
|
|
int i;
|
|
for (i = 0; i < m; i++) {
|
|
int t;
|
|
deserialize_int(meta, &t);
|
|
struct pool_val *key = deserialize_string(meta, keys, VT_STRING);
|
|
|
|
if (only != NULL && (strcmp(key->s, only) != 0)) {
|
|
deserialize_int(meta, &t);
|
|
*meta += t;
|
|
} else {
|
|
struct pool_val *value = deserialize_string(meta, values, t);
|
|
|
|
intmeta->push_back(key->n);
|
|
intmeta->push_back(value->n);
|
|
|
|
if (!is_pooled(file_keys, key->s, t)) {
|
|
// Dup to retain after munmap
|
|
pool(file_keys, strdup(key->s), t);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mapnik::vector::tile create_tile(char *layername, int line_detail, std::vector<coalesce> &features, long long *count, struct pool *keys, struct pool *values) {
|
|
mapnik::vector::tile tile;
|
|
mapnik::vector::tile_layer *layer = tile.add_layers();
|
|
|
|
layer->set_name(layername);
|
|
layer->set_version(1);
|
|
layer->set_extent(1 << line_detail);
|
|
|
|
unsigned x;
|
|
for (x = 0; x < features.size(); x++) {
|
|
if (features[x].type == VT_LINE || features[x].type == VT_POLYGON) {
|
|
features[x].geom = remove_noop(features[x].geom, features[x].type);
|
|
}
|
|
|
|
mapnik::vector::tile_feature *feature = layer->add_features();
|
|
|
|
if (features[x].type == VT_POINT) {
|
|
feature->set_type(mapnik::vector::tile::Point);
|
|
} else if (features[x].type == VT_LINE) {
|
|
feature->set_type(mapnik::vector::tile::LineString);
|
|
} else if (features[x].type == VT_POLYGON) {
|
|
feature->set_type(mapnik::vector::tile::Polygon);
|
|
} else {
|
|
feature->set_type(mapnik::vector::tile::Unknown);
|
|
}
|
|
|
|
to_feature(features[x].geom, feature);
|
|
*count += features[x].geom.size();
|
|
|
|
unsigned y;
|
|
for (y = 0; y < features[x].meta.size(); y++) {
|
|
feature->add_tags(features[x].meta[y]);
|
|
}
|
|
}
|
|
|
|
struct pool_val *pv;
|
|
for (pv = keys->head; pv != NULL; pv = pv->next) {
|
|
layer->add_keys(pv->s, strlen(pv->s));
|
|
}
|
|
for (pv = values->head; pv != NULL; pv = pv->next) {
|
|
mapnik::vector::tile_value *tv = layer->add_values();
|
|
|
|
if (pv->type == VT_NUMBER) {
|
|
tv->set_double_value(atof(pv->s));
|
|
} else {
|
|
tv->set_string_value(pv->s);
|
|
}
|
|
}
|
|
|
|
return tile;
|
|
}
|
|
|
|
struct sll {
|
|
char *name;
|
|
long long val;
|
|
|
|
bool operator< (const sll &o) const {
|
|
if (this->val < o.val) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
sll(char *name, long long val) {
|
|
this->name = name;
|
|
this->val = val;
|
|
}
|
|
};
|
|
|
|
void evaluate(std::vector<coalesce> &features, char *metabase, struct pool *file_keys, char *layername, int line_detail, long long orig) {
|
|
std::vector<sll> options;
|
|
|
|
struct pool_val *pv;
|
|
for (pv = file_keys->head; pv != NULL; pv = pv->next) {
|
|
struct pool keys, values;
|
|
pool_init(&keys, 0);
|
|
pool_init(&values, 0);
|
|
long long count = 0;
|
|
|
|
for (unsigned i = 0; i < features.size(); i++) {
|
|
char *meta = features[i].metasrc;
|
|
|
|
features[i].meta.resize(0);
|
|
decode_meta(&meta, &keys, &values, file_keys, &features[i].meta, pv->s);
|
|
}
|
|
|
|
std::vector<coalesce> empty;
|
|
mapnik::vector::tile tile = create_tile(layername, line_detail, empty, &count, &keys, &values);
|
|
|
|
std::string s;
|
|
std::string compressed;
|
|
|
|
tile.SerializeToString(&s);
|
|
compress(s, compressed);
|
|
|
|
options.push_back(sll(pv->s, compressed.size()));
|
|
|
|
pool_free(&values);
|
|
pool_free(&keys);
|
|
}
|
|
|
|
std::sort(options.begin(), options.end());
|
|
for (unsigned i = 0; i < options.size(); i++) {
|
|
if (options[i].val > 1024) {
|
|
fprintf(stderr, "using -x %s would save about %lld, for a tile size of of %lld\n", options[i].name, options[i].val, orig - options[i].val);
|
|
}
|
|
}
|
|
|
|
struct pool keys, values;
|
|
pool_init(&keys, 0);
|
|
pool_init(&values, 0);
|
|
long long count = 0;
|
|
|
|
std::vector<coalesce> empty;
|
|
mapnik::vector::tile tile = create_tile(layername, line_detail, features, &count, &keys, &values);
|
|
|
|
std::string s;
|
|
std::string compressed;
|
|
|
|
tile.SerializeToString(&s);
|
|
compress(s, compressed);
|
|
fprintf(stderr, "geometry alone (-X) would be %lld\n", (long long) compressed.size());
|
|
|
|
pool_free(&values);
|
|
pool_free(&keys);
|
|
}
|
|
|
|
long long write_tile(struct index *start, struct index *end, char *metabase, unsigned *file_bbox, int z, unsigned tx, unsigned ty, int detail, int basezoom, struct pool *file_keys, char *layername, sqlite3 *outdb, double droprate) {
|
|
int line_detail;
|
|
static bool evaluated = false;
|
|
|
|
for (line_detail = detail; line_detail >= MIN_DETAIL; line_detail--) {
|
|
GOOGLE_PROTOBUF_VERIFY_VERSION;
|
|
|
|
struct pool keys, values, dup;
|
|
pool_init(&keys, 0);
|
|
pool_init(&values, 0);
|
|
pool_init(&dup, 1);
|
|
|
|
double interval = 1;
|
|
double seq = 0;
|
|
long long count = 0;
|
|
long long along = 0;
|
|
double accum_area = 0;
|
|
|
|
if (z < basezoom) {
|
|
interval = exp(log(droprate) * (basezoom - z));
|
|
}
|
|
|
|
std::vector<coalesce> features;
|
|
|
|
struct index *i;
|
|
for (i = start; i < end; i++) {
|
|
int t;
|
|
|
|
char *meta = metabase + i->fpos;
|
|
deserialize_int(&meta, &t);
|
|
|
|
if (t == VT_POINT) {
|
|
seq++;
|
|
|
|
if (seq >= 0) {
|
|
seq -= interval;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
drawvec geom = decode_feature(&meta, z, tx, ty, line_detail);
|
|
|
|
bool reduced = false;
|
|
if (t == VT_POLYGON) {
|
|
geom = reduce_tiny_poly(geom, z, line_detail, &reduced, &accum_area);
|
|
}
|
|
|
|
if (t == VT_LINE) {
|
|
geom = clip_lines(geom, z, line_detail);
|
|
}
|
|
|
|
if (t == VT_POLYGON) {
|
|
geom = clip_poly(geom, z, line_detail);
|
|
}
|
|
|
|
if (t == VT_LINE || t == VT_POLYGON) {
|
|
if (!reduced) {
|
|
geom = simplify_lines(geom, z, line_detail);
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
if (t == VT_LINE && z != basezoom) {
|
|
geom = shrink_lines(geom, z, line_detail, basezoom, &along);
|
|
}
|
|
#endif
|
|
|
|
to_tile_scale(geom, z, line_detail);
|
|
|
|
if (t == VT_POINT || to_feature(geom, NULL)) {
|
|
struct pool_val *pv = pool_long_long(&dup, &i->fpos, 0);
|
|
if (pv->n == 0) {
|
|
continue;
|
|
}
|
|
pv->n = 0;
|
|
|
|
struct coalesce c;
|
|
|
|
c.type = t;
|
|
c.index = i->index;
|
|
c.geom = geom;
|
|
c.metasrc = meta;
|
|
|
|
decode_meta(&meta, &keys, &values, file_keys, &c.meta, NULL);
|
|
features.push_back(c);
|
|
}
|
|
}
|
|
|
|
std::sort(features.begin(), features.end());
|
|
|
|
std::vector<coalesce> out;
|
|
unsigned x;
|
|
for (x = 0; x < features.size(); x++) {
|
|
unsigned y = out.size() - 1;
|
|
|
|
if (out.size() > 0 && coalcmp(&features[x], &out[y]) < 0) {
|
|
fprintf(stderr, "\nfeature out of order\n");
|
|
}
|
|
|
|
if (out.size() > 0 && out[y].geom.size() + features[x].geom.size() < 20000 && coalcmp(&features[x], &out[y]) == 0 && features[x].type != VT_POINT) {
|
|
unsigned z;
|
|
for (z = 0; z < features[x].geom.size(); z++) {
|
|
out[y].geom.push_back(features[x].geom[z]);
|
|
}
|
|
} else {
|
|
out.push_back(features[x]);
|
|
}
|
|
}
|
|
features = out;
|
|
|
|
mapnik::vector::tile tile = create_tile(layername, line_detail, features, &count, &keys, &values);
|
|
|
|
pool_free(&keys);
|
|
pool_free(&values);
|
|
pool_free(&dup);
|
|
|
|
std::string s;
|
|
std::string compressed;
|
|
|
|
tile.SerializeToString(&s);
|
|
compress(s, compressed);
|
|
|
|
if (compressed.size() > 500000) {
|
|
fprintf(stderr, "tile %d/%u/%u size is %lld with detail %d, >500000 \n", z, tx, ty, (long long) compressed.size(), line_detail);
|
|
|
|
if (line_detail == MIN_DETAIL || !evaluated) {
|
|
evaluated = true;
|
|
evaluate(features, metabase, file_keys, layername, line_detail, compressed.size());
|
|
}
|
|
} else {
|
|
mbtiles_write_tile(outdb, z, tx, ty, compressed.data(), compressed.size());
|
|
return count;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "could not make tile %d/%u/%u small enough\n", z, tx, ty);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|